Articles | Volume 13, issue 6
https://doi.org/10.5194/acp-13-3271-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-13-3271-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The role of the global cryosphere in the fate of organic contaminants
A. M. Grannas
Department of Chemistry, Villanova University, Villanova, PA 19085, USA
C. Bogdal
Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
K. J. Hageman
Department of Chemistry, University of Otago, Dunedin, 9010 New Zealand
C. Halsall
Lancaster Environment Centre, Centre for Chemicals Management, Lancaster University, Lancaster LA1 4YQ, UK
T. Harner
Environment Canada, Science and Technology Branch, Toronto, Ontario M3H 5T4, Canada
H. Hung
Environment Canada, Science and Technology Branch, Toronto, Ontario M3H 5T4, Canada
R. Kallenborn
Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Christian Magnus Falsen vei 1, Postbox 5003, 1432, Norway
P. Klán
Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
RECETOX, Faculty of Science, Masaryk University, Kamenice 3, 625 00 Brno, Czech Republic
J. Klánová
RECETOX, Faculty of Science, Masaryk University, Kamenice 3, 625 00 Brno, Czech Republic
R. W. Macdonald
Department of Environment and Geography, Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, British Columbia V8L 4B2, Canada
T. Meyer
Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
Related authors
No articles found.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Stephen R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christophe Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-126, https://doi.org/10.5194/gmd-2024-126, 2024
Preprint under review for GMD
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model set up are discussed, and the official recommendations for the project are presented.
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
EGUsphere, https://doi.org/10.5194/egusphere-2024-1883, https://doi.org/10.5194/egusphere-2024-1883, 2024
Short summary
Short summary
Organophosphate esters are important man-made trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation and surface water from Canada, we explore seasonal concentration variability, gas/particle partitioning, precipitation scavenging, and air-water equilibrium. Whereas higher concentrations in summer and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas-particle partitioning is puzzling.
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024, https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Short summary
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated for an important group of hazardous air pollutants called polycyclic aromatic compounds (PACs). While the sampler appeared to perform well when used for relatively short periods of up to several months, some PACs were lost from the sampler during longer deployments. Sampling rates that can be used to quantitatively interpret the quantities of PACs taken up in the device have been derived.
Jenny Oh, Chubashini Shunthirasingham, Ying Duan Lei, Faqiang Zhan, Yuening Li, Abigaëlle Dalpé Castilloux, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Sabine Eckhardt, Nick Alexandrou, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 23, 10191–10205, https://doi.org/10.5194/acp-23-10191-2023, https://doi.org/10.5194/acp-23-10191-2023, 2023
Short summary
Short summary
An emerging brominated flame retardant (BFR) called TBECH (1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane) has never been produced or imported for use in Canada yet is found to be one of the most abundant gaseous BFRs in the Canadian atmosphere. The recorded spatial and temporal variability of TBECH suggest that the release from imported consumer products containing TBECH is the most likely explanation for its environmental occurrence in Canada.
Attilio Naccarato, Antonella Tassone, Maria Martino, Sacha Moretti, Antonella Macagnano, Emiliano Zampetti, Paolo Papa, Joshua Avossa, Nicola Pirrone, Michelle Nerentorp, John Munthe, Ingvar Wängberg, Geoff W. Stupple, Carl P. J. Mitchell, Adam R. Martin, Alexandra Steffen, Diana Babi, Eric M. Prestbo, Francesca Sprovieri, and Frank Wania
Atmos. Meas. Tech., 14, 3657–3672, https://doi.org/10.5194/amt-14-3657-2021, https://doi.org/10.5194/amt-14-3657-2021, 2021
Short summary
Short summary
Mercury monitoring in support of the Minamata Convention requires effective and reliable analytical tools. Passive sampling is a promising approach for creating a sustainable long-term network for atmospheric mercury with improved spatial resolution and global coverage. In this study the analytical performance of three passive air samplers (CNR-PAS, IVL-PAS, and MerPAS) was assessed over extended deployment periods and the accuracy of concentrations was judged by comparison with active sampling.
David S. McLagan, Carl P. J. Mitchell, Alexandra Steffen, Hayley Hung, Cecilia Shin, Geoff W. Stupple, Mark L. Olson, Winston T. Luke, Paul Kelley, Dean Howard, Grant C. Edwards, Peter F. Nelson, Hang Xiao, Guey-Rong Sheu, Annekatrin Dreyer, Haiyong Huang, Batual Abdul Hussain, Ying D. Lei, Ilana Tavshunsky, and Frank Wania
Atmos. Chem. Phys., 18, 5905–5919, https://doi.org/10.5194/acp-18-5905-2018, https://doi.org/10.5194/acp-18-5905-2018, 2018
Short summary
Short summary
A new passive air sampler for gaseous mercury was tested at 20 sites on four continents. These sites have in common that they use the state-of-the-art active air sampling technique for gaseous mercury on a continuous basis and therefore allow for an evaluation and calibration of the passive sampler. The sampler proved to work exceptionally well, with a precision and accuracy on par with the active
instrument and better than what has previously been achieved with passive samplers.
David S. McLagan, Carl P. J. Mitchell, Haiyong Huang, Batual Abdul Hussain, Ying Duan Lei, and Frank Wania
Atmos. Meas. Tech., 10, 3651–3660, https://doi.org/10.5194/amt-10-3651-2017, https://doi.org/10.5194/amt-10-3651-2017, 2017
Short summary
Short summary
Laboratory experiments indicate that the sampling rate of a passive air sampler for gaseous mercury is (1) not affected by relative humidity, (2) increases slightly with increasing temperature because of the effect of temperature on molecular diffusivity, (3) increases only slightly with wind speed as long as the wind speed is at least 1 m/s, and (4) is not changed when previously deployed diffusive barriers are used.
Leiming Zhang, Seth Lyman, Huiting Mao, Che-Jen Lin, David A. Gay, Shuxiao Wang, Mae Sexauer Gustin, Xinbin Feng, and Frank Wania
Atmos. Chem. Phys., 17, 9133–9144, https://doi.org/10.5194/acp-17-9133-2017, https://doi.org/10.5194/acp-17-9133-2017, 2017
Short summary
Short summary
Future research needs are proposed for improving the understanding of atmospheric mercury cycling. These include refinement of mercury emission estimations, quantification of dry deposition and air–surface exchange, improvement of the treatment of chemical mechanisms in chemical transport models, increase in the accuracy of oxidized mercury measurements, better interpretation of atmospheric mercury chemistry data, and harmonization of network operation.
Chen Wang, Tiange Yuan, Stephen A. Wood, Kai-Uwe Goss, Jingyi Li, Qi Ying, and Frank Wania
Atmos. Chem. Phys., 17, 7529–7540, https://doi.org/10.5194/acp-17-7529-2017, https://doi.org/10.5194/acp-17-7529-2017, 2017
Short summary
Short summary
Three property prediction methods are used to predict equilibrium partitioning coefficients for a set of 3414 compounds implicated in secondary organic aerosol formation. Partitioning from the gas phase to water is found to be much more uncertain than estimates of partitioning into the organic matter of aerosol. This uncertainty matters, as phase distribution is very different depending on which prediction method is applied.
David S. McLagan, Maxwell E. E. Mazur, Carl P. J. Mitchell, and Frank Wania
Atmos. Chem. Phys., 16, 3061–3076, https://doi.org/10.5194/acp-16-3061-2016, https://doi.org/10.5194/acp-16-3061-2016, 2016
Short summary
Short summary
For more than 20 years, scientists and engineers have tried to design simple sampling devices that can collect gaseous elemental mercury from the atmosphere without the use of a pump. A thorough review of the sampler designs that have been presented so far suggests that while some may be suitable for measuring higher air concentrations close to sources, none of them have the accuracy and precision required to record the low atmospheric mercury concentrations prevalent in background regions.
X. Feng, Ö. Gustafsson, R. M. Holmes, J. E. Vonk, B. E. van Dongen, I. P. Semiletov, O. V. Dudarev, M. B. Yunker, R. W. Macdonald, D. B. Montluçon, and T. I. Eglinton
Biogeosciences, 12, 4841–4860, https://doi.org/10.5194/bg-12-4841-2015, https://doi.org/10.5194/bg-12-4841-2015, 2015
Short summary
Short summary
Currently very few studies have examined the distribution and fate of hydrolyzable organic carbon (OC) in Arctic sediments, whose fate remains unclear in the context of climate change. Our study focuses on the source, distribution and fate of hydrolyzable OC as compared with plant wax lipids and lignin phenols in the sedimentary particles of nine Arctic and sub-Arctic rivers. This multi-molecular approach allows for a comprehensive investigation of terrestrial OC transfer via Arctic rivers.
F. Wania, Y. D. Lei, C. Wang, J. P. D. Abbatt, and K.-U. Goss
Atmos. Chem. Phys., 15, 3395–3412, https://doi.org/10.5194/acp-15-3395-2015, https://doi.org/10.5194/acp-15-3395-2015, 2015
Short summary
Short summary
The manuscript presents a new way to graphically illustrate some of the processes that occur when organic particles form in the atmosphere. In particular, this method makes it possible to see how factors such as the composition of the atmosphere and temperature affect these processes.
T. F. Bidleman, L. M. Jantunen, H. Hung, J. Ma, G. A. Stern, B. Rosenberg, and J. Racine
Atmos. Chem. Phys., 15, 1411–1420, https://doi.org/10.5194/acp-15-1411-2015, https://doi.org/10.5194/acp-15-1411-2015, 2015
Short summary
Short summary
Canadian Arctic air samples were analysed for enantiomers (mirror-image isomers) of pesticides α-hexachlorocyclohexane (α-HCH), trans-chlordane (TC) and cis-chlordane (CC). Annual cycles of enantiomer proportions suggested greater emission of microbially degraded residues from water and soil in warm vs. cold seasons. Enantiomer profiles may change in the future with rising contributions from secondary sources, monitoring them could increase the forensic capability in air monitoring programs.
F. Wania, Y. D. Lei, C. Wang, J. P. D. Abbatt, and K.-U. Goss
Atmos. Chem. Phys., 14, 13189–13204, https://doi.org/10.5194/acp-14-13189-2014, https://doi.org/10.5194/acp-14-13189-2014, 2014
Short summary
Short summary
A description of the formation of secondary organic aerosol requires the prediction of the partitioning equilibrium of organic compounds with multiple functional groups between gas and organic particle phase. While this is typically done by predicting both the saturation vapour pressure and the activity coefficient in the organic particle phase, we demonstrate here that it is feasible to predict the partitioning equilibrium directly. This direct approach has greater precision.
Y. Liu, L. Huang, S.-M. Li, T. Harner, and J. Liggio
Atmos. Chem. Phys., 14, 12195–12207, https://doi.org/10.5194/acp-14-12195-2014, https://doi.org/10.5194/acp-14-12195-2014, 2014
K. E. Giesbrecht, L. A. Miller, M. Davelaar, S. Zimmermann, E. Carmack, W. K. Johnson, R. W. Macdonald, F. McLaughlin, A. Mucci, W. J. Williams, C. S. Wong, and M. Yamamoto-Kawai
Earth Syst. Sci. Data, 6, 91–104, https://doi.org/10.5194/essd-6-91-2014, https://doi.org/10.5194/essd-6-91-2014, 2014
J. N. Sutton, S. C. Johannessen, and R. W. Macdonald
Biogeosciences, 10, 7179–7194, https://doi.org/10.5194/bg-10-7179-2013, https://doi.org/10.5194/bg-10-7179-2013, 2013
R. Kallenborn, K. Breivik, S. Eckhardt, C. R. Lunder, S. Manø, M. Schlabach, and A. Stohl
Atmos. Chem. Phys., 13, 6983–6992, https://doi.org/10.5194/acp-13-6983-2013, https://doi.org/10.5194/acp-13-6983-2013, 2013
A. S. Cole, A. Steffen, K. A. Pfaffhuber, T. Berg, M. Pilote, L. Poissant, R. Tordon, and H. Hung
Atmos. Chem. Phys., 13, 1535–1545, https://doi.org/10.5194/acp-13-1535-2013, https://doi.org/10.5194/acp-13-1535-2013, 2013
Related subject area
Subject: Hydrosphere Interactions | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert
Drought-induced biomass burning as a source of black carbon to the central Himalaya since 1781 CE as reconstructed from the Dasuopu ice core
Tritium as a hydrological tracer in Mediterranean precipitation events
Identification of soil-cooling rains in southern France from soil temperature and soil moisture observations
Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX)
Cryosphere: a kingdom of anomalies and diversity
Using eddy covariance to measure the dependence of air–sea CO2 exchange rate on friction velocity
Dominance of climate warming effects on recent drying trends over wet monsoon regions
Characterisation of boundary layer turbulent processes by the Raman lidar BASIL in the frame of HD(CP)2 Observational Prototype Experiment
Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review
Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on 500 days of in situ, continuous measurements
Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK
Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen
Uncertainties in wind speed dependent CO2 transfer velocities due to airflow distortion at anemometer sites on ships
Felipe Lobos-Roco, Oscar Hartogensis, Jordi Vilà-Guerau de Arellano, Alberto de la Fuente, Ricardo Muñoz, José Rutllant, and Francisco Suárez
Atmos. Chem. Phys., 21, 9125–9150, https://doi.org/10.5194/acp-21-9125-2021, https://doi.org/10.5194/acp-21-9125-2021, 2021
Short summary
Short summary
We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano region of the Atacama Desert through a field experiment and regional modeling. Our results show that evaporation is controlled by two regimes: (1) in the morning by local conditions with low evaporation rates and low wind speed and (2) in the afternoon with high evaporation rates and high wind speed. Afternoon winds are connected to the regional Pacific Ocean–Andes flow.
Joel D. Barker, Susan Kaspari, Paolo Gabrielli, Anna Wegner, Emilie Beaudon, M. Roxana Sierra-Hernández, and Lonnie Thompson
Atmos. Chem. Phys., 21, 5615–5633, https://doi.org/10.5194/acp-21-5615-2021, https://doi.org/10.5194/acp-21-5615-2021, 2021
Short summary
Short summary
Black carbon (BC), an aerosol that contributes to glacier melt, is important for central Himalayan hydrology because glaciers are a water source to rivers that affect 25 % of the global population in Southeast Asia. Using the Dasuopu ice core (1781–1992 CE), we find that drought-associated biomass burning is an important source of BC to the central Himalaya over a period of months to years and that hemispheric changes in atmospheric circulation influence BC deposition over longer periods.
Tobias R. Juhlke, Jürgen Sültenfuß, Katja Trachte, Frédéric Huneau, Emilie Garel, Sébastien Santoni, Johannes A. C. Barth, and Robert van Geldern
Atmos. Chem. Phys., 20, 3555–3568, https://doi.org/10.5194/acp-20-3555-2020, https://doi.org/10.5194/acp-20-3555-2020, 2020
Short summary
Short summary
Tritium can serve as a useful tracer in the hydrological cycle; however, aspects of the distribution and exchange of tritium in the atmosphere are not completely understood. In particular, the movement of tritium from its natural origin in the upper atmosphere to its deposition onto the land surface by precipitation has to be quantified further. Therefore, this study collected precipitation event samples and used atmospheric models in order to improve knowledge regarding tritium dynamics.
Sibo Zhang, Catherine Meurey, and Jean-Christophe Calvet
Atmos. Chem. Phys., 19, 5005–5020, https://doi.org/10.5194/acp-19-5005-2019, https://doi.org/10.5194/acp-19-5005-2019, 2019
Short summary
Short summary
In situ rain temperature measurements are rare. Soil moisture and soil temperature observations in southern France are used to assess the cooling effects on soils of rainfall events. The rainwater temperature is estimated using observed changes of topsoil volumetric soil moisture and soil temperature in response to the rainfall event. The obtained rain temperature estimates are generally lower than the ambient air temperatures, wet-bulb temperatures, and topsoil temperatures.
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Short summary
The Arctic marine climate system, ecosystems, and socio-economic systems are changing rapidly. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX), for which we present a plan. The program will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
Vladimir Melnikov, Viktor Gennadinik, Markku Kulmala, Hanna K. Lappalainen, Tuukka Petäjä, and Sergej Zilitinkevich
Atmos. Chem. Phys., 18, 6535–6542, https://doi.org/10.5194/acp-18-6535-2018, https://doi.org/10.5194/acp-18-6535-2018, 2018
Short summary
Short summary
The cryosphere of the Earth overlaps with the atmosphere, hydrosphere and lithosphere over vast areas with temperatures below zero C and pronounced H2O phase changes. The cryosphere plays the role of a global thermostat; however, the processes related to the cryosphere attract insufficient attention from research communities. We call attention to crucial importance of cryogenic anomalies, which make the Earth atmosphere and the entire Earth system unique.
Sebastian Landwehr, Scott D. Miller, Murray J. Smith, Thomas G. Bell, Eric S. Saltzman, and Brian Ward
Atmos. Chem. Phys., 18, 4297–4315, https://doi.org/10.5194/acp-18-4297-2018, https://doi.org/10.5194/acp-18-4297-2018, 2018
Short summary
Short summary
The ocean takes up about 25 % of emitted anthropogenic emitted carbon dioxide and thus plays a significant role in the regulation of climate. In order to accurately calculate this uptake, a quantity known as the air–sea gas transfer velocity needs to be determined. This is typically parameterised with mean wind speed, the most commonly used velocity scale for calculating air–sea transfer coefficients. In this article, we propose an alternative velocity scale known as the friction velocity.
Chang-Eui Park, Su-Jong Jeong, Chang-Hoi Ho, Hoonyoung Park, Shilong Piao, Jinwon Kim, and Song Feng
Atmos. Chem. Phys., 17, 10467–10476, https://doi.org/10.5194/acp-17-10467-2017, https://doi.org/10.5194/acp-17-10467-2017, 2017
Short summary
Short summary
In dry monsoon regions, a decrease in precipitation induces drying trends. In contrast, the increase in potential evapotranspiration due to increased atmospheric water-holding capacity, a secondary impact of warming, works to increase aridity over the humid monsoon regions despite the increase in precipitation. Our results explain the recent drying in the humid monsoon regions. This also supports the drying trends over the warm and water-sufficient regions in future climate.
Paolo Di Girolamo, Marco Cacciani, Donato Summa, Andrea Scoccione, Benedetto De Rosa, Andreas Behrendt, and Volker Wulfmeyer
Atmos. Chem. Phys., 17, 745–767, https://doi.org/10.5194/acp-17-745-2017, https://doi.org/10.5194/acp-17-745-2017, 2017
Short summary
Short summary
This paper reports what we believe are the first measurements throughout the atmospheric convective boundary layer of higher-order moments (up to the fourth) of the turbulent fluctuations of water vapour mixing ratio and temperature performed by a single lidar system, i.e. the Raman lidar system BASIL. These measurements, in combination with measurements from other lidar systems, are fundamental to verify and possibly improve turbulence parametrisation in weather and climate models.
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
H. C. Steen-Larsen, A. E. Sveinbjörnsdottir, A. J. Peters, V. Masson-Delmotte, M. P. Guishard, G. Hsiao, J. Jouzel, D. Noone, J. K. Warren, and J. W. C. White
Atmos. Chem. Phys., 14, 7741–7756, https://doi.org/10.5194/acp-14-7741-2014, https://doi.org/10.5194/acp-14-7741-2014, 2014
H. C. Ward, J. G. Evans, and C. S. B. Grimmond
Atmos. Chem. Phys., 13, 4645–4666, https://doi.org/10.5194/acp-13-4645-2013, https://doi.org/10.5194/acp-13-4645-2013, 2013
J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino
Atmos. Chem. Phys., 11, 9787–9801, https://doi.org/10.5194/acp-11-9787-2011, https://doi.org/10.5194/acp-11-9787-2011, 2011
F. Griessbaum, B. I. Moat, Y. Narita, M. J. Yelland, O. Klemm, and M. Uematsu
Atmos. Chem. Phys., 10, 5123–5133, https://doi.org/10.5194/acp-10-5123-2010, https://doi.org/10.5194/acp-10-5123-2010, 2010
Cited articles
Åberg, A., MacLeod, M., and Wiberg, K.: Physical-chemical property data for dibenzo-p-dioxin (DD), dibenzofuran (DF), and chlorinated DD/Fs: A critical review and recommended values, J. Phys. Chem. Ref. Data, 37, 1997, 2008.
Abbatt, J. P. D., Thomas, J. L., Abrahamsson, K., Boxe, C., Granfors, A., Jones, A. E., King, M. D., Saiz-Lopez, A., Shepson, P. B., Sodeau, J., Toohey, D. W., Toubin, C., von Glasow, R., Wren, S. N., and Yang, X.: Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions, Atmos. Chem. Phys., 12, 6237–6271, https://doi.org/10.5194/acp-12-6237-2012, 2012.
ACCE: Antarctic Climate Change and the Environment, edited by: Turner, J., Bindschadler, R. A., Convey, P., Di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D. A., Mayewski, P. A., and Summerhayes, C. P., Scientific Committee on Antarctic Research, Cambridge, 526 pp., 2009.
Albert, M. R. and Hawley, R. L.: Seasonal changes in snow surface roughness characteristics at Summit, Greenland: implications for snow and firn ventilation, Ann. Glaciol., 35, 510–514, 2002.
Albert, M. R. and Shultz, E. F.: Snow and firn properties and transport processes at Summit, Greenland, Atmos. Environ., 36, 2789–2797, 2002.
Albert, M. R., Shultz, E. F., and Perron Jr., F. E.: Snow and firn permeability at Siple Dome, Antarctica, Ann. Glaciol., 31, 353–356, 2000.
Albert, M. R., Grannas, A. M., Bottenheim, J., Shepson, P. B., and Perron, F. E.: Processes and properties of snow–air transfer in the high Arctic with application to interstitial ozone at Alert, Canada, Atmos. Environ., 36, 2779–2787, 2002.
AMAP Assessment 1998: Arctic Pollution Issues, Arctic Monitoring and Assessment Programme, Oslo, Norway, 859 pp., 1998.
AMAP Assessment 2005: Arctic Climate Impact Assessment, Arctic Monitoring and Assessment Programme, Oslo, Norway, 1020 pp., 2005.
AMAP Assessment 2009: Assessment of Persistent Organic Pollutants in the Arctic. Oslo, Norway: Arctic Monitoring and Assessment Programme, Oslo, Norway. 83 pp., 2009a.
AMAP Assessment 2009: The Greenland Ice Sheet in a Changing Climate: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2009edited by: Dahl-Jensen, D., Bamber, J., Bøggild, C. E., Buch, E., Christensen, J. H., Dethloff, K., Fahnestock, M., Marshall, S., Rosing, M., Steffen, K., Thomas, R., Truffer, M., van den Broeke, M., and van der Veen, C. J., Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. 115 pp., 2009b.
AMAP Assessment 2011: Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, xii, 538 pp., 2011a.
AMAP Assessment 2011: Combined Effects of Selected Pollutants and Climate Change in the Arctic Environment, edited by: Kallenborn, R., Borgå, K., Christensen, J. H., Dowdall, M., Odland, J. Ø., Ruus, A., Aspmo Pfaffhuber, K., Pawlak, J., and Reiersen, L.-O., Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 109 pp., 2011b.
Armitage, J. M., Quinn, C.L., and Wania, F.: Global climate change and contaminants – an overview of opportunities and priorities for modelling the potential implications for long-term human exposure to organic compounds in the Arctic, J. Environ. Monit. 13, 1532–1546, 2011.
Armstrong, R. L. and Brodzik, M. J.: Recent northern hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors, Geophys. Res. Lett., 28, 3673–3676, 2001.
Aronson, R. B., Thatje, S., McClintock, J. B., and Highes, K. A.: Anthropogenic impacts on marine ecosystems in Antarctica, Ann. NY Acad. Sci., 1223, 82–107, 2011.
Ashauer, R., Wittmer, I., Stamm, C., and Escher, B. I.: Environmental risk assessment of fluctuating diazinon concentrations in an urban and agricultural catchment using toxicokinetic-toxicodynamic modeling, Environ. Sci. Technol., 45, 9783–9792, 2011.
Bailey, R. E.: Global hexachlorobenzene emissions, Chemosphere, 43, 167–182, 2001.
Barber, J. L., Sweetman, A. J., van Wijk, D., and Jones, K. C.: Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes, Sci. Total Environ., 349, 1–44, 2005.
Bard, S.: Global transport of anthropogenic contaminants and the consequences for the Arctic marine ecosystem, Mar. Pollut. Bull., 38, 356–379, 1999.
Bargagli, R.: Environmental contamination in Antarctic ecosystems, Sci. Total Environ., 400, 212–226, 2008.
Barrie, L. A., Gregor, D., Hargrave, B., Lake, R., Muir, D., Shearer, R., Tracey, B., and Bidleman, T.: Arctic contaminants: sources, occurrence and pathways, Sci. Total Environ., 122, 1–72, 1992.
Barrie, L. A., Macdonald, R. W., Bidleman, T., Diamond, M., Gregor, D., Semkin, R., Strachan, W., Alaee, M., Backus, S., Bewers, M., Gobeil, C., Halsall, C., Hoff, J., Li, Y. F., Lockhart, L., Mackay, D., Muir, D., Pudykiewicz, J., Reimer, K., Smith, J., Stem, G., Schroeder, W., Wagemann, R., Wania, F., and Yunker, M.: Chapter 2. Sources, occurrence and pathways, edited by: Jensen, J., Adare, K. and Shearer, R., in: Canadian Arctic Contaminants Assessment Report, Department of Indian and Northern Affairs, Ottawa, 25–182, 1997.
Barrie, L. A., Falck, E., Gregor, D., Iverson, T., Loeng, H., Macdonald, R., Pfirman, S., Skotvold, T., and Wartena, E.: The influence of physical and chemical processes on contaminant transport into and within the Arctic, edited by: Gregor, D., Barrie, L., and Loeng, H., in: The AMAP Assessment, 25–116, 1998.
Bartels-Rausch, T., Jacobi, H.-W., Kahan, T. F., Thomas, J. L., Thomson, E. S., Abbatt, J. P. D., Ammann, M., Blackford, J. R., Bluhm, H., Boxe, C., Domine, F., Frey, M. M., Gladich, I., Guzmán, M. I., Heger, D., Huthwelker, Th., Klán, P., Kuhs, W. F., Kuo, M. H., Maus, S., Moussa, S. G., McNeill, V. F., Newberg, J. T., Pettersson, J. B. C., Roeselová, M., and Sodeau, J. R.: Relationship between snow microstructure and physical and chemical processes, Atmos. Chem. Phys. Discuss., 12, 30409–30541, https://doi.org/10.5194/acpd-12-30409-2012, 2012.
Batterbee, R. W., Kernan, M., and Rose, N.: Threatened and stressed mountain lakes of Europe: Assessment and progress, Aquat. Ecosyst. Health Manage., 12/2, 118–128, 2009.
Becker, S., Halsall, C. J., Tych, W., Kallenborn, R., Schlabach, M., and Manø, S.: Changing sources and environmental factors reduce the rates of decline of organochlorine pesticides in the Arctic atmosphere, Atmos. Chem. Phys., 12, 4033–4044, https://doi.org/10.5194/acp-12-4033-2012, 2012.
Beine, H., Anastasio, C., Domine, F., Douglas, T., Barret, M., France, J., King, M., Hall, S. R., and Ullmann, K.: Soluble chromophores in marine snow, seawater, sea ice and frost flowers near Barrow, Alaska, J. Geophys. Res., 117, D00R15, https://doi.org/10.1029/2011JD016650, 2012.
Bergknut, M., Laudon, H., Jansson, S., Larsson, A., Gocht, T., and Wiberg, K.: Atmospheric deposition, retention, and stream export of dioxins and PCBs in a pristine boreal catchment, Environ. Pollut., 159, 1592–1598, 2011.
Bidleman, T. F. and Falconer, R. L.: Using pesticide enantiomers to trace pesticide emissions, Environ. Sci. Technol., 33, 206A–209A, 1999.
Bizzotto, E. C., Villa, S., Vaj, C., and Vighi, M.: Comparison of glacial and non-glacial-fed streams to evaluate the loading of persistent organic pollutants through seasonal snow/ice melt, Chemosphere, 74, 924–930, 2009a.
Bizzotto, E. C., Villa, S., and Vighi, M.: POP bioaccumulation in macroinvertebrates of alpine freshwater systems, Environ. Pollut., 157, 2192–3198, 2009b.
Blaha, L., Klánová, J., Klán, P., Janosek, J., Skarek, M., and Ruzicka, R.: Toxicity increases in ice containing monochlorophenols upon photolysis: Environmental consequences, Environ. Sci. Technol., 38, 2873–2878, 2004.
Blais, J. M., Schindler, D. W., Muir, D. C. G., Kimpe, L. E., Donald, D. B., and Rosenberg, B.: Accumulation of persistent organochlorine compounds in mountains of Western Canada, Nature, 395, 585–588, 1998.
Blais, J. M., Schindler, D. W., Sharp, M., Braekevelt, E., Lafreniere, M., McDonald, K., Muir, D. C. G., and Strachan, W. M. J.: Fluxes of semivolatile organochlorine compounds in Bow Lake, a high-altitude, glacier-fed subalpine lake in the Canadian Rocky Mountains, Limnol. Oceanogr., 46, 2019–2031, 2001a.
Blais, J. M., Schindler, D. W., Muir, D. C. G., Sharp, M., Donald, D., Lafrenière, M., Braekevelt, E., and Strachan, W. M. J.: Melting glaciers: A major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada, Ambio, 30, 410–415, 2001b.
Blais, J. M., Macdonald, R. W., Mackay, D., Webster, E., Harvey, C., and Smol, J. P.: Biologically mediated transport of contaminants to aquatic systems, Environ. Sci. Technol., 41, 1075–1084, 2007.
Bogdal, C., Schmid, P., Zennegg, M., Anselmetti, F. S., Scheringer, M., and Hungerbühler, K.: Blast from the past: Melting glaciers as a relevant source for persistent organic pollutants, Environ. Sci. Technol., 43, 8173–8177, 2009.
Bogdal, C., Nikolic, D., Lüthi, M., Schenker, U., Scheringer, M., and Hungerbühler, K.: Release of legacy pollutants from melting glaciers: model evidence and conceptual understanding, Environ. Sci. Technol., 44, 4063–4069, 2010.
Bokhorst, S. F., Bjerke, J. W., Tommervik, H., Callaghan, T. V., and Phoenix, G. K.: Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event, J. Ecol., 97, 1408–1415, 2009.
Brown, T. M., Sheldon, T. A., Burgess, N. M., and Reimer, K. J.: Reduction of PCB contamination in an Arctic coastal environment: a first step in assessing ecosystem recovery after the removal of a point source, Environ. Sci. Technol., 43, 7635–7642, 2009.
Burniston, D. A., Strachan, W. J. M., Hoff, J. T., and Wania, F.: Changes in surface area and concentrations of semivolatile organic contaminants in ageing snow, Environ. Sci. Technol., 41, 4932–4937, 2007.
Cabanes, A., Legagneux, L., and Domine, F.: Rate of evolution of the specific surface area of surface snow layers, Environ. Sci. Technol., 37, 661–666, 2003.
Cabrerizo, A., Dachs, J., Barcelo, D., and Jonest, K. C.: Influence of Organic Matter Content and Human Activities on the Occurrence of Organic Pollutants in Antarctic Soils, Lichens, Grass, and Mosses. Environ. Sci. Technol., 46, 1396–1405, 2012.
Callaghan, T., Johansson, M., Brown, R., Groisman, P., Labba, N., Radionov, V., Barry, R., Bulygina, O., Essery, R., Frolov, D., Golubev, V., Grenfell, T., Petrushina, M., Razuvaev, V., Robinson, D., Romanov, P., Shindell, D., Shmakin, A., Sokratov, S., Warren, S., and Yang, D.: The changing face of Arctic snow cover: A synthesis of observed and projected changes, Ambio, 40, 17–31, 2011.
Carmack, E. C. and Macdonald, R. W.: Water and ice related phenomena in the coastal region of the Beaufort Sea: some parallels between native experience and western science, Arctic, 61, 265–280, 2008.
Carrera, G., Fernández, P., Vilanova, R. M., and Grimalt, J. O.: Persistent organic pollutants in snow from European high mountain areas, Atmos. Environ., 35, 245–254, 2001.
Carrizo, D. and Gustafsson, Ö.: Distribution and inventories of polychlorinated biphenyls in the polar mixed layer of seven Pan-Arctic shelf seas and the interior basins. Environ. Sci. Technol., 45, 8377–8384, 2011.
Choi, S.D., Baek, S.-Y., Chang, Y.-S., Wania, F., Ikonomou, M.G., Yoon, Y.-J., Park, B.-K., and Hong, S.: Passive air sampling of polychlorinated biphenyls and organochlorine pesticides at the Korean Arctic and Antarctic research stations: Implication for long-range transport and local pollution, Environ. Sci. Technol., 42, 7125–7131, 2008.
Cincinelli, A., Stortini, A. M., Checchini, L., Martellini, T., Del Bubba, M., and Lepri, L.: Enrichment of organic pollutants in the sea surface microlayer (SML) at Terra Nova Bay, Antarctica: influence of SML on superfacial snow composition, J. Environ. Monitor., 7, 1305–1312, 2005.
Clarke, G. K. C. and Waddington, E. D.: A three-dimensional theory of wind pumping, J. Glaciol., 37, 89–96, 1991.
Codling, G., del Vento, S. Stern, G. A.; and Halsall, C. J.: The occurrence of PCBs and OC pesticides in the sea-ice system of the Canadian Arctic: chemical accumulation and fate in the winter marine snowpack, J. Geophys. Res. Ocean., CFL Special Issue, submitted, 2012.
Colbeck, S. C.: Air movement in snow due to windpumping, J. Glaciol., 35, 209–213, 1989.
Corsolini, S., Borghesi, N., Schiamone, A., and Focardi, S.: Polybrominated diphenyl ethers, polychlorinated dibenzo-dioxins, -furans, and -biphenyls in three species of Antarctic penguins, Environ. Sci. Poll. Res., 14, 421–429, 2007.
Couillard, C. M., Macdonald, R. W., Courtenay, S. C., and Palace, V. P.: Chemical-environment interactions affecting the risk of impacts on aquatic organisms: A review with a Canadian perspective – interactions affecting exposure, Environ. Rev., 16, 1–17, 2008.
Curtosi, A., Pelletier, E., Vodopivez, C. L., and MacCormack, W. P.: Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier, Sci. Total Environ., 383, 193–204, 2007.
Czuczwa, J., Leuenberger, C., and Giger W.: Seasonal and temporal changes of organic compounds in rain and snow, Atmos. Environ., 22, 907–916, 1988.
Danon-Schaffer, M. N., Grace, J. R., and Ikonomou, M. G.: PBDEs in waste disposal sites from Northern Canada, Organohalogen Compounds, 70, 365–368, 2008.
Daly, G. L. and Wania, F.: Simulating the influence of snow on the fate of organic compounds, Environ. Sci. Technol., 38, 4176–4186, 2004.
Daly, G. L. and Wania, F.: Organic contaminants in mountains. Environ. Sci. Technol. 39, 385–398, 2005.
Derksen, C. and Brown, R.: Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys. Res. Lett., 39, L19504, https://doi.org/10.1029/2012GL053387, 2012.
Dolinova, J., Ruzicka, R., Kurkova, R., Klánová, J., and Klán, P.: Oxidation of aromatic and aliphatic hydrocarbons by OH radicals photochemically generated from H2O2 in ice, Environ. Sci. Technol., 40, 7668–7674, 2006.
Domine, F. and Shepson, P. B.: Air-snow interactions and atmospheric chemistry, Science, 297, 1506–1510, 2002.
Domine, F., Cincinelli, A., Bonnaud, E., Martellini, T., and Picaud, S.: Adsorption of phenanthrene on natural snow, Environ. Sci. Technol., 41, 6033–6038, 2007a.
Domine, F., Taillandier, A.-S., and Simpson, W. R.: A parameterization of the specific surface area of seasonal snow for field use and for models of snow pack evolution, J. Geophys. Res., 112, F2, F02031, https://doi.org/10.1029/2006JF000512, 2007b.
Domine, F., Albert, M., Huthwelker, T., Jacobi, H.-W., Kokhanovsky, A. A., Lehning, M., Picard, G., and Simpson, W. R.: Snow physics as relevant to snow photochemistry, Atmos. Chem. Phys., 8, 171–208, https://doi.org/10.5194/acp-8-171-2008, 2008.
Domine, F., Gallet, J.-C., Bock, J., and Morin, S.: Structure, specific surface area and thermal conductivity of the snowpack around Barrow, Alaska, J. Geophys. Res., 117, D00R14, https://doi.org/10.1029/2011JD016647, 2012.
Dubowski, Y. and Hoffmann, M. R.: Photochemical transformations in ice: Implications for the fate of chemical species, Geophys. Res. Lett., 27, 3321–3324, 2000.
Eichler, A., Schwikowski, M., and Gaggeler, H.: Meltwater induced relocation of chemical species in Alpine firn, Tellus, 53, 192–203, 2001.
Escher, B. I. and Hermens, J. L. M.: Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects, Environ. Sci. Technol., 36, 4201–4217, 2002.
Evenset, A., Christensen, G. N., Skotvold, T., Fjeld, E., Schlabach, M., and Wartena, E., Gregor, D.: A comparison of organic contaminants in two high Arctic lake ecosystems, Bjørnøya (Bear Island), Norway, Sci. Total Environ., 318, 125–141, 2004.
Evenset, A., Carroll, J., Christensen, G. N., Kallenborn, R., Gregor, D., and Gabrielsen, G. W.: Seabird guano is an efficient conveyor of persistent organic pollutants (POPs) to arctic lake ecosystems, Environ. Sci. Technol., 41, 1173–1179, 2007a.
Evenset, A., Christensen, G. N., Carroll, J., Zaborska, A., Berger, U., Herzke, D., and Gregor, D.: Historical trends in persistent organic pollutants and metals recorded in sediment from Lake Ellasjøn, Bjørnøya, Norwegian Arctic, Environ. Poll., 146, 196–205, 2007b.
Farinotti, D., Huss, M., Bauder, A., and Funk, M.: An estimate of the glacier ice volume in the Swiss Alps, Global Planet. Change, 68, 225–231, 2009.
Finizio, A., DiGuardo, A., and Cartmale, L.: Hazardous air pollutants (HAPs) and their effects on biodiversity: an overview of the atmospheric pathways of persistent organic pollutants (POPs) and suggestions for future studies, Environ. Monit. Assess., 49, 327–336, 1998.
Finizio, A., Villa, S., Raffaele, F., and Vighi, M.: Variation of POP concentrations in fresh-fallen snow and air on an Alpine glacier (Monte Rosa), Ecotoxicol. Environ. Safety, 63, 25–32, 2006.
Foster, K. L., Kimpe, L. E., Brimble, S. K., Liu, H., Mallory, M. L., Smol, J. P., Macdonald, R. W., and Blais, J. M.: Effects of seabird vectors on the fate, partitioning, and signatures of contaminants in a high Arctic ecosystem, Environ. Sci. Technol., 45, 10053–10060, 2011.
Franz, T. P. and Eisenreich, S. J.: Snow scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in Minnesota, Environ. Sci. Technol., 32, 1771–1778, 1998.
Gabrieli, J., Decet, F., Luchetta, A., Valt, M., Pastore, P., and Barbante, C.: Occurence of PAHs in seasonal snowpack of Eastern Italian Alps, Environ. Pollut., 158, 3130–3137, 2010.
Geisz, H. N., Dickhut, R. M., Chochran, M. A., Fraser, W. R., and Ducklow, H. W.: Melting glaciers: A probable source of DDT to the Antarctic marine ecosystem, Environ. Sci. Technol., 42, 3958–3962, 2008.
Gioia, R., Lohmann, R., Dachs, J., Temme, C., Lakaschus, S., Schulz-Bull, D., Hand, I., and Jones, K. C.: Polychlorinated biphenyls in air and water of the North Atlantic and Arctic Ocean, J. Geophy. Res. Atmos., 113, D19302, https://doi.org/10.1029/2007JD009750, 2008. Goss, K.-U., Bronner, G., Harner, T., Hertel, M., and Schmidt, T. C.: The partition behavior of flurortelomer alcohols and olefins, Environ. Sci. Technol., 40, 3572–3577, 2006.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Domine, F., Frey, M. M., Guzman, M. I., Heard, D. E., Helmig, D., Hoffmann, M.R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, https://doi.org/10.5194/acp-7-4329-2007, 2007a.
Grannas, A. M., Bausch, A. R., and Mahanna, K. M.: Enhanced aqueous photochemical reaction rates after freezing, J. Phys. Chem. A., 111, 11043–11049, 2007b.
Gregor, D. J., Peters, A. J., Teixeira, C., Jones, N., and Spencer, C.: The historical residue trend of PCBs in the Agassiz Ice Cap, Ellesmere Island, Canada, Sci. Total Environ., 160/161, 117–126, 1995.
Gregory-Eaves, I., Demers, M. J., Kimpe, L., Krümmel, E. M., Macdonald, R. W., Finney, B. P., and Blais, J. M.: Tracing salmon-derived nutrients and contaminants in freshwater food webs across a pronounced spawner density gradient, Environ. Toxicol. Chem., 26, 1100–1108, 2007
Gouin, T., Mackay, D., Jones, K., Harner, T., and Meijer, S.: Evidence for the "grasshopper" effect and fractionation during long-range atmospheric transport of organic contaminants, Environ. Pollut., 128, 139–148, 2004.
Gouin, T., Wania, F., Ruepert, C., and Castillo, L.: Field testing passive air samplers for current use pesticides in a tropical environment, Environ. Sci. Technol., 42, 6624–6630, 2008.
Guglielmo, F., Stemmler, I., and Lammel, G.: The impact of organochlorines cycling in the cryosphere on their global distribution and fate – 1. Sea ice, Environ. Poll., 162, 475–481, 2012.
Guimbaud, C., Grannas, A. M., Shepson, P. B., Fuentes, J. D., Boudries, H., Bottenheim, J. W., Domine, F., Houdier, S., Perrier, S., Biesenthal, T. B., Splawn, B. G.: Snowpack processing of acetaldehyde and acetone in the Arctic atmospheric boundary layer, Atmos. Environ., 36, 2743–2752, 2002.
Gustafsson, O., Andersson, P., Axelman, J., Bucheli, T. D., Koemp, P., McLachlan, M.: Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area, Sci. Total Environ., 342, 261–279, 2005. Guzman, M. I., Hoffman, M. R., and Colussi, A. J.: Photolysis of pyruvic acid in ice: possible relevance to CO and CO2 ice core record anomalies, J. Geophys. Res., 112, D10123, https://doi.org/10.1029/2006JD007886, 2007.
Hageman, K. J., Hafner, W., Campbell, D. H., Jaffe, D., Landers, D. H., and Simonich, S. L. M.: Variability in pesticide deposition and source contributions to snowpack in western U.S. national parks, Environ. Sci. Technol., 44, 4452–4458, 2010.
Halsall, C. J.: Investigating the occurrence of persistent organic pollutants (POPs) in the arctic: their atmospheric behaviour and interaction with the seasonal snow pack, Environ. Poll., 128, 163–175, 2004.
Hanna, E., Huybrechts, P., Cappelen, J., Steffen, K., Bales, R. C., Burgess, E., McConnell, J. R., Steffensen, J. P., Van den Broeke, M., Wake, L., Bigg, G., Griffiths, M., and Savas, D.: Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing, J. Geophys. Res., 116, D24121, https://doi.org/10.1029/2011JD016387, 2011.
Hansen, K. M., Halsall, C. J., and Christensen, J. H.: A dynamic model to study the exchange of gas-phase persistent organic pollutants between air and a seasonal snow pack, Environ. Sci. Technol., 40, 2640–2652, 2006.
Harner, T., Pozo, K., Gouin, T., Macdonald, A.-M., Hung, H., Cainey, J., and Peters, A.: Global pilot study for persistent organic pollutants (POPs) using PUF disk passive air samplers, Environ. Pollut., 144, 445–452, 2006.
Heger, D. and Klán, P.: Interactions of organic molecules at grain boundaries in ice: A solvatochromic analysis, J. Photochem. Photobiol. A-Chem., 187, 275–284, 2007.
Heger, D., Jirkovsky, J., and Klán, P.: Aggregation of methylene blue in frozen aqueous solutions studied by absorption spectroscopy, J. Phys. Chem. A, 109, 6702–6709, 2005.
Heger, D., Klánová, J., and Klán, P.: Enhanced protonation of cresol red in acidic aqueous solutions caused by freezing, J. Phys. Chem. B, 110, 1277–1287, 2006.
Heger, D., Nachtigallova, D., Surman, F., Krausko, J., Magyarova, B., Brumovsky, M., Rubes, M., Gladich, I., and Klán, P.: Self-Organization of 1-Methylnaphthalene on the Surface of Artificial Snow Grains: A Combined Experimental-Computational Approach, J. Phys. Chem. A, 115, 11412–11422, 2011.
Herbert, B. M. J., Halsall, C. J., Villa, S., Fitzpatrick, L., Jones, K. C., Lee, R. G. M., and Kallenborn, R.: Polychlorinated naphthalenes in air and snow in the Norwegian Arctic: a local source or an Eastern Arctic phenomenon? Sci. Total Environ., 342, 145–160, 2005a.
Herbert, B. M. J., Halsall, C. J., Villa, S., Jones, K. C., and Kallenborn, R.: Rapid changes in PCB and OC pesticide concentrations in Arctic snow, Environ. Sci. Technol., 39, 2998–3005, 2005b.
Herbert, B. M. J., Villa, S., and Halsall, C.: Chemical interaction with snow: Understanding the behaviour and fate of semi-volatile organic compounds in snow, Ecotox. Environ. Safety, 63, 3–16, 2006.
Hermanson, M. H., Isaksson, E., Texixeira, C., Muir, D. C. G., Compher, K. M., Li, Y.-F., Igargashi, M., and Kamiyama, K.: Current-Use and Legacy Pesticide History in the Austfonna Ice Cap, Svalbard, Norway, Environ. Sci. Technol., 39, 8163–8169, 2005.
Hermanson, M. H., Isaksson, E., Forsstrom, S., Teixeria, C., Muir, D. C. G., Pohjola, V. A., and Van de Wal, R. S. V.: Deposition history of brominated flame retardant compounds in an ice core from Holtedahlfonna, Svalbard, Norway, Environ. Sci. Technol., 44, 7405-7410, 2010.
Hoff, J. T., Wania, F., Mackay, D., and Gillham, R.: Sorption of nonpolar organic vapors by ice and snow, Environ. Sci. Technol., 29, 1982–1989, 1995.
Hoffmann, L., Stemmler, I., and Lammel, G.: The impact of organochlorines cycling in the cryosphere on global distributions and fate – 2. Land ice and temporary snow cover, Environ. Poll., 162, 482–488, 2012.
Hoyau, V., Laffrezo, J. L., Garrigues, P. H., Clain, M. P., and Masclet, P.: Deposition of aerosols in polar regions – Contamination of the ice sheet by polycyclic aromatic hydrocarbons, Polycycl. Arom. Comp., 8, 35–44, 1996.
Hung, H., Kallenborn, R., Breivik, K., Su, Y., Brorstrøm-Lunden, E., Olafsdottir, K, Thorlacius, J. M., Leppanen, S., Bossi, R., Skov, H., Manø, S., Stern, G., Sverko, E., and Fellin, P.: Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993–2006, Sci. Total Environ., 408, 2854–2873, 2010.
IPCC: Climate Change 2007: Synthesis Report – Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, p. 104. 2007.
Isaksson, E., Hermanson, M. H., Hicks, S., Igarashi, M., Kamiyama, K., Moore, J., Motoyama, H., Muir, D. C. G., Pohjola, V., Vaikmaë, R., van de Wal, R. S. W., and Watanabe, O.: Ice cores from Svalbard – useful archives of past climate and pollution history, Phys. Chem. Earth, 28, 1217–1228, 2003.
Jacobi, H. W., Annor, T., and Quansah, E.: Investigation of the photochemical decomposition of nitrate, hydrogen peroxide, and formaldehyde in artificial snow, J. Photochem. Photobiol. A-Chem, 179, 330–338, 2006.
Jaffrezo, J. L., Clain, M. P., and Masclet, P.: Polycyclic aromatic-hydrocarbons in the polar ice of greenland – geochemical use of these atmospheric tracers, Atmos. Environ., 28, 1139–1145, 1994.
Jantunen, L. M. and Bidleman T. F.: Air-water gas exchange of HCHs and the enantiomers of alpha-HCH in arctic regions, J. Geophys. Res., 101, 28837–28846, 1996.
Jantunen, L. M., Helm, P. A., Kylin, H., and Bidleman, T. F.: HCHs in the Canadian Archipelago. 2. Air-water gas exchange of alpha- and gamma-HCHs, Environ. Sci. Technol., 42, 465–470, 2008.
Johannessen, M. and Henriksen, A.: Chemistry of snow meltwater: Changes in concentration during melting, Water Resour. Res., 14, 615–619, 1978.
Kahan, T. F. and Donaldson, D. J.: Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces, J. Phys. Chem. A, 111, 1277–1285, 2007.
Kahan, T. F. and Donaldson, D. J.: Benzene photolysis on ice: Implications for the fate of organic contaminants in the winter, Environ. Sci. Technol., 44, 3819–3824, 2010.
Kahan, T. F., Zhao, R., Jumaa, K. B., and Donaldson, D. J.: Anthracene photolysis in aqueous solution and ice: Photon flux dependence and comparison of kinetics in bulk ice and at the air-ice interface, Environ. Sci. Technol., 44, 1302–1306, 2010.
Kallenborn, R., Breivik, K., Eckhardt, S., Lunder, C. R., Manø, S., Schlabach, M., and Stoh A.: Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica, Atmos. Chem. Phys. Discuss., 13, 6219–6246, https://doi.org/10.5194/acpd-13-6219-2013, 2013.
Kammerer, P. A. and Lee, G. F.: Freeze concentration of organic compounds in dilute aqueous solution, Environ. Sci. Technol., 3, 276–278, 1969.
Kang, J. H., Choi, S. D., Rak, H., Baek, S. Y., Hong, S., and Chang, T. S.: Atmospheric deposition of persistent organic pollutants to the East Rongbuk Glacier in the Himalayas, Sci. Total. Environ. 408, 57–63, 2009.
Kinloch, D., Kuhnlein, H., and Muir, D. C. G.: Inuit foods and diet: a preliminary assessment of benefits and risks, Sci. Total Environ., 122, 247–278, 1992.
Klán, P. and Holoubek, I.: Ice (photo)chemistry. Ice as a medium for long-term (photo)chemical transformations – environmental implications, Chemosphere, 46, 1201–1210, 2002.
Klán, P., Ansorgova, A., Del Favero, D., and Holoubek, I.: Photochemistry of chlorobenzene in ice, Tetrahedron Lett., 41, 7785–7789, 2000a.
Klán, P., Janosek, J., and Kriz, Z.: Photochemistry of valerophenone in solid solutions, J. Photochem. Photobiol. A-Chem., 134, 37-44, 2000b.
Klán, P., Del Favero, D., Ansorgova, A., Klánová, J., and Holoubek, I.: Photodegradation of halobenzenes in water ice, Environ. Sci. Pollut. Res., 8, 195–200, 2001.
Klán, P., Klánová, J., Holoubek, I., and Cupr, P.: Photochemical activity of organic compounds in ice induced by sunlight irradiation: The Svalbard project, Geophys. Res. Lett., 30, 1313, https://doi.org/10.1029/2002GL016385, 2003.
Klánová, J., Klán, P., Heger, D., and Holoubek, I.: Comparison of the effects of UV, H2O2/UV and gamma- irradiation processes on frozen and liquid water solutions of monochlorophenols, Photochem. Photobiol. Sci., 2, 1023–1031, 2003a.
Klánová, J., Klán, P., Nosek, J., and Holoubek, I.: Environmental ice photochemistry: monochlorophenols, Environ. Sci. Technol., 37, 1568–1574, 2003b.
Krümmel, E., Macdonald, R. W., Kimpe, L. E., Gregory-Eaves, I., Demers, D. J., Smol, J. P., Finney, B., and Blais, J. M.: Anadromous PCB transport via Salmon migration, Nature, 425, 255–256, 2003.
Krusic, P. J., Marchione, A. A., Davidson, F., Kaiser, M. A., Chien-Ping, C. K., Richardson, R. E., Botoelho, M., Waterland, R. L., and Buck, R. C.: Vapor Pressure and Intermolecular Hydrogen Bonding in Fluorotelemer Alcohols, J. Phys. Chem. A, 109, 6232–6241, 2005.
Kurková, R., Ray, D., Nachtigallova, D., and Klán, P.: Chemistry of small organic molecules on snow grains: The applicability of artificial snow for environmental studies, Environ. Sci. Technol., 45, 3430–3436, 2011.
Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally, J. J. and Yi, D.: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008, J. Geophys. Res., 114, C07005, https://doi.org/10.1029/2009JC005312, 2009.
Lafrenière, M. J., Blais, J. M., Sharp, M. J., and Schindler, D. W.: Organochlorine pesticide and polychlorinated biphenyl concentrations in snow, snowmelt, and runoff at Bow Lake, Alberta, Environ. Sci. Technol., 40, 4909–4915, 2006.
Lange, M. A. and Pfirman, S. L.: Arctic sea ice contamination: major characteristics and consequences, edited by: Lepparanta, M., in: Physics of Ice-covered Seas, vol 2. Helsinki University Printing House, Helsinki, 651–681, 1998.
Lange, M. A., Schlosser, P., Ackley, S. F., Wadhams, P., and Piekmann, G. S.: 18O concentrations in sea ice of the Weddell Sea, Antarctica, J. Glaciol., 36, 315–323, 1990.
Legagneux L., Carbanes, A., and Domine F.: Measurement of the specific area of 176 snow samples using methane adsorption at 77K, J. Geophys. Res., 107, 4335, https://doi.org/10.1029/2001JD001016, 2002.
Lei, Y. D. and Wania, F.: Is rain or snow a more efficient scavenger of organic chemicals? Atmos. Environ., 38, 3557–3571, 2004.
Lei, Y. D., Wania, F., Mathers, D., and Mabury, S. A.: Determination of vapor pressures, octanol-air, and water-air partition coefficients for polyfluorinated sulfonamide, sulfonamidoethanols, and telomer alcohols, J. Chem. Eng. Data, 49, 1031–1022, 2004. Li, Y.-F., Macdonald, R. W., Jantunen, L. M. M., Harner, T., Bidleman, T. F., and Strachan, W. M. J.: The transport of beta-hexachlorocyclohexane to the western Arctic Ocean: a contrast to alpha-HCH, Sci. Total Environ., 291, 229–246, 2002.
Li, N., Wania, F., Lei, Y. D., and Daly, G. L.: A comprehensive and critical compilation, evaluation, and selection of physical-chemical property data for selected polychlorinated biphenyls, J. Phys. Chem. Ref. Data, 32, 1545–1590, 2003.
Li, Y.-F., Macdonald, R. W., Ma, J. M., Hung, H., and Venkatesh, S.: Historical a-HCH budget in the Arctic Ocean: The Arctic mass balance box model (AMBBM), Sci. Total Environ., 324, 115–139, 2004.
Li, Y.-F. and Macdonald, R. W.: Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review, Sci. Total Environ., 342, 87–106, 2005.
Lindsay, R. W., Zhang, J., Schweiger, A., Steele, M., and Stern, H.: Arctic Sea Ice Retreat in 2007 Follows Thinning Trend, J. Climate, 22, 165–176, 2009.
Literak, J., Klán, P., Heger, D., and Loupy, A.: Photochemistry of alkyl aryl ketones on alumina, silica-gel and water ice surfaces, J. Photochem. Photobiol. A-Chem., 154, 155–159, 2003.
Lockhart, W. L., Wagemann, R., Tracey, B., Sutherland, D., and Thomas, D. J.: Presence and implications of chemical contaminants in the freshwaters of the Canadian Arctic, Sci. Total Environ., 122, 165–243, 1992.
Loewe, H., Spiegel, J. K., and Schneebeli, M.: Interfacial and structural relaxations of snow under isothermal conditions, J. Glaciol., 57, 499–510, 2011.
Lohmann, R., Gioia, R., Jones, K. C., Nizzetto, L., Temme, C., Xie, Z., Schulz-Bull, D., Hand, I., Morgan, E., and Jantunen, L.: Organochlorine pesticides and PAHs in the surface water and atmosphere of the north Atlantic and Arctic Ocean, Environ. Sci. Technol., 43, 5633–5639, 2009.
Ma, J., Hung, H., Tian, C., and Kallenborn, R.: Revolatilization of persistent organic pollutants in the Arctic induced by climate change, Nature Clim. Change, 1, 256–260, 2011.
Macdonald, R. W., Barrie, L. A., Bidleman, T. F., Diamond, M. L., Gregor, D. J., Semkin, R. G., Strachan, W. M. J., Li, Y. F., Wania, F., Alaee, M., Alexeeva, L. B., Bailey, S. M. B. R., Bewers, J. M., Gobeil, C., Halsall, C. J., Harner, T., Hoff, J. T., Jantunen, L. M. M., Lockhart, W. L., Mackay, D., Muir, D. C. G., Pudykiewicz, J., Reimer, K. J., Smith, J. N., Stern, G. A., Schroeder, W. H., Wagemann, R., and Yunker, M. B.: Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways, Sci. Total Environ., 254, 93–234, 2000.
Macdonald, R. W., Mackay, D., Li, Y.-F., and Hickie, B.: How will global climate change affect risks from long-range transport of persistent organic pollutants?, Human Ecol. Risk Assess., 9, 643–660, 2003a.
Macdonald, R. W., Harner, T., Fyfe, J., Loeng, H., and Weingartner, T.: The influence of global change on contaminant pathways to, within and from the Arctic, Arctic Monitoring and Assessment Program (AMAP), Oslo, Norway, 65 pp., 2003b.
Macdonald, R. W., Harner, T., and Fyfe, J.: Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data, Sci. Total Environ., 342, 5–86, 2005.
Mackay, D., Shiu, W. Y., Ma, K.-C., and Lee, S. C.: Handbook of physical-chemical properties and environmental fate for organic chemicals, CRC Press, 4216 pp., 2006.
Mann, E., Meyer, T., Mitchell, C. P. J., and Wania, F.: Mercury fate in ageing and melting snow: Development and testing of a controlled laboratory system, J. Environ. Monit., 13, 2695–2702, 2011.
Mast, A. M., Foreman, W. T., and Skaates, S. V.: Current-use pesticides and organochlorine compounds in precipitation and lake sediment from two high-elevation national parks in the Western United States, Arch. Environ. Contam. Toxicol., 52, 294–305, 2007.
Matykiewiczová, N., Klánová, J., and Klán, P.: Photochemical degradation of PCBs in snow, Environ. Sci. Technol., 41, 8308–8314, 2007a.
Matykiewiczová, N., Kurkova, R., Klánová, J., and Klán, P.: Photochemically induced nitration and hydroxylation of organic aromatic compounds in the presence of nitrate or nitrite in ice, J. Photochem. Photobiol. A-Chem., 187, 24–32, 2007b.
Mayewski, P. A., Meredith, M. Summerhayes, C., Turner, J., Aoki, S., Barrett, P. Bertler, N. A. N., Bracegirdle, T., Bromwich, D., Campbell, H., Casassa, G., Garabato, A. N., Lyons, W. B., Maasch, K. A., Worby, A., and Xiao, C.: State of the Antarctic and Southern Ocean Climate System (SASOCS), Rev. Geophys., 47, RG1003, https://doi.org/10.1029/2007RG000231, 2009.
McConnell, J. R.: Role and Importance of Cryospheric Processes in Climate System, Encycl. Hydrol. Sci., https://doi.org/10.1002/0470848944.hsa208, 2006.
McConnell, L. L., LeNoir, J. S., Datta, S., and Seiber, J. N.: Wet deposition of current-use pesticides in the Sierra Nevada Mountain Range California, USA, Environ. Toxicol. Chem., 17, 1908–1916, 1998.
McNeill, V. F., Grannas, A. M., Abbatt, J. P. D., Ammann, M., Ariya, P., Bartels-Rausch, T., Domine, F., Donaldson, D. J., Guzman, M. I., Heger, D., Kahan, T. F., Klán, P., Masclin, S., Toubin, C., and Voisin, D.: Organics in environmental ices: sources, chemistry, and impacts, Atmos. Chem. Phys., 12, 9653–9678, https://doi.org/10.5194/acp-12-9653-2012, 2012.
Melnikov, S., Carrol, J., Goshkov, A., Vlasov, S., and Dahle, S.: Snow and ice concentrations of selected persistent pollutants in the Ob-Yenisey River watershed, Sci. Total Environ., 306, 27–37, 2003.
Meier, M. F., Dyurgerov, M. B., Rick, U. K., O'Neel, S., Pfeffer, W. T., Anderson, R. S., Anderson, S. P., and Glazovsky, A. F.: Glaciers dominate eustatic sea-level rise in the 21st century, Science, 317, 1064–1067, 2007.
Meyer, T. and Wania, F.: Organic contaminant amplification during snowmelt, Water Res., 42, 1847–1865, 2008.
Meyer, T. and Wania, F.: Modeling the elution of organic chemicals from a melting homogeneous snow pack, Water Res., 45, 3627–3637, 2011a.
Meyer, T. and Wania, F.: Atmosphere-snow exchange, in: Handbook of Chemical Mass Transport in the Environment, edited by: Thibodeaux, L. J. and Mackay, D., Publisher CRC Press/Taylor & Francis, 513–530, 2011b.
Meyer, T., Lei, Y. D., and Wania, F.: Measuring the release of organic contaminants from melting snow under controlled conditions, Environ. Sci. Technol., 40, 3320–3326, 2006.
Meyer, T., Lei, Y. D., Muradi, I., and Wania, F.: Organic contaminant release from melting snow: I. Influence of chemical partitioning, Environ. Sci. Technol., 43, 657–662, 2009a.
Meyer, T., Lei, Y. D., Muradi, I., and Wania, F.: Organic contaminant release from melting snow: II. Influence of snow pack and melt characteristics, Environ. Sci. Technol., 43, 663–668, 2009b.
Meyer, T., Lei, Y. D., and Wania, F.: Transport of polycyclic aromatic hydrocarbons and pesticides during snowmelt within an urban watershed, Water Res., 45, 1147–1156, 2011a.
Meyer, T., De Silva, A. O., Spencer, C., and Wania, F.: The fate of perfluorinated carboxylates and sulfonates during snowmelt within an urban watershed, Environ. Sci. Technol., 45, 8113–8119, 2011b.
Meyer, T., Muir, D. C. G., Teixeira, C., Wang, X., Young, T., and Wania, F.: Deposition of brominated flame retardants to the Devon Ice Cap, Nunavut, Canada, Environ. Sci. Technol., 46, 826–833, 2012.
Michelutti, N., Keatley, B. E., Brimble, S., Blais, J. M., Liu, H., Douglas, M. S. V., Mallory, M. L., Macdonald, R. W., and Smol, J. P.: Seabird-driven shifts in Arctic pond ecosystems, Proc. Roy. Soc. B: Biol. Sci., 276, 591–596, 2008.
Michelutti, N., Liu, H., Smol, J. P., Kimpe, L. E., Keatley, B. E., Mallory, M. L., Macdonald, R. W., Douglas, M. S. V., and Blais, J. M.: Accelerated delivery of polychlorinated biphenyls (PCBs) in recent sediments near a large seabird colony in Arctic Canada, Environ. Poll., 157, 2769–2775, 2009.
Muir, D. C. G., Wagemann, R., Hargrave, B. R., Thomas, D. J., Peakall, D. B., and Norstrom, R. J.: Arctic marine ecosystem contamination, Sci. Total Environ., 122, 75–134, 1992.
Nakazawa, T., Ishizawa, M., Higuchi, K., and Trivett, N. B. A.: Two curve fitting methods applied to CO2 flask data, Environmetrics, 8, 197–218, 1997.
Nie, Y., Liu, X., Sun, L., and Emslie, S. D.: Effect of penguin and seal excrement on mercury distribution in sediments from the Ross Sea region, East Antarctica, Sci. Total Environ., 433, 132–140, 2012.
Nielsen, J. L., Ruggerone, G. T., and Zimmerman, C. E.: Adaptive strategies and life history characteristics in a warming climate: Salmon in the Arctic?, Environ. Biol. Fish., https://doi.org/10.1007/s10641-012-0082-6, 2012.
Nilsen, F., Cottier, F., Skogseth, R., and Mattson, S.: Fjord-shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard, Cont. Shelf Res. 28, 1838–1853, 2008.
NOAA National Climatic Data Center, State of the Climate: Global Snow & Ice for September 2012, published online October 2012, retrieved on 6 March 2013 from http://www.ncdc.noaa.gov/sotc/global-snow/2012/9, 2012.
NRC: Critical infrastructure for ocean research and societal needs in 2030, National Research Council of the National Academies, National Academies Press, Washington DC, 88 pp., 2011.
Oehme, M.: Further evidence for long-range air transport of polychlorinated aromates and pesticides: North America and Eurasia to the Arctic, Ambio, 20, 293–297, 1991.
Oehme, M. and Mano, S.: The long-range transport of organic pollutants to the Arctic, Fresenius' J. Anal. Chem., 319, 141–146, 1983.
Olsen, M. S., Callaghan, T. V., Reist, J. D., Reiersen, L. O., Dahl-Jensen, D., Granskog, M. A., Goodison, B., Hovelsrud, G. K., Johansson, M., Kallenborn, R., Key, J., Klepikov, A., Meier, W., Overland, J. E., Prowse, T. D., Sharp, M., Vincent, W. F., and Walsh, J. E.: The changing Arctic cryosphere and likely consequences: An overview, Ambio 40, 111–118, 2011.
Parrinello, T., Mardle, N., Ortega, B., Bouzinac, C., Badessi, S., Frommknecht, B., Davidson, M., Cullen, R., and Wingham, D.: CryoSat: ESA's ice explorer mission. One year in operations: status and achievements, Geophys. Res. Abstr., 14, EGU2012-3478, EGU General Assembly, 2012.
Pavlov,V.: Modelling of long-range transport of contaminants from potential sources in the Arctic Ocean by water and sea ice, edited by: Orbaek, J. B.,Tombre, T., Kallenborn, R., Hegseth, E., Falk-Petersen, S., and Hoel A. H., in: Arctic-alpine Ecosystems and People in a Changing Environment, Springer Verlag, Berlin, 329–350, 2007.
Peel, D. A.: Organochlorine residues in Antarctic snow, Nature, 254, 324–325, 1975.
Perovich, D. K.: The Changing Arctic Sea Ice Cover, Oceanography, 24, 162–173, 2011.
Peterle, T. J.: DDT in Antarctic Snow, Nature, 224, 620, 1969.
Plassmann, M., Meyer, T., Lei, Y. D., Wania, F., McLachlan, M. S., and Berger, U.: Theoretical and experimental simulation of the fate of semifluorinated n-alkanes during snow melt, Environ. Sci. Technol., 44, 6692–6697, 2010.
Plassmann, M., Meyer, T., Lei, Y. D., Wania, F., McLachlan, M. S., and Berger, U.: Laboratory study on the fate of perfluorinated carboxylates and sulfonates during snow melt, Environ. Sci. Technol., 45, 6872–6878, 2011.
Post, E., Forchhammer, M. C., Bret-Harte, M. S., Callaghan, T. V., Christensen, T. R., Elberling, B., Fox, A. D., Gilg, O., Hik, D. S., Hoye, T. T., Ims, R. A., Jeppesen, E., Klein, D .R., Madsen, J., McGuire, A. D., Rysgaard, S., Schindler, D. E., Stirling, I., Tamstorf, M. P., Tyler, N. J. C., van der Wal, R., Wleker, J., Wookey, P. A., Schmidt, N. M., and Aastrup, P.: Ecological dynamics across the Arctic associated with recent climate change, Science, 325, 1355–1358, 2009.
Pruppacher, H. R. and Klett, J. D.: Microphysics of clouds and precipitation, Reidel Pub. Co., Dordrecht, the Netherlands, 976 pp., 1978.
Pućko, M., Stern, G. A., Barber, D. G., Macdonald, R. W., and Rosenberg, B.: The International Polar Year (IPY) Circumpolar Flaw Lead (CFL) System Study: the importance of brine processes for α- and $\gamma $-hexachlorocyclohexane (HCH) accumulation/rejection in the sea ice, Atmos. Ocean., 48, 244–262, 2010a.
Pućko, M., Stern, G. A., Macdonald, R. W., and Barber, D. G.: α- and γ-hexachlorocyclohexane (HCH) measurements in the brine fraction of sea ice in the Canadian High Arctic using a sump-hole technique, Environ. Sci. Technol., 44, 9258–9264, 2010b.
Pućko, M., Stern, G. A., Macdonald, R. W., Barber, D. G., and Rosenberg, B.: The influence of the atmosphere-snow-ice-ocean interactions on the levels of hexachlorocyclohexanes (HCHs) in the Arctic cryosphere, J. Geophys. Res., 116, C02035, https://doi.org/10.1029/2010JC00661, 2011a.
Pućko, M., Stern, G.A., Macdonald, R. W., Barber, D. G., Rosenberg, B., and Walkusz, W.: When will α-HCH disappear from the Arctic Ocean?, J. Mar. Syst., https://doi.org/10.1016/j.jmarsys.2011.09.007, 2011b.
Ram, K. and Anastasio, C.: Photochemistry of phenanthrene, pyrene, and fluoranthene in ice and snow, Atmos. Environ., 43, 2252–2259, 2009.
Ray, D., Kurkova, R., Hovorkova, I., and Klán, P.: Determination of the Specific Surface Area of Snow Using Ozonation of 1,1-Diphenylethylene, Environ. Sci. Technol., 45, 10061–10067, 2011.
Ray, D., Malongwe, J. K., and Klán, P.: Rate Acceleration of the Heterogeneous Reaction of Ozone with a Model Alkene at the Air–Ice Interface at Low Temperatures, Environ. Sci. Technol., https://doi.org/10.1021/es304812t, 2013.
Risebrough, R. W., Walker II, W., Schmidt, T. T., De Lappe, B. W., and Connors, C. W.: Transfer of chlorinated biphenyls to Antarctica, Nature, 264, 738–739, 1976.
Risebrough, R. W., De Lappe, B. W., and Younghans-Haug, C.: PCB and PCT contamination in Winter Quarters Bay, Antarctica, Marine Poll. Bull., 21, 523–529, 1990.
Roosens, L., Van Den Brink, N., Riddle, M., Blust, R., Neels, H., and Covaci, A.: Penguin colonies as secondary sources of contamination with persistent organic pollutants, J. Environ. Monit., 9, 822–825, 2007.
Roth, C. M., Goss, K.-U., and Schwarzenbach, R. P.: Sorption of diverse organic vapors to snow, Environ. Sci. Technol., 38, 4078–4084, 2004.
Rowland, G. A., Bausch, A. R., and Grannas, A. M.: Photochemical processing of aldrin and dieldrin in frozen aqueous solutions under Arctic field conditions, Environ. Poll., 159, 1076–1084, 2011.
Ruggirello, R. M., Hermanson, M. H., Isaksson, E., Teixeira, C., Forsström, S., Muir, D. C. G., Pohjola, V., van de Wal, R., and Meijer, H. A. J.: Current use and legacy pesticide deposition to ice caps on Svalbard, Norway, J. Geophys. Res., 115, D18308, https://doi.org/10.1029/2010JD014005, 2010.
Ruzicka, R., Barakova, L., and Klán, P.: Photodecarbonylation of dibenzyl ketones and trapping of radical intermediates by copper(II) chloride in frozen aqueous solutions, J. Phys. Chem. B, 109, 9346–9353, 2005.
Schenker, U., MacLeod, M., Scheringer, M., and Hungerbuhler, K.: Improving data quality for environmental fate models: a least-squares adjustment procedure for harmonizing physicochemical properties of organic compounds, Environ. Sci. Technol., 39, 8434–8441, 2005.
Scheringer, M.: Long-range transport of organic chemicals in the environment. Environ. Toxicol. Chem., 28, 677–690, 2009.
Schmid, P., Bogdal, C., Bluthgen, N., Anselmetti, F. S., Zwyssig, A., and Hungerbuehler, K.: The Missing Piece: Sediment Records in Remote Mountain Lakes Confirm Glaciers Being Secondary Sources of Persistent Organic Pollutants, Environ. Sci. Technol., 45, 203–208, 2011.
Schöndorf, T. and Herrmann, R.: Transport and chemodynamics of organic micropollutants and ions during snowmelt, Nordic Hydrol., 18, 259–278, 1987.
Serreze, M. C., Barrett, A. P., Slater, A. G., Woodgate, R. A., Aagaard, K., Lammers, R. B., Steele, M., Moritz, R., Meredith, M., and Lee, C. M.: The large-scale freshwater cycle of the Arctic, J. Geophys. Res. 111, C11010, https://doi.org/10.1029/2005JC003424, 2006.
Serreze, M.C., Holland, M.M., Stroeve, J.: Perspectives on the Arctic's shrinking sea ice cover, Science, 315, 1533-1536, 2007.
Sharp, M., Burgess, D., Cogley, J. G., Ecclestone, M., Labine, C., and Wolken, G. J.: Extreme melt on Canada's Arctic ice caps in the 21st century, Geophys. Res. Lett., 38, L11501, https://doi.org/10.1029/2011GL047381, 2011.
Shen, L. and Wania, F.: Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides, J. Chem. Eng. Data, 50, 742–768, 2005.
Slaymaker, O. and Kelly, E.: The cryosphere and global environmental change. Environmental systems and global change series. Blackwell Publishing, ISBN:978-1-4051-2976-3, p. 256, 2007.
Slubowska-Wodengen, M., Rasmussen, T. L., Koc, N., Klitgaard-Kristensen, D., Nilsen, F., and Solheim, A.: Advection of Atlantic Water to the western and northern Svalbard shelf since 17,500 cal yr BP, Quat. Sci. Rev., 26, 463–478, 2007.
Sobek, A., Reigstad, M., and Gustaffson, O.: Partitioning of polychlorinated biphenyls between arctic seawater and size-fractionated zooplankton, Environ. Toxicol. Chem., 25, 1720–1728, 2006.
Starokozhev, E., Fries, E., Cycura, A., and Püttman, W.: Distribution of VOCs between air and snow at the Jungfraujoch high alpine research station, Switzerland, during CLACE 5 (winter 2006), Atmos. Chem. Phys., 9, 3197–3207, https://doi.org/10.5194/acp-9-3197-2009, 2009.
Steele, M., Ermold, W., and Zhang, J.: Arctic Ocean surface warming trends over the past 100 years, Geophys. Res. Lett., 35, L02614, https://doi.org/10.1029/2007GL031651, 2008.
Stock, N. L., Ellis, D. A., Deleebeeck, L., Muir, D. C. G., and Mabury, S. A.: Vapor Pressures of the Fluorinated Telomer Alcohols –Limitations of Estimation Methods, Environ. Sci. Technol., 38, 1693–1699, 2004
Stocker, J., Scheringer, M., Wegmann, F., and Hungerbühler, K.: Modeling the effect of snow and ice on the global environmental fate and long-range transport potential of semivolatile organic compounds, Environ. Sci. Technol., 41, 6192–6198, 2007.
Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze, M.: Arctic sea ice decline: Faster than forecast, Geophys. Res. Lett., 34, L09501, https://doi.org/10.1029/2007GL029703, 2007.
Stroeve, J., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., and Meier, W. N.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations, Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676, 2012.
Sturm, M., Holmgren, J., and Liston, G. E.: A seasonal snow cover classification system for local to global applications, J. Climate, 8, 1261–1283, 1995.
Su, Y., Hung, H., Blanchard, P., Patton, G. W., Kallenborn, R., Konoplev, A., Fellin, P., Li, H., Geen, C., Stern, G., Rosenberg, B., and Barrie L. A.: Spatial and seasonal variations of hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) in the Arctic atmosphere, Environ. Sci. Technol., 40, 6601–6607, 2006.
Su, Y., Hung, H., Blanchard, P., Patton, G. W., Kallenborn, R., Konoplev, A., Fellin, P., Li, H., Green, C., Stern, G., Rosenberg, B., and Barrie, L. A.: A circumpolar perspective of atmospheric organochlorine pesticides (OCPs): Results from six Arctic monitoring stations in 2000–2003, Atmos. Environ., 42, 4682–4698, 2008.
Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A., and Landing, W. M.: Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models, Global Biogeochem. Cy., 23, GB2010, https://doi.org/10.1029/2008GB003425, 2008.
Taillandier, A.-S., Domine, F., Simpson, W. R., Sturm, M., Douglas, T. A., and Severin, K.: Evolution of the snow area index of the subarctic snow pack in Central Alaska over a whole season. Consequences for the air to snow transfer of pollutants, Environ. Sci. Technol., 40, 7521–7527, 2006.
Tanabe, S., Hidaka, H., and Tatsukawa, R.: PCBs and chlorinated hydrocarbon pesticides in Antarctic atmosphere and hydrosphere, Chemosphere, 12, 277–288, 1983.
Thies, H., Kickus, U., Mair, V., Tessadri, R., Tait, D., Thaler, B., and Psenner, R.: Unexpected response of high alpine lake waters to climate warming, Environ. Sci. Technol., 41, 7424–7429, 2007.
Thomas, D. J., Tracey, B., Marshall, H., and Norstrom, R. J.: Arctic terrestrial ecosystem contamination, Sci. Tot. Environ., 122, 135–164, 1992.
Tsiouris, S., Vincent, C. E., Davies, T. D., and Brimblecombe, P.: The elution of ions through field and laboratory snow packs, Ann. Glaciol., 7, 196–201, 1985.
UNECE: Protocol to the 1979 convention on long-range transboundary air pollution on persistent organic pollutants, United Nations, Treaty Series, 2230, p. 79. Document of the Economic and Social Council EB.AIR/1998/2, 1998.
UNECE: Hemispheric transport of air pollution 2010, part C: Persistent organic pollutants, United Nations, Air Pollution Studies No. 19, Geneva, ECE/EB.AIR/10, 2010.
UNEP: Global monitoring report under the global monitoring plan for effectiveness evaluation. UNEP/POPS/COP.4/33, Secretariat of the Stockholm Convention Geneva, 20 pp., 2009.
UNEP: Success Stories, Stockholm Convention 2001–2011, Secretariat of the Stockholm Convention Geneva, 169 pp., 2012.
UNEP/AMAP: Climate change and POPs: predicting the impacts, Report of the UNEP/AMAP expert group. Secretariat of the Stockholm Convention Geneva, 62 pp., 2011.
Usenko, S., Landers, D. H., Appleby, P. G., and Simonich, S. L.: Current and historical deposition of PBDEs, pesticides, PCBs, and PAHs to Rocky Mountain National Park, Environ. Sci. Technol., 41, 7235–7241, 2007.
Vighi, M.: The role of high mountains in the global transport of persistent organic pollutants, Ecotox. Environ. Safety, 63, 108–112, 2006.
Villa, S., Negrelli, C., Maggi, V., Finzio, A., and Vighi, M.: Analysis of a firn core for assessing POP seasonal accumulation on an Alpine glacier, Ecotoxicol. Environ. Safety, 63, 17–24, 2006.
Wang, R., Tao, S., Wang, B., Yang, Y., Lang, C., Zhang, Y., Hu, J., Ma, J., and Hung, H.: Sources and Pathways of Polycyclic Aromatic Hydrocarbons Transported to Alert, the Canadian High Arctic, Environ. Sci. Technol., 44, 1017–1022, 2010.
Wang, X., Xu, B., Kang, S., Cong, Z., and Yao, T.: The historical residue trends of DDT, hexachlorocyclohexanes and polycyclic aromatic hydrocarbons in an ice core from Mt. Everest, central Himalayas, China, Atmos. Environ., 42, 6699–6709, 2008.
Wang, X., Gong, P., Zhang, Q., and Yao, T.: Impact of climate fluctuations on deposition of DDT and hexachlorocyclohexane in mountain glaciers: Evidence from ice core records, Environ. Pollut., 158, 375–380, 2010.
Wania, F.: Modelling the behaviour of non-polar organic chemicals in an ageing snow pack, Chemosphere, 35, 2345–2363, 1997.
Wania, F.: The significance of long-range transport of persistent organic pollutants by migratory animals. 3/98, WECC, Toronto, ON, Canada, 1998.
Wania, F.: Assessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions, 37, 1344–1351, 2003.
Wania, F. and Dugani, C. B.: Assessing the long-range transport potential of polybrominated diphenyl ethers: A comparison of four multimedia models, Environ. Toxicol. Chem., 22, 1252–1261, 2003.
Wania, F. and Mackay, D.: Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions, Ambio, 22, 10–18, 1993.
Wania, F. and Westgate, J. N.: On the mechanism of mountain cold-trapping of organic chemicals, Environ. Sci. Technol., 42, 9092–9098, 2008.
Wania, F., Pacyna, J., and Mackay, D.: Global fate of persistent organic pollutants, Toxicol. Environ. Chem., 66, 81–89, 1998a.
Wania, F., Hoff, J. T., Jia, C. Q., and Mackay, D.: The effects of snow and ice on the environmental behaviour of hydrophobic organic chemicals, Environ. Pollut., 102, 25–41, 1998b.
Wania, F., Mackay, D., and Hoff, J. T.: The importance of snow scavenging of polycyclic biphenyl and polycyclic aromatic hydrocarbon vapors, Environ. Sci. Technol., 33, 195–197, 1999a.
Wania, F., Semkin, R., Hoff, J., and Mackay D.: Modelling the fate of non-polar organic chemicals during the melting of an Arctic snowpack, Hydrol. Proc., 13/14–15, 2245–2256, 1999b.
Weber, J., Kurkova, R., Klánová, J., Klán, P., and Halsall, C. J.: Photolytic degradation of methyl-parathion and fenitrothion in ice and water: Implications for cold environments, Environ. Pollut., 157, 3308–3313, 2009.
Wong, F. L., Jantunen, L. M., Pućko, M., Papakyriakou, T., Staebler, R. M., Stern, G. A., and Bidleman, T. F.: Air-water exchange of anothropogenic and natural organohalogens on International Polar Year (IPY) expeditions in the Canadian Arctic, Environ. Sci. Technol., 45, 876–881, 2011.
Xiao, H., Li, N., and Wania, F.: Compilation, evaluation, and selection of physical-chemical property data for α-, β- and γ-hexachlorocyclohexane, J. Chem. Eng. Data, 49, 173–185, 2004.
Young, C. J., Furdui, V. I., Franklin, J., Koerner, R. M., Muir, D. C. G., and Mabury, S. A.: Perfluorinated acids in Arctic snow: new evidence for atmospheric formation, Environ. Sci. Technol., 41, 3455–3461, 2007.
Zabik, J. and Seiber, J. N.: Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada Mountains, J. Environ. Quality, 22, 80–90, 1993.
Zhang, X., Naidu, A. S., Kelley, J.J., Jewett, S. C., Dasher, D., and Duffy, L. K.: Baseline concentrations of total mercury and methylmercury in salmon returning via the Bering Sea (1999–2000), Mar. Poll. Bull., 42, 933–997, 2001.
Zhao, L. T. and Gray, D. M.: Estimating snowmelt infiltration into frozen soils, Hydrol. Proc., 13, 1827–1842, 1999.
Altmetrics
Final-revised paper
Preprint