Articles | Volume 12, issue 19
https://doi.org/10.5194/acp-12-9251-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-12-9251-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
How relevant is the deposition of mercury onto snowpacks? – Part 2: A modeling study
D. Durnford
Independent researcher, 3031 Cedar Avenue, Montreal, QC, H3Y 1Y8, Canada
A. Dastoor
Air Quality Research Division, Environment Canada, 2121 TransCanada Highway, Dorval, QC, H9P 1J3, Canada
A. Ryzhkov
Independent researcher, 4998 Maisonneuve West, Westmount, QC, H3Z 1N2, Canada
L. Poissant
Atmospheric Toxic Processes Section, Environment Canada, 105 McGill St., Montreal, QC, H2Y 2E7, Canada
M. Pilote
Fluvial Ecosystem Research Section, Environment Canada, 105 McGill St., Montreal, QC, H2Y 2E7, Canada
D. Figueras-Nieto
Air Quality Research Division, Environment Canada, 2121 TransCanada Highway, Dorval, QC, H9P 1J3, Canada
Related subject area
Subject: Hydrosphere Interactions | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Towards kilometer-scale ocean–atmosphere–wave coupled forecast: a case study on a Mediterranean heavy precipitation event
The impact of sea waves on turbulent heat fluxes in the Barents Sea according to numerical modeling
Tropical Pacific climate variability under solar geoengineering: impacts on ENSO extremes
Simulation of the radiative effect of haze on the urban hydrological cycle using reanalysis data in Beijing
A new roughness length parameterization accounting for wind–wave (mis)alignment
Tracing changes in atmospheric moisture supply to the drying Southwest China
The incorporation of an organic soil layer in the Noah-MP land surface model and its evaluation over a boreal aspen forest
The impacts of moisture transport on drifting snow sublimation in the saltation layer
On the importance of cascading moisture recycling in South America
Sensitivity of high-temperature weather to initial soil moisture: a case study using the WRF model
On the "well-mixed" assumption and numerical 2-D tracing of atmospheric moisture
How relevant is the deposition of mercury onto snowpacks? – Part 1: A statistical study on the impact of environmental factors
César Sauvage, Cindy Lebeaupin Brossier, and Marie-Noëlle Bouin
Atmos. Chem. Phys., 21, 11857–11887, https://doi.org/10.5194/acp-21-11857-2021, https://doi.org/10.5194/acp-21-11857-2021, 2021
Short summary
Short summary
Air–sea processes are key elements during Mediterranean heavy precipitation events. We aim to progress in their representation in high-resolution weather forecast. Using coupled ocean–air–wave simulations, we investigated air–sea mechanisms modulated by ocean and waves during a case that occurred in southern France. Results showed significant impact of the forecast on low-level dynamics and air–sea fluxes and illustrated potential benefits of coupled numerical weather prediction systems.
Stanislav Myslenkov, Anna Shestakova, and Dmitry Chechin
Atmos. Chem. Phys., 21, 5575–5595, https://doi.org/10.5194/acp-21-5575-2021, https://doi.org/10.5194/acp-21-5575-2021, 2021
Abdul Malik, Peer J. Nowack, Joanna D. Haigh, Long Cao, Luqman Atique, and Yves Plancherel
Atmos. Chem. Phys., 20, 15461–15485, https://doi.org/10.5194/acp-20-15461-2020, https://doi.org/10.5194/acp-20-15461-2020, 2020
Short summary
Short summary
Solar geoengineering has been introduced to mitigate human-caused global warming by reflecting sunlight back into space. This research investigates the impact of solar geoengineering on the tropical Pacific climate. We find that solar geoengineering can compensate some of the greenhouse-induced changes in the tropical Pacific but not all. In particular, solar geoengineering will result in significant changes in rainfall, sea surface temperatures, and increased frequency of extreme ENSO events.
Tom V. Kokkonen, Sue Grimmond, Sonja Murto, Huizhi Liu, Anu-Maija Sundström, and Leena Järvi
Atmos. Chem. Phys., 19, 7001–7017, https://doi.org/10.5194/acp-19-7001-2019, https://doi.org/10.5194/acp-19-7001-2019, 2019
Short summary
Short summary
This is the first study to evaluate and correct the WATCH WFDEI reanalysis product in a highly polluted urban environment. It gives an important understanding of the uncertainties in reanalysis products in local-scale urban modelling in polluted environments and identifies and corrects the most important variables in hydrological modelling. This is also the first study to examine the effects of haze on the local-scale urban hydrological cycle.
Sara Porchetta, Orkun Temel, Domingo Muñoz-Esparza, Joachim Reuder, Jaak Monbaliu, Jeroen van Beeck, and Nicole van Lipzig
Atmos. Chem. Phys., 19, 6681–6700, https://doi.org/10.5194/acp-19-6681-2019, https://doi.org/10.5194/acp-19-6681-2019, 2019
Short summary
Short summary
Two-way feedback occurs between offshore wind and waves. Using an extensive data set of offshore measurements, we show that the wave roughness affecting the wind is dependent on the alignment between the wind and wave directions. Moreover, we propose a new roughness parameterization that takes into account the dependence on alignment. Using this in numerical models will facilitate a better representation of offshore wind, which is relevant to wind energy and and climate modeling.
Chi Zhang, Qiuhong Tang, Deliang Chen, Laifang Li, Xingcai Liu, and Huijuan Cui
Atmos. Chem. Phys., 17, 10383–10393, https://doi.org/10.5194/acp-17-10383-2017, https://doi.org/10.5194/acp-17-10383-2017, 2017
Short summary
Short summary
Precipitation over Southwest China (SWC) has decreased significantly in recent years. By tracking precipitation moisture, we found that the reduced precipitation results from the reduced moisture supply from the extended west, which is influenced by the South Asian summer monsoon and the westerlies. Further study revealed the dynamic variations in circulation dominate the interannual variations in SWC precipitation. Changes in circulation systems may be related to the recent changes in SSTs.
Liang Chen, Yanping Li, Fei Chen, Alan Barr, Michael Barlage, and Bingcheng Wan
Atmos. Chem. Phys., 16, 8375–8387, https://doi.org/10.5194/acp-16-8375-2016, https://doi.org/10.5194/acp-16-8375-2016, 2016
Short summary
Short summary
This work is the first time that Noah-MP is used to investigate the impact of parameterizing organic soil at a boreal forest site. Including an organic soil parameterization significantly improved performance of the model in surface energy and hydrology simulations due to the lower thermal conductivity and greater porosity of the organic soil. It substantially modified the partition between direct soil evaporation and vegetation transpiration in the simulation.
Ning Huang, Xiaoqing Dai, and Jie Zhang
Atmos. Chem. Phys., 16, 7523–7529, https://doi.org/10.5194/acp-16-7523-2016, https://doi.org/10.5194/acp-16-7523-2016, 2016
Short summary
Short summary
Drifting snow sublimation (DSS) is of glaciological and hydrological importance. This work is related to the simulation of DSS, which is obviously related to the scientific topics, such as multi-field coupling of wind, snow particles, humidity, etc. Previous studies argued that sublimation will soon vanish in saltation layer. This work shows the sublimation rate of saltating snow can be several orders of magnitude greater than that of the suspended snow due to the impact of moisture advection.
D. C. Zemp, C.-F. Schleussner, H. M. J. Barbosa, R. J. van der Ent, J. F. Donges, J. Heinke, G. Sampaio, and A. Rammig
Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, https://doi.org/10.5194/acp-14-13337-2014, 2014
X.-M. Zeng, B. Wang, Y. Zhang, S. Song, X. Huang, Y. Zheng, C. Chen, and G. Wang
Atmos. Chem. Phys., 14, 9623–9639, https://doi.org/10.5194/acp-14-9623-2014, https://doi.org/10.5194/acp-14-9623-2014, 2014
H. F. Goessling and C. H. Reick
Atmos. Chem. Phys., 13, 5567–5585, https://doi.org/10.5194/acp-13-5567-2013, https://doi.org/10.5194/acp-13-5567-2013, 2013
D. A. Durnford, A. P. Dastoor, A. O. Steen, T. Berg, A. Ryzhkov, D. Figueras-Nieto, L. R. Hole, K. A. Pfaffhuber, and H. Hung
Atmos. Chem. Phys., 12, 9221–9249, https://doi.org/10.5194/acp-12-9221-2012, https://doi.org/10.5194/acp-12-9221-2012, 2012
Cited articles
Abbatt, J. P. D.: Interactions of atmospheric trace gases with ice surfaces: Adsorption and reaction, Chem. Rev., 103, 4783–4800, 2003.
Albert, M. R. and Shultz, E. F.: Snow and firn properties and air-snow transport processes at Summit, Greenland, Atmos. Environ., 36, 2789–2797, 2002.
Allan, C. J., Heyes, A., Roulet, N. T., St. Louis, V. L., and Rudd, J. W. M.: Spatial and temporal dynamics of mercury in Precambrian Shield upland runoff, Biogeochemistry, 52, 13–40, 2001.
AMAP: Arctic Pollution 2011, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 38 pp., 2011.
Anderson, P. S., Neff, W. D.: Boundary layer physics over snow and ice, Atmos. Chem. Phys., 8, 3563–3582, https://doi.org/10.5194/acp-8-3563-2008, 2008.
Andersson, M. E., Gårdfeldt, K., Wängberg, I., and Strömberg, D.: Determination of Henry's law constant for elemental mercury, Chemosphere, 73, 587–592, https://doi.org/10.1016/j.chemosphere.2008.05.067, 2008a.
Andersson, M. E., Sommar, J., Gårdfeldt, K., and Lindqvist, O.: Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean, Mar. Chem., 110, 190–194, 2008b.
Ariya, P. A., Khazilov, A., and Gidas, A.: Reactions of gaseous mercury with atomic and molecular halogens: Kinetics, product studies, and atmospheric implications, J. Phys. Chem. A., 106, 7310–7320, 2002.
Ariya, P. A., Dastoor, A. P., Amyot, M., Schroeder, W. H., Barrie, L., Anlauf, K., Raofie, F., Ryzhkov, A., Davignon, D., Lalonde, J., and Steffen, A.: The Arctic: a sink for mercury, Tellus, Ser. B, 56, 397–403, 2004.
Bales, R. C., Davis, R. E., and Stanley, D. A.: Ion elution through shallow homogeneous snow, Water Resour. Res., 25, 1869–1877, 1989.
Bales, R. C., Sommerfeld, R. A., Kebler, D. G.: Ionic tracer movement through a Wyoming snowpack, Atmos. Environ., 24, 2749–2758, 1990.
Balogh, S. J., Meyer, M. L., Hansen, N. C., Moncrief, J. F., and Gupta, S. C.: Transport of mercury from a cultivated field during snowmelt, J. Environ. Qual., 29, 871–874, 2000.
Bargagli, R., Agnorelli, C., Borghini, F., and Monaci, F.: Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya, Environ. Sci. Technol., 39, 8150–8155, 2005.
Bartels-Rausch, T., Huthwelker, T., Jöri, M., Gäggeler, H. W., Ammann, M.: Interaction of gaseous elemental mercury with snow surfaces: laboratory investigation, Environ. Res. Lett., 3, 045009, https://doi.org/10.1088/1748-9326/3/4/045009, 2008.
Bartels-Rausch, T., Krysztofiak, G., Bernhard, A., Schläppi, M., Schwikowski, M., and Ammann, M.: Photoinduced reduction of divalent mercury in ice by organic matter, Chemosphere, 82, 199–203, 2011.
Berg, T., Sekkesæter, S., Steinnes, E., Valdal, A.-K., and Wibetoe, G.: Springtime depletion of mercury in the European Arctic as observed at Svalbard, Sci. Total Environ., 304, 43–51, 2003.
Bishop, K., Lee, Y.-H., Pettersson, C., and Allard, B.: Methylmercury output from the Svartberget catchment in Northern Sweden during spring flood, Water Air Soil Poll., 80, 445–454, 1995.
Blanchard, P., Froude, F. A., Martin, J. B., Dryfhout-Clark, H., and Woods, J. T.: Four years of continuous total gaseous mercury (TGM) measurements at sites in Ontario, Canada, Atmos. Environ., 36, 3735–3743, 2002.
Boutron, C. F., Vandal, G. M., Fitzgerald, W. F., and Ferrari, C. P.: A forty year record of mercury in central Greenland snow, Geophys. Res. Lett., 25, 3315–3318, 1998.
Brooks, S. B., Saiz-Lopez, A., Skov, H., Lindberg, S. E., Plane, J. M. C., and Goodsite, M. E.: The mass balance of mercury in the springtime arctic environment, Geophys. Res. Lett., 33, L13812, https://doi.org/10.1029/2005GL025525, 2006.
Brooks, S., Arimoto, R., Lindberg, S., and Southworth, G.: Antarctic polar plateau snow surface conversion of deposited oxidized mercury to gaseous elemental mercury with fractional long-term burial, Atmos. Environ., 42, 2877–2884, 2008a.
Brooks, S., Lindberg, S., Southworth, G., and Arimoto, R.: Springtime atmospheric mercury speciation in the McMurdo, Antarctica coastal region, Atmos. Environ., 42, 2885–2893, 2008b.
Christensen, J. H., Brandt, J., Frohn, L. M., Skov, H.: Modelling of mercury in the Arctic with the Danish Eulerian Hemispheric Model, Atmos. Chem. Phys., 4, 2251–2257, https://doi.org/10.5194/acp-4-2251-2004, 2004.
Cobbett, F. D., Steffen, A., Lawson, G., and Van Heyst, B. J.: GEM fluxes and atmospheric mercury concentrations (GEM, RGM and Hgp) in the Canadian Arctic at Alert, Nunavut, Canada (February–June 2005), Atmos. Environ., 41, 6527–6543, 2007.
Cole, A. S. and Steffen, A.: Trends in long-term gaseous mercury observations in the Arctic and effects of temperature and other atmospheric conditions, Atmos. Chem. Phys., 10, 4661–4772, https://doi.org/10.5194/acp-10-4661-2010, 2010.
Constant, P., Poissant, L., Villemur, R., Yumvihoze, E., and Lean, D.: Fate of inorganic mercury and methyl mercury within the snow cover in the low arctic tundra on the shore of Hudson Bay (Québec, Canada), J. Geophys. Res., 112, D08309, https://doi.org/10.1029/2006JD007961, 2007.
Côté, J., Desmarais, J.-G., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Staniforth, A.: The operational CMC-MRB Global Environmental Multiscale (GEM) Model: Part II – Results, Mon. Weather Rev., 126, 1397–1418, 1998a.
Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Staniforth, A.: The operational CMC-MRB Global Environmental Multiscale (GEM) Model: Part I – Design considerations and formulation, Mon. Wea. Rev., 126, 1373–1395, 1998b.
Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K. N., Flynn, M., Coe, H., Henning, S., Steinbacher, M., Henne, S., Collaud Coen, M., Petzold, A., Baltensperger, U.: Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch, Atmos. Chem. Phys., 8, 407–423, https://doi.org/10.5194/acp-8-407-2008, 2008.
Dastoor, A. P., Davignon, D., Theys, N., Van Roozendael, M., Steffen, A., and Ariya, P. A.: Modeling dynamic exchange of gaseous elemental mercury at polar sunrise, Environ. Sci. Technol., 42, 5183–5188, https://doi.org/10.1021/es800291w, 2008.
Domine, F., Albert, M., Huthwelker, T., Jacobi, H.-W., Kokhanovsky, A. A., Lehning, M., Picard, G., and Simpson, W. R.: Snow physics as relevant to snow photochemistry, Atmos. Chem. Phys., 8, 171–208, https://doi.org/10.5194/acp-8-171-2008, 2008.
Dommergue, A., Ferrari, C. P., Gauchard, P.-A., and Boutron, C. F.: The fate of mercury species in a sub-arctic snowpack during snowmelt, Geophys. Res. Lett., 30, 1621, https://doi.org/10.1029/2003GL017308, 2003.
Dommergue, A., Bahlmann, E., Ebinghaus, R., Ferrari, C., and Boutron, C.: Laboratory simulation of Hg0 emissions from a snowpack, Anal. Bioanal. Chem., 388, 319–327, 2007.
Dommergue, A., Larose, C., Faïn, X., Clarisse, O., Foucher, D., Hintelmann, H., Schneider, D., and Ferrari, C. P.: Deposition of mercury species in the Ny-Ålesund area (79° N) and their transfer during snowmelt, Environ. Sci. Technol., 44, 901–907, https://doi.org/10.1021/es902579m, 2010.
Donohoue, D. L., Bauer, D., and Hynes, A. J.: Temperature and pressure dependent rate coefficients for the reaction of Hg with Cl and the reaction of Cl with Cl: A pulsed laser photolysis-pulsed laser induced fluorescence study, J. Phys. Chem. A., 109, 7732–7741, 2005.
Douglas, T. A., Sturm, M., Simpson, W. R., Blum, J. D., Alvarez-Aviles, L., Keeler, G. J., Perovich, D. K., Biswas, A., and Johnson, K.: Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic, Environ. Sci. Technol., 42, 1542–1551, 2008.
Durnford, D. and Dastoor, A.: The behavior of mercury in the cryosphere: A review of what we know from observations, J. Geophys. Res., 116, D06305, https://doi.org/10.1029/2010JD014809, 2011.
Durnford, D., Dastoor, A., Figueras-Nieto, D., and Ryjkov, A.: Long range transport of mercury to the Arctic and across Canada. Atmos. Chem. Phys., 10: 6063–6086, https://doi.org/10.5194/acp-10-6063-2010, 2010.
Durnford, D. A., Dastoor, A. P., Steen, A. O. , Berg, T., Ryzhkov, A., Figueras-Nieto, D., Hole, L. R., Pfaffhuber, K. A., Hung, H.,: How relevant is the deposition of mercury onto snowpacks? Part 1: A statistical study on the impact of environmental factors. Atmos. Chem. Phys. Discuss., 12, 387–439, https://doi.org/10.5194/acpd-12-387-2012, 2012.
Fain, X., Ferrari, C. P., Gauchard, P.-A., Magand, O., Boutron, C.: Fast depletion of gaseous elemental mercury in the Kongsvegen Glacier snowpack in Svalbard, Geophys. Res. Lett., 33, L06826, https://doi.org/10.1029/2005GL025223, 2006.
Faïn, X., Grangeon, S., Bahlmann, E., Fritsche, J., Obrist, D., Dommergue, A., Ferrari, C. P., Cairns, W., Ebinghaus, R., Barbante, C., Cescon, P., and Boutron, C.: Diurnal production of gaseous mercury in the alpine snowpack before snowmelt, J. Geophys. Res., 112, D21311, https://doi.org/10.1029/2007JD008520, 2007.
Faïn, X., Ferrari, C. P., Dommergue, A., Albert, M., Battle, M., Arnaud, L., Barnola, J.-M., Cairns, W., Barbante, C., Boutron, C.: Mercury in the snow and firn at Summit Station, Central Greenland, and implications for the study of past atmospheric mercury levels, Atmos. Chem. Phys., 8, 3441–3457, https://doi.org/10.5194/acp-8-3441-2008, 2008.
Faïn, X., Ferrari, C. P., Dommergue, A., Albert, M. R., Battle, M., Severinghaus, J., Arnaud, L., Barnola, J.-M., Cairns, W., Barbante, C., and Boutron, C.: Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s, P. Natl. Acad. Sci. USA, 106, 16114–16119, https://doi.org/10.1073/pnas.0905117106, 2009.
Fatnassi, H., Boulard, T., Poncet, C., and Chave, M.: Optimisation of greenhouse insect screening with computational fluid dynamics, Biosyst. Eng., 93, 301–312, 2006.
Ferrari, C. P., Dommergue, A., and Boutron, C. F.: Profiles of mercury in the snow pack at Station Nord, Greenland shortly after polar sunrise, Geophys. Res. Lett., 31, L03401, https://doi.org/10.1029/2003GL018961, 2004a.
Ferrari, C. P., Dommergue, A., Boutron, C. F., Skov, H., Goodsite, M., and Jensen, B.: Nighttime production of elemental gaseous mercury in interstitial air of snow at Station Nord, Greenland, Atmos. Environ., 38, 2727–2735, 2004b.
Ferrari, C. P., Gauchard, P.-A., Aspmo, K., Dommergue, A., Magand, O., Bahlmann, E., Nagorski, S., Temme, C., Ebinghaus, R., Steffen, A., Banic, C., Berg, T., Planchon, F., Barbante, C., Cescon, P., Boutron, C. F.: Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Ålesund, Svalbard, Atmos. Environ., 39, 7633–7645, 2005.
Ferrari, C. P., Padova, C., Faïn, X., Gauchard, P.-A., Dommergue, A., Aspmo, K., Berg, T., Cairns, W., Barbante, C., Cescon, P., Kaleshke, L., Richter, A., Wittrock, F., and Boutron, C.: Atmospheric mercury depletion event study in Ny-Alesund (Svalbard) in spring 2005. Deposition and transformation of Hg in surface snow during springtime, Sci. Total Environ., 397, 167–177, 2008.
Fouquart, Y. and Bonnel, B.: Computations of solar heating of the earth's atmosphere: a new parameterization, Contrib. Atmos. Phys., 53, 35–62, 1980.
Galbavy, E. S., Anastasio, C., Lefer, B., and Hall, S.: Light penetration in the snowpack at Summit, Greenland: Part 2 nitrate photolysis, Atmos. Environ., 41, 5091–5100, 2007.
Garand, L. and Mailhot, J.: The influence of infrared radiation on numerical weather forecasts, in Proceedings of the 7th Conference on Atmospheric Radiation, J146-J151, American Meteorological Society, USA, 1990.
Garbarino, J. R., Snyder-Conn, E., Leiker, T. J., and Hoffman, G. L.: Contaminants in Arctic snow collected over Northwest Alaskan sea ice, Water, Air, Soil Pollut., 139, 183–214, 2002.
Gbor, P. K., Wen, D., Meng, F., Yang, F., and Sloan, J. J.: Sloan Modeling of mercury emission, transport and deposition in North America, Atmos. Environ., 41, 1135–1149, 2007.
Goulet, R. R., Holmes, J., Page, B., Poissant, L., Siciliano, S. D., Lean, D. R. S., Wang, F., Amyot, M., and Tessier, A.: Mercury transformations and fluxes in sediments of a riverine wetland, Geochim. Cosmochim. Ac., 71, 3393–3406, 2007.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli. M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, https://doi.org/10.5194/acp-7-4329-2007, 2007.
Hall: The gas phase oxidation of elemental mercury by ozone, Water Air Soil Poll., 80, 301–315, 1995.
Hansen, K. M., Halsall, C. J., and Christensen, J. H.: A dynamic model to study the exchange of gas-phase persistent organic pollutants between air and a seasonal snowpack, Environ. Sci. Technol., 40, 2644–2652, https://doi.org/10.1021/es051685b, 2006.
Hare, A., Stern, G. A., Macdonald, R. W., Kuzyk, Z. Z., and Wang, F.: Contemporary and preindustrial mass budgets of mercury in the Hudson Bay Marine System: The role of sediment recycling, Sci. Total Environ., 406, 190–204, https://doi.org/10.1016/j.scitotenv.2008.07.033, 2008.
Hedgecock, I. M., Pirrone, N., and Sprovieri, F.: Chasing quicksilver northward: mercury chemistry in the Arctic troposphere, Environ. Chem., 5, 131–134, 2008.
Heidam, N. Z., Christensen, J., Wåhlin, P., and Skov, H.: Arctic atmospheric contaminants in NE Greenland: levels, variations, origins, transport, transformations and trends 1990–2001, Sci. Total Environ., 331, 5–28, 2004.
Henderson, P. J., McMartin, I., Hall, G. E., Percival, J. B., and Walker, D. A.: The chemical and physical characteristics of heavy metals in humus and till in the vicinity of the base metal smelter at Flin Flon, Manitoba, Canada, Environmental Geology, 34, 39–58, 1998.
Hirdman, D., Aspmo, K., Burkhart, J. F., Eckhardt, S., Sodemann, H., and Stohl, A.: Transport of mercury in the Arctic atmosphere: evidence for a spring-time net sink and summer-time source, Geophys. Res. Lett., 36, L12814, https://doi.org/10.1029/2009GL038345, 2009.
Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., and Slemr, F.: Global atmospheric model for mercury including oxidation by bromine atoms, Atmos. Chem. Phys., 10, 12037–12057, https://doi.org/10.5194/acp-10-12037-2010, 2010.
Jackson, T. A.: Long-range atmospheric transport of mercury to ecosystems, and the importance of anthropogenic emissions – a critical review and evaluation of the published evidence, Environ. Rev., 5, 99–120, 1997.
Jitaru, P., Gabrielli, P., Marteel, A., Plane, J. M. C., Planchon, F. A. M., Gauchard, P.-A., Ferrari, C. P., Boutron, C. F., Adams, F. C., Hong, S., Cescon, P., and Barbante, C.: Atmospheric depletion of mercury over Antarctica during glacial periods, Nat. Geosci., 2, 505–508, https://doi.org/10.1038/ngeo549, 2009.
Johnson, K. P., Blum, J. D., Keeler, G. J., and Douglas, T. A.: Investigation of the deposition and emission of mercury in arctic snow during an atmospheric mercury depletion event, J. Geophys. Res., 113, D17304, https://doi.org/10.1029/2008JD009893, 2008.
Kain, J. S. and Fritsch, J. M.: A one-dimensional entraining/detraining plume model and its application in convective parameterization, J. Atmos. Sci., 47, 2784–2802, 1990.
Kellerhals, M., Beauchamp, S., Belzer, W., Blanchard, P., Froude, F., Harvey, B., McDonald, K., Pilote, M., Poissant, L., Puckett, K., Schroeder, W., Steffen, A., and Tordon, R.: Temporal and spatial variability of total gaseous mercury in Canada: results from the Canadian Atmospheric Mercury Measurement Network (CAMNet), Atmos. Environ., 37, 1003–1011, 2003.
King, M. D. and Simpson, W. R.: Extinction of UV radiation in Arctic snow at Alert, Canada (82° N), J. Geophys. Res., 106, 12499–12507, 2001.
Kirk, J. L., St. Louis, V. L., and Sharp, M. J.: Rapid reduction and emission of mercury deposited into snowpacks during atmospheric mercury depletion events at Churchill, Manitoba, Canada, Environ. Sci. Technol., 40, 7590–7596, 2006.
Kuhn, M.: The nutrient cycle through snow and ice, a review, Aquat. Sci., 63, 150–167, 2001.
Lahoutifard, N., Poissant, L., and Scott, S. L.: Scavenging of gaseous mercury by acidic snow at Kuujjuarapik, Northern Québec, Sci. Total Environ., 355, 118–126, 2006.
Lalonde, J. D., Poulain, A. J., and Amyot, M.: The role of mercury redox reactions in snow on snow-to-air mercury transfer, Environ. Sci. Technol., 36, 174–178, 2002.
Lalonde, J. D., Amyot, M., Doyon, M.-R., and Auclair, J.-C.: Photo-induced Hg(II) reduction in snow from the remote and temperate Experimental lakes Area (Ontario, Canada), J. Geophys. Res., 108, 4200, https://doi.org/10.1029/2001JD001534, 2003.
Landers, D. H., Ford, J., Gubala, C., Monetti, M., Lasorsa, B. K., and Martinson, J.: Mercury in vegetation and lake sediments from the U.S. Arctic, Water Air Soil Poll., 80, 591–601, 1995.
Larose, C., Dommergue, A., De Angelis, M., Cossa, D., Averty, B., Marusczak, N., Soumis, N., Schneider, D., and Ferrari, C.: Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic, Geochim. Cosmochim. Ac., 74, 6263–6275, https://doi.org/10.1016/j.gca.2010.08.043, 2010.
Lee-Taylor, J., Madronich, S.: Calculation of actinic fluxes with a coupled atmosphere-snow radiative transfer model, J. Geophys. Res., 107, D24, 4796, https://doi.org/10.1029/2002JD002084, 2002.
Lin, C.-J., Pongprueksa, P., Lindberg, S. E., Pehkonen, S. O., Byun, D., and Jang, C.: Scientific uncertainties in atmospheric mercury models I: Model science evaluation, Atmos. Environ., 40, 2911–2928, 2006.
Lindberg, S. E., Brooks, S., Lin, C.-J., Scott, K. J., Landis, M. S., Stevens, R. K., Goodsite, M., and Richter, A.: Dynamic oxidation of gaseous mercury in the Arctic troposphere at Polar Sunrise, Environ. Sci. Technol., 36, 1245–1256, 2002.
Loewen, M., Kang, S., Armstrong, D., Zhang, Q., Tomy, G., and Wang, F.: Atmospheric transport of mercury to the Tibetan Plateau, Environ. Sci. Technol., 41, 7632–7638, 2007.
Loseto, L. L., Lean, D. R. S., and Siciliano, S. D.: Snowmelt sources of methylmercury to High Arctic ecosystems, Environ. Sci. Technol., 38, 3004–3010, 2004.
Loux, N. T.: Monitoring cyclical air/water elemental mercury exchange, J. Environ. Monit., 3, 43–48, https://doi.org/10.1039/b005545j, 2001.
Lu, J. Y., Schroeder, W. H., Barrie, L. A., Steffen, A., Welch, H. E., Martin, K., Lockhart, L., Hunt, R. V., Boila, G., and Richter, A.: Magnification of atmospheric mercury deposition to polar regions in springtime: the link to tropospheric ozone depletion chemistry, Geophys. Res. Lett., 28, 3219–3222, 2001.
Mann, J. L., Long, S. E., Shuman, C. A., and Kelly, W. R.: Determination of mercury content in a shallow firn core from Greenland by isotope dilution inductively coupled plasma mass spectrometry, Water Air Soil Poll., 163, 19–32, 2005.
Mann, E., Meyer, T., Mitchell, C. P. J., and Wania, F.: Mercury fate in ageing and melting snow: Development and testing of a controlled laboratory system, J. Environ. Monit., 13, 2695–2702, 2011.
Marusczak, N., Larose, C., Dommergue, A., Yumvihoze, E., Lean, D., Nedjai, R., and Ferrari, C.: Total mercury and methylmercury in high altitude surface snow from the French Alps, Sci. Tot. Environ., 409, 3949–3954, 2011.
Mason, R.: Mercury emissions from natural processes and their importance in the global mercury cycle, in Mercury fate and transport in the global atmosphere, 173–191, Springer USA, 2009.
Maupetit, F., Wagenbach, D., Weddeling, P., and Delmas, R. J.: Seasonal fluxes of major ions to a high altitude cold alpine glacier, Atmos. Environ., 29, 1–9, 1995.
McMartin, I., Henderson, P. J., and Nielsen, E.: Impact of a base metal smelter on the geochemistry of soils of the Flin Flon region, Manitoba and Saskatchewan, Can. J. Earth Sci., 36, 141–160, 1999.
Mitchell, C. P. J., Branfireun, B. A., and Kolka, R. K.: Assessing sulfate and carbon controls on net methylmercury production in peatlands: An in situ mesocosm approach, Appl. Geochem., 23, 503–518, 2008a.
Mitchell, C. P. J., Branfireun, B. A., and Kolka, R. K.: Total mercury and methylmercury dynamics in upland-peatland watersheds during snowmelt, Biogeochemistry, 90, 225–241, https://doi.org/10.1007/s10533-008-9246-z, 2008b.
Nelson, S. J., Johnson, K. B., Weathers, K. C., Loftin, C. S., Fernandez, I. J., Kahl, J. S., and Krabbenhoft, D. P.: A comparison of winter mercury accumulation at forested and no-canopy sites measured with different snow sampling techniques, Appl. Geochem., 23, 384–398, 2008.
Outridge, P. M., Macdonald, R. W., Wang, F., Stern, G. A., and Dastoor, A. P.: A mass balance inventory of mercury in the Arctic Ocean, Environ. Chem, 5, 89–111, https://doi.org/10.1071/EN08002, 2008.
Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., and Maxson, P.: Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020, Atmos. Environ. 44, 2487–2499, https://doi.org/10.1016/j.atmosenv.2009.06.009, 2010.
Pehkonen, S. O. and Lin, C.-J.: Aqueous photochemistry of mercury with organic acids, J. Air Waste Manage., 48, 144–150, 1998.
Perovich, D. K.: Light reflection and transmission by a temperate snow cover, J. Glaciol., 53, 201–210, 2007.
Peterson, M., Barber, D., and Green, S.: Monte Carlo modeling and measurements of actinic flux levels in Summit, Greenland snowpack, Atmos. Environ., 36, 2545–2551, 2002.
Planchon, F. A. M., Gabrielli, P., Gauchard, P. A., Dommergue, A., Barbante, C., Cairns, W. R. L., Cozzi, G., Nagorski, S. A., Ferrari, C. P., Boutron, C. F., Capodaglio, G., Cescon, P., Varga, A., and Wolff, E. W.: Direct determination of mercury at the sub-picogram per gram level in polar snow and ice by ICP-SFMS, J. Anal. Atom. Spectrom., 19, 823–830, 2004.
Poissant, L. and Pilote, M.: Time series analysis of atmospheric mercury in Kuujjuarapik/Whapmagoostui (Québec), J. de Phys. IV: JP, 107, 1079–1082, 2003.
Poissant, L., Amyot, M., Pilote, M., and Lean, D.: Mercury water-air exchange over the upper St. Lawrence River and Lake Ontario, Environ. Sci. Technol., 34, 3069–3078, https://doi.org/10.1021/es990719a, 2000.
Poulain, A. J., Lalonde, J. D., Amyot, M., Shead, J. A., Raofie, F., and Ariya, P. A.: Redox transformations of mercury in an Arctic snowpack at springtime, Atmos. Environ., 38, 6763–6774, 2004.
Poulain, A. J., Garcia, E., Amyot, M., Campbell, P. G. C., and Ariya, P. A.: Mercury distribution, partitioning and speciation in coastal vs. inland High Arctic snow, Geochim. Cosmochim. Ac., 71, 3419–3431, 2007a.
Poulain, A. J., Roy, V., and Amyot, M.: Influence of temperate mixed and deciduous tree covers on Hg concentrations and photoredox transformations in snow, Geochim. Cosmochim. Ac., 71, 2448–2462, 2007b.
Prestbo, E. M. and Gay, D. A.: Wet deposition of mercury in the U.S. and Canada, 1996–2005: Results and analysis of the NADP mercury deposition network (MDN), Atmos. Environ., 43, 4223–4233, 2009.
Raofie, F. and Ariya, P. A.: Kinetics and products study of the reaction of BrO radicals with gaseous mercury, J. Phys., 107, 1119–1121, 2003.
Ryaboshapko, A., Bullock, R., Christensen, J., Cohen, M., Dastoor, A., Ilyin, I., Petersen, G., Syrakov, D., Artz, R., Davignon, D., Draxler, R., and Munthe, J.: Intercomparison study of atmospheric mercury models: 1. Comparison of models with short-term measurements, Sci. Total Environ., 376, 228–240, 2007a.
Ryaboshapko, A., Bullock, R., Christensen, J., Cohen, M., Dastoor, A., Ilyin, I., Petersen G., Syrakov, D., Travnikov, O., Artz, R., Davignon, D., Draxler, R., Munthe, J., and Pacyna, J.: Intercomparison Study of Atmospheric Mercury Models: 2. Modelling results vs. long-term observations and comparison of country deposition budgets, Sci. Total Environ., 377, 319–333, 2007b.
Schuster, P. F., Krabbenhoft, D. P., Naftz, D. L., Cecil, L. D., Olson, M. K., Dewild, J. F., Susong, D. D., Green, J. R., and Abbott, M. L.: Atmospheric mercury deposition during the last 270 years: A glacial ice core record of natural and anthropogenic sources, Environ. Sci. Technol., 36, 2303–2310, 2002.
Seigneur, C., Abeck, H., Chia, G., Reinhard, M., Bloom, N. S. Prestbo, E., and Saxena, P.: Mercury adsorption to elemental carbon (soot) particles and atmospheric particulate matter, Atmos. Environ, 32, 2649–2657, 1998.
Sherman, L. S., Blum, J. D., Johnson, K. P., Keeler, G. J., Barres, J. A., and Douglas, T. A.: Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight, Nat. Geosci., 3, 173–177, https://doi.org/10.1038/ngeo758, 2010.
Shetty, S. K., Lin, C.-J., Streets, D. G., and Jang, C.: Model estimate of mercury emission from natural sources in East Asia, Atmos. Environ., 42, 8674–8685, 2008.
Simpson, W. R., King, M. D., Beine, H. J., Honrath, R. E., and Zhou, X.: Radiation-transfer modeling of snow-pack photochemical processes during ALERT 2000, Atmos. Environ., 36, 2663–2670, 2002.
Simpson, W. R., Carlson, D., Hönninger, G., Douglas, T. A., Sturm, M., Perovich, D., and Platt, U.: First-year sea-ice contact predicts bromine monoxide (BrO) levels at Barrow, Alaska better than potential frost flower contact, Atmos. Chem. Phys., 7, 621–627, https://doi.org/10.5194/acp-7-621-2007, 2007a.
Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L. J., Frie{ß}, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H.-W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375–4418, https://doi.org/10.5194/acp-7-4375-2007, 2007b.
Skov, H., Christensen, J. H., Goodsite, M. E., Heidam, N. Z., Jensen, B., Wåhlin, P., and Geernaert, G.: Fate of elemental mercury in the Arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the Arctic, Environ. Sci. Technol., 38, 2373–2382, 2004.
Snyder-Conn, E., Garbarino, J. R., Hoffman, G. L., and Oelkers, A.: Soluble trace elements and total mercury in Arctic Alaskan snow, Arctic, 50, 201–215, 1997.
Soerensen, A. L., Sunderland, E. M., Holmes, C. D., Jacob, D. J., Yantosca, R. M., Skov, H., Christensen, J. H., Strode, S. A., and Mason, R. P.: An improved global model for air-sea exchange of mercury: High concentrations over the North Atlantic, Environ, Sci. Technol., 44, 8574–8580, 2010.
Sommar, J., Wängberg, I., Berg, T., Gårdfeldt, K., Munthe, J., Richter, A., Urba, A., Wittrock, F., Schroeder, W. H.: Circumpolar transport and air-surface exchange of atmospheric mercury at Ny-Ålesund (79° N), Svalbard, spring 2002, Atmos. Chem. Phys., 7, 151–166, https://doi.org/10.5194/acp-7-151-2007, 2007.
Steen, A. O., Berg, T., Dastoor, A. P., Durnford, D. A., Hole, L. R., and Phaffhuber, K. A.: Dynamic exchange of gaseous elemental mercury during polar night and day, Atmos. Environ., 43, 5604–5610, 2009.
Steffen, A., Schroeder, W., Bottenheim, J., Narayan, J., and Fuentes, J. D.: Atmospheric mercury concentrations: measurements and profiles near snow and ice surfaces in the Canadian Arctic during Alert 2000, Atmos. Environ., 36, 2653–2661, 2002.
Steffen, A., Schroeder, W., Macdonald, R., Poissant, L., and Konoplev, A.: Mercury in the Arctic atmosphere: An analysis of eight years of measurements of GEM at Alert (Canada) and a comparison with observations at Amderma (Russia) and Kuujjuarapik (Canada), Sci. Total Environ., 342, 185–198, 2005.
Steffen, A., Douglas, T., Amyot, M., Ariya, P., Aspmo, K., Berg, T., Bottenheim, J., Brooks, S., Cobbett, F., Dastoor, A., Dommergue, A., Ebinghaus, R., Ferrari, C., Gardfeldt, K., Goodsite, M. E., Lean, D., Poulain, A. J., Scherz, C., Skov, H., Sommar, J., Temme, C.: A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow, Atmos. Chem. Phys., 8, 1445–1482, https://doi.org/10.5194/acp-8-1445-2008, 2008.
St. Louis, V. L., Sharp, M. J., Steffen, A., May, A., Barker, J., Kirk, J. L., Kelly, D. J. A., Arnott, S. E., Keatley, B., and Smol, J. P.: Some sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian High Arctic, Environ. Sci. Technol., 39, 2686–2701, 2005.
St. Louis, V. L., Hintelmann, H., Graydon, J. A., Kirk, J. L., Barker, J., Dimock, B., Sharp, M. J., and Lehnherr, I.: Methylated mercury species in Canadian High Arctic marine surface waters and snowpacks, Environ. Sci. Technol., 41, 6433–6441, 2007.
Stocker, J., Scheringer, M., Wegmann, F., and Hungerbühler, K.: Modeling the Effect of Snow and Ice on the Global Environmental Fate and Long-Range Transport Potential of Semivolatile Organic Compounds, Env. Sci. Technol., 41, 6192–6198, 2007.
Strode, S. A., Jaeglé, L., Selin, N. E., Jacob, D. J., Park, R. J., Yantosca, R. M., Mason, R. P., and Slemr, F.: Air-sea exchange in the global mercury cycle, Global Biogeochem. Cy., 21, GB1017, https://doi.org/10.1029/2006GB002766, 2007.
Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A., and Landing, W. M.: Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models, Global Biogeochem. Cy., 23, GB2010, https://doi.org/10.1029/2008GB003425, 2009.
Sundqvist, H.: A parameterization scheme for non-convective condensation including prediction of cloud water content, Quart. J. Roy. Meteor. Soc., 104, 677-690, 1978.
Temme, C., Blanchard, P., Steffen, A., Banic, C., Beauchamp, S., Poissant, L., Tordon, R., and Wiens, B.: Trend, seasonal and multivariate analysis study of total gaseous mercury data from the Canadian atmospheric mercury measurement network (CAMNet), Atmos. Environ. 41, 5423–5441, 2007.
Travnikov, O.: Contribution of the intercontinental atmospheric transport to mercury pollution in the Northern Hemisphere, Atmos. Environ., 39, 7541–7548, 2005.
Van Loon, L., Mader, E., and Scott, S. L.: Reduction of the aqueous mercuric ion by sulfite: UV spectrum of HgSO$_\mathrm{3}$ and its intramolecular redox reaction, J. Phys. Chem. A., 104, 1621–1626, 2000.
Van Oostdam, J., Donaldson, S. G., Feeley, M., Arnold, D., Ayotte, P., Bondy, G., Chan, L., Dewaily, É., Furgal, C. M., Kuhnlein, H., Loring, E., Muckle, G., Myles, E., Receveur, O., Tracy, B., Gill, U., Kalhok, S.: Human health implications of environmental contaminants in Arctic Canada: A review, Sci. Total Environ., 351–352, 165–246, 2005.
Warren, S. G.: Optical properties of snow, Rev. Geophys. Space Phys., 20, 67–89, 1982.
Warren, S. G., Brandt, R. E., and Grenfell, T. C.: Visible and near-ultraviolet absorption spectrum of ice from transmission of solar radiation into snow, Appl. Optics, 45, 5320–5334, 2006.
Wen, D., Lin, J. C., Meng, F., Gbor, P. K., He, Z., and Sloan, J. J.: Quantitative assessment of upstream source influences on total gaseous mercury observations in Ontario, Canada, Atmos. Chem. Phys., 11, 1405–1415, https://doi.org/10.5194/acp-11-1405-2011, 2011.
Wennberg, P.: Bromine explosion, Nature, 397, 299–301, 1999.
Wilke, C. R. and Chang, P.: Correlation of diffusion coefficients in dilute solutions, AIChE J., 1, 264–270, https://doi.org/10.1002/aic.690010222, 1955.
Witherow, R. A. and Lyons, W. B.: Mercury deposition in a Polar Desert ecosystem, Environ. Sci. Technol., 42, 4710–4716, 2008.
Xiao, Z. F., Munthe, J., Stromberg, D., Lindqvist, O.: Photochemical behavior of inorganic mercury compound in aqueous solution, in Mercury as a Global Pollutant –- Integration and Synthesis, edited by: Watras, C. J. and Huckabee, J. W., 581–592, Lewis Publishers, Michigan, USA, 1994.
Yang, X., Pyle, J. A., Cox, R. A., Theys, N., and Van Roozendael, M.: Snow-sourced bromine and its implic`ations for polar tropospheric ozone, Atmos. Chem. Phys., 10, 7763–7773, https://doi.org/10.5194/acp-10-7763-1020, 2010.
Yue, W., Meneveau, C., Parlange, M. B., Zhu, W., Kang, H. S., and Katz, J.: Turbulent kinetic energy budgets in a model canopy: comparisons between LES and wind-tunnel experiments, Environ. Fluid Mech., 8, 73–95, 2008.
Zhang, L., Gong, S., Padro, J., and Barrie, L. A.: A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35, 549–560, 2001.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2607–2082, https://doi.org/10.5194/acp-3-2067-2003, 2003.
Altmetrics
Final-revised paper
Preprint