Articles | Volume 12, issue 23
https://doi.org/10.5194/acp-12-11679-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-12-11679-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010)
J. K. Spiegel
Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
F. Aemisegger
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
M. Scholl
US Geological Survey, Reston, VA, USA
F. G. Wienhold
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
J. L. Collett Jr.
Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
T. Lee
Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
D. van Pinxteren
Leibniz Institute for Tropospheric Research, Leipzig, Germany
S. Mertes
Leibniz Institute for Tropospheric Research, Leipzig, Germany
A. Tilgner
Leibniz Institute for Tropospheric Research, Leipzig, Germany
H. Herrmann
Leibniz Institute for Tropospheric Research, Leipzig, Germany
R. A. Werner
Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
N. Buchmann
Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
W. Eugster
Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
Related subject area
Subject: Isotopes | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Vehicle-based in situ observations of the water vapor isotopic composition across China: spatial and seasonal distributions and controls
Using carbon-14 and carbon-13 measurements for source attribution of atmospheric methane in the Athabasca oil sands region
Experimental investigation of the stable water isotope distribution in an Alpine lake environment (L-WAIVE)
Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern Ocean
Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia
Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean
Vertical profile observations of water vapor deuterium excess in the lower troposphere
A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain
Isotopic composition of daily precipitation along the southern foothills of the Himalayas: impact of marine and continental sources of atmospheric moisture
The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights
Annual variation in event-scale precipitation δ2H at Barrow, AK, reflects vapor source region
Interpreting the 13C ∕ 12C ratio of carbon dioxide in an urban airshed in the Yangtze River Delta, China
The influence of snow sublimation and meltwater evaporation on δD of water vapor in the atmospheric boundary layer of central Europe
Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau
Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer
Detecting moisture transport pathways to the subtropical North Atlantic free troposphere using paired H2O-δD in situ measurements
Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity
Isotopic signatures of production and uptake of H2 by soil
Simultaneous monitoring of stable oxygen isotope composition in water vapour and precipitation over the central Tibetan Plateau
Deuterium excess in the atmospheric water vapour of a Mediterranean coastal wetland: regional vs. local signatures
Factors controlling temporal variability of near-ground atmospheric 222Rn concentration over central Europe
The isotopic composition of water vapour and precipitation in Ivittuut, southern Greenland
Deuterium excess as a proxy for continental moisture recycling and plant transpiration
On the variability of atmospheric 222Rn activity concentrations measured at Neumayer, coastal Antarctica
Precipitation isoscape of high reliefs: interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an Alpine domain
Kinetic fractionation of gases by deep air convection in polar firn
Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet
Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado
Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent
Change of the Asian dust source region deduced from the composition of anthropogenic radionuclides in surface soil in Mongolia
A map of radon flux at the Australian land surface
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Regina Gonzalez Moguel, Felix Vogel, Sébastien Ars, Hinrich Schaefer, Jocelyn C. Turnbull, and Peter M. J. Douglas
Atmos. Chem. Phys., 22, 2121–2133, https://doi.org/10.5194/acp-22-2121-2022, https://doi.org/10.5194/acp-22-2121-2022, 2022
Short summary
Short summary
Evaluating methane (CH4) sources in the Athabasca oil sands region (AOSR) is crucial to effectively mitigate CH4 emissions. We tested the use of carbon isotopes to estimate source contributions from key CH4 sources in the AOSR and found that 56 ± 18 % of CH4 emissions originated from surface mining and processing facilities, 34 ± 18 % from tailings ponds, and 10 ± < 1 % from wetlands, confirming previous findings and showing that this method can be successfully used to partition CH4 sources.
Patrick Chazette, Cyrille Flamant, Harald Sodemann, Julien Totems, Anne Monod, Elsa Dieudonné, Alexandre Baron, Andrew Seidl, Hans Christian Steen-Larsen, Pascal Doira, Amandine Durand, and Sylvain Ravier
Atmos. Chem. Phys., 21, 10911–10937, https://doi.org/10.5194/acp-21-10911-2021, https://doi.org/10.5194/acp-21-10911-2021, 2021
Short summary
Short summary
To gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link to the isotopic composition of the lake water and small-scale dynamics, the L-WAIVE field campaign was conducted in the Annecy valley in the French Alps in June 2019. Based on a synergy between ground-based, boat-borne, and airborne measuring platforms, significant gradients of isotopic content have been revealed at the transitions to the lake and to the free troposphere.
Shaakir Shabir Dar, Prosenjit Ghosh, Ankit Swaraj, and Anil Kumar
Atmos. Chem. Phys., 20, 11435–11449, https://doi.org/10.5194/acp-20-11435-2020, https://doi.org/10.5194/acp-20-11435-2020, 2020
Jean-Louis Bonne, Hanno Meyer, Melanie Behrens, Julia Boike, Sepp Kipfstuhl, Benjamin Rabe, Toni Schmidt, Lutz Schönicke, Hans Christian Steen-Larsen, and Martin Werner
Atmos. Chem. Phys., 20, 10493–10511, https://doi.org/10.5194/acp-20-10493-2020, https://doi.org/10.5194/acp-20-10493-2020, 2020
Short summary
Short summary
This study introduces 2 years of continuous near-surface in situ observations of the stable isotopic composition of water vapour in parallel with precipitation in north-eastern Siberia. We evaluate the atmospheric transport of moisture towards the region of our observations with simulations constrained by meteorological reanalyses and use this information to interpret the temporal variations of the vapour isotopic composition from seasonal to synoptic timescales.
Iris Thurnherr, Anna Kozachek, Pascal Graf, Yongbiao Weng, Dimitri Bolshiyanov, Sebastian Landwehr, Stephan Pfahl, Julia Schmale, Harald Sodemann, Hans Christian Steen-Larsen, Alessandro Toffoli, Heini Wernli, and Franziska Aemisegger
Atmos. Chem. Phys., 20, 5811–5835, https://doi.org/10.5194/acp-20-5811-2020, https://doi.org/10.5194/acp-20-5811-2020, 2020
Short summary
Short summary
Stable water isotopes (SWIs) are tracers of moist atmospheric processes. We analyse the impact of large- to small-scale atmospheric processes and various environmental conditions on the variability of SWIs using ship-based SWI measurement in water vapour from the Atlantic and Southern Ocean. Furthermore, simultaneous measurements of SWIs at two altitudes are used to illustrate the potential of such measurements for future research to estimate sea spray evaporation and turbulent moisture fluxes.
Olivia E. Salmon, Lisa R. Welp, Michael E. Baldwin, Kristian D. Hajny, Brian H. Stirm, and Paul B. Shepson
Atmos. Chem. Phys., 19, 11525–11543, https://doi.org/10.5194/acp-19-11525-2019, https://doi.org/10.5194/acp-19-11525-2019, 2019
Short summary
Short summary
We conducted airborne vertical profile measurements of water vapor stable isotopes to examine how boundary layer, cloud, and mixing processes influence the vertical structure of deuterium excess in the lower troposphere. We discuss reasons our observations are consistent with water vapor isotope theory on some days and not others. Deuterium excess may be useful for understanding complex processes occurring at the top of the boundary layer, including cloud formation, evaporation, and air mixing.
Pascal Graf, Heini Wernli, Stephan Pfahl, and Harald Sodemann
Atmos. Chem. Phys., 19, 747–765, https://doi.org/10.5194/acp-19-747-2019, https://doi.org/10.5194/acp-19-747-2019, 2019
Short summary
Short summary
This article studies the interaction between falling rain and vapour with stable water isotopes. In particular, rain evaporation is relevant for several atmospheric processes, but remains difficult to quantify. A novel framework is introduced to facilitate the interpretation of stable water isotope observations in near-surface vapour and rain. The usefulness of this concept is demonstrated using observations at high time resolution from a cold front. Sensitivities are tested with a simple model.
Ghulam Jeelani, Rajendrakumar D. Deshpande, Michal Galkowski, and Kazimierz Rozanski
Atmos. Chem. Phys., 18, 8789–8805, https://doi.org/10.5194/acp-18-8789-2018, https://doi.org/10.5194/acp-18-8789-2018, 2018
Short summary
Short summary
Analysis of stable isotope composition of daily precipitation collected along the southern foothills of the Himalayas was used to gain deeper insight into the mechanisms controlling isotopic composition of precipitation. The results suggested that the decrease in isotopic composition in the course of ISM evolution stems from large-scale recycling of moisture-driven monsoonal circulation. High d-excess of rainfall is attributed to moisture of continental origin released into the atmosphere.
Harald Sodemann, Franziska Aemisegger, Stephan Pfahl, Mark Bitter, Ulrich Corsmeier, Thomas Feuerle, Pascal Graf, Rolf Hankers, Gregor Hsiao, Helmut Schulz, Andreas Wieser, and Heini Wernli
Atmos. Chem. Phys., 17, 6125–6151, https://doi.org/10.5194/acp-17-6125-2017, https://doi.org/10.5194/acp-17-6125-2017, 2017
Short summary
Short summary
We report here the first survey of stable water isotope composition over the Mediterranean sea made from aircraft. The stable isotope composition of the atmospheric water vapour changed in response to evaporation conditions at the sea surface, elevation, and airmass transport history. Our data set will be valuable for testing how water is transported in weather prediction and climate models and for understanding processes in the Mediterranean water cycle.
Annie L. Putman, Xiahong Feng, Leslie J. Sonder, and Eric S. Posmentier
Atmos. Chem. Phys., 17, 4627–4639, https://doi.org/10.5194/acp-17-4627-2017, https://doi.org/10.5194/acp-17-4627-2017, 2017
Short summary
Short summary
Water vapor source and transport are linked to the stable isotopes of precipitation of 70 storms at Barrow, AK, USA. Barrow's vapor came from the North Pacific in winter and the Arctic Ocean in summer. Half the isotopic variability was explained by the size of the temperature drop from the vapor source to Barrow, the evaporation conditions, and whether the vapor traveled over mountains. Because isotopes reflect the regional meteorology they may be early indicators of Arctic hydroclimatic change.
Jiaping Xu, Xuhui Lee, Wei Xiao, Chang Cao, Shoudong Liu, Xuefa Wen, Jingzheng Xu, Zhen Zhang, and Jiayu Zhao
Atmos. Chem. Phys., 17, 3385–3399, https://doi.org/10.5194/acp-17-3385-2017, https://doi.org/10.5194/acp-17-3385-2017, 2017
Short summary
Short summary
The Yangtze River Delta is one of the most industrialized regions in China. In situ optical isotopic measurement in Nanjing, a city located in the Delta, showed unusually high atmospheric δ13C signals in the summer (−7.44 ‰, July 2013 mean), which we attributed to the influence of cement production in the region. Flux partitioning calculations revealed that natural ecosystems in the region were a negligibly small source of atmospheric CO2.
Emanuel Christner, Martin Kohler, and Matthias Schneider
Atmos. Chem. Phys., 17, 1207–1225, https://doi.org/10.5194/acp-17-1207-2017, https://doi.org/10.5194/acp-17-1207-2017, 2017
Short summary
Short summary
Post-depositional fractionation of stable water isotopes due to fractioning surface evaporation introduces uncertainty to isotope applications such as the reconstruction of paleotemperatures, paleoaltimetry, and the investigation of ground water formation. In this paper we combine measurements of stable water isotopes in near-surface water vapor with a Lagrangian isotope model to investigate isotope fractionation during the evaporation of surface-layer snow in central Europe.
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Short summary
Climatic conditions in Concordia are very cold (−55 °C in average) and very dry, imposing difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20 ppmv). Here we present the results results of a first campaign of measurement of isotopic composition of water vapour in Concordia, the site where the 800 000 years long ice core was drilled.
Timothy J. Griffis, Jeffrey D. Wood, John M. Baker, Xuhui Lee, Ke Xiao, Zichong Chen, Lisa R. Welp, Natalie M. Schultz, Galen Gorski, Ming Chen, and John Nieber
Atmos. Chem. Phys., 16, 5139–5157, https://doi.org/10.5194/acp-16-5139-2016, https://doi.org/10.5194/acp-16-5139-2016, 2016
Short summary
Short summary
Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle. We present the first multi-annual isotope (oxygen and deuterium) water vapor observations from a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the atmosphere. The results show a relatively high degree of summertime water recycling within the region (~30 % mean and ~60 % maximum).
Yenny González, Matthias Schneider, Christoph Dyroff, Sergio Rodríguez, Emanuel Christner, Omaira Elena García, Emilio Cuevas, Juan Jose Bustos, Ramon Ramos, Carmen Guirado-Fuentes, Sabine Barthlott, Andreas Wiegele, and Eliezer Sepúlveda
Atmos. Chem. Phys., 16, 4251–4269, https://doi.org/10.5194/acp-16-4251-2016, https://doi.org/10.5194/acp-16-4251-2016, 2016
Short summary
Short summary
Measurements of water vapour isotopologues, dust, and a back trajectory model were used to identify moisture pathways in the subtropical North Atlantic. Dry air masses, from condensation at low temperatures, are transported from high altitudes and latitudes. The humid sources are related to the mixture, with lower and more humid air during transport. Rain re-evaporation was an occasional source of moisture. In summer, an important humidity source is the strong dry convection over the Sahara.
Sally Newman, Xiaomei Xu, Kevin R. Gurney, Ying Kuang Hsu, King Fai Li, Xun Jiang, Ralph Keeling, Sha Feng, Darragh O'Keefe, Risa Patarasuk, Kam Weng Wong, Preeti Rao, Marc L. Fischer, and Yuk L. Yung
Atmos. Chem. Phys., 16, 3843–3863, https://doi.org/10.5194/acp-16-3843-2016, https://doi.org/10.5194/acp-16-3843-2016, 2016
Short summary
Short summary
Combining 14C and 13C data from the Los Angeles, CA megacity with background data allows source attribution of CO2 emissions among biosphere, natural gas, and gasoline. The 8-year record of CO2 emissions from fossil fuel burning is consistent with "The Great Recession" of 2008–2010. The long-term trend and source attribution are consistent with government inventories. Seasonal patterns agree with the high-resolution Hestia-LA emission data product, when seasonal wind directions are considered.
Q. Chen, M. E. Popa, A. M. Batenburg, and T. Röckmann
Atmos. Chem. Phys., 15, 13003–13021, https://doi.org/10.5194/acp-15-13003-2015, https://doi.org/10.5194/acp-15-13003-2015, 2015
Short summary
Short summary
We investigated soil production and uptake of H2 and associated isotope effects. Uptake and emission of H2 occurred simultaneously at all sampling sites, with strongest emission where N2 fixing legume was present. The fractionation constant during soil uptake was about 0.945 and it did not show positive correlation with deposition velocity. The isotopic composition of H2 emitted from soil with legume was about -530‰, which is less deuterium-depleted than isotope equilibrium between H2O and H2.
W. Yu, L. Tian, Y. Ma, B. Xu, and D. Qu
Atmos. Chem. Phys., 15, 10251–10262, https://doi.org/10.5194/acp-15-10251-2015, https://doi.org/10.5194/acp-15-10251-2015, 2015
H. Delattre, C. Vallet-Coulomb, and C. Sonzogni
Atmos. Chem. Phys., 15, 10167–10181, https://doi.org/10.5194/acp-15-10167-2015, https://doi.org/10.5194/acp-15-10167-2015, 2015
Short summary
Short summary
Based on summer measurements of δ18O and δD in the atmospheric vapour of a Mediterranean coastal wetland exposed to high evaporation, this paper explores the main drivers of isotopic signal variability. After having classified the data according to the main regional air mass trajectories, average diurnal cycles are discussed with regards to the contribution of local evaporation to the ground level atmospheric vapour.
M. Zimnoch, P. Wach, L. Chmura, Z. Gorczyca, K. Rozanski, J. Godlowska, J. Mazur, K. Kozak, and A. Jeričević
Atmos. Chem. Phys., 14, 9567–9581, https://doi.org/10.5194/acp-14-9567-2014, https://doi.org/10.5194/acp-14-9567-2014, 2014
J.-L. Bonne, V. Masson-Delmotte, O. Cattani, M. Delmotte, C. Risi, H. Sodemann, and H. C. Steen-Larsen
Atmos. Chem. Phys., 14, 4419–4439, https://doi.org/10.5194/acp-14-4419-2014, https://doi.org/10.5194/acp-14-4419-2014, 2014
F. Aemisegger, S. Pfahl, H. Sodemann, I. Lehner, S. I. Seneviratne, and H. Wernli
Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, https://doi.org/10.5194/acp-14-4029-2014, 2014
R. Weller, I. Levin, D. Schmithüsen, M. Nachbar, J. Asseng, and D. Wagenbach
Atmos. Chem. Phys., 14, 3843–3853, https://doi.org/10.5194/acp-14-3843-2014, https://doi.org/10.5194/acp-14-3843-2014, 2014
Z. Kern, B. Kohán, and M. Leuenberger
Atmos. Chem. Phys., 14, 1897–1907, https://doi.org/10.5194/acp-14-1897-2014, https://doi.org/10.5194/acp-14-1897-2014, 2014
K. Kawamura, J. P. Severinghaus, M. R. Albert, Z. R. Courville, M. A. Fahnestock, T. Scambos, E. Shields, and C. A. Shuman
Atmos. Chem. Phys., 13, 11141–11155, https://doi.org/10.5194/acp-13-11141-2013, https://doi.org/10.5194/acp-13-11141-2013, 2013
H. C. Steen-Larsen, S. J. Johnsen, V. Masson-Delmotte, B. Stenni, C. Risi, H. Sodemann, D. Balslev-Clausen, T. Blunier, D. Dahl-Jensen, M. D. Ellehøj, S. Falourd, A. Grindsted, V. Gkinis, J. Jouzel, T. Popp, S. Sheldon, S. B. Simonsen, J. Sjolte, J. P. Steffensen, P. Sperlich, A. E. Sveinbjörnsdóttir, B. M. Vinther, and J. W. C. White
Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, https://doi.org/10.5194/acp-13-4815-2013, 2013
D. Noone, C. Risi, A. Bailey, M. Berkelhammer, D. P. Brown, N. Buenning, S. Gregory, J. Nusbaumer, D. Schneider, J. Sykes, B. Vanderwende, J. Wong, Y. Meillier, and D. Wolfe
Atmos. Chem. Phys., 13, 1607–1623, https://doi.org/10.5194/acp-13-1607-2013, https://doi.org/10.5194/acp-13-1607-2013, 2013
J. K. Spiegel, F. Aemisegger, M. Scholl, F. G. Wienhold, J. L. Collett Jr., T. Lee, D. van Pinxteren, S. Mertes, A. Tilgner, H. Herrmann, R. A. Werner, N. Buchmann, and W. Eugster
Atmos. Chem. Phys., 12, 9855–9863, https://doi.org/10.5194/acp-12-9855-2012, https://doi.org/10.5194/acp-12-9855-2012, 2012
Y. Igarashi, H. Fujiwara, and D. Jugder
Atmos. Chem. Phys., 11, 7069–7080, https://doi.org/10.5194/acp-11-7069-2011, https://doi.org/10.5194/acp-11-7069-2011, 2011
A. D. Griffiths, W. Zahorowski, A. Element, and S. Werczynski
Atmos. Chem. Phys., 10, 8969–8982, https://doi.org/10.5194/acp-10-8969-2010, https://doi.org/10.5194/acp-10-8969-2010, 2010
Cited articles
Araguas-Araguas, L., Danesi, P., Froehlich, K., and Rozanski, K.: Global monitoring of the isotopic composition of precipitation, J. Radioanal. Nucl. Chem., 205, 189–200, 1996.
Arends, B. G., Kos, G. P. A., Maser, R., Schell, D., Wobrock, W., Winkler, P., Ogren, J. A., Noone, K. J., Hallberg, A., Svenningsson, I. B., Wiedensohler, A., Hansson, H. C., Berner, A., Solly, I., and Kruisz, C.: Microphysics of clouds at Kleiner Feldberg, J. Atmos. Chem., 19, 59–85, https://doi.org/10.1007/BF00696583, 1994.
Cappa, C. D., Hendricks, M. B., DePaolo, D. J., and Cohen, R. C.: Isotopic fractionation of water during evaporation, J. Geophys. Res., 108, 4525, https://doi.org/10.1029/2003JD003597, 2003.
Coplen, T.: Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results, Rapid Commun. Mass Spectrom., 25, 2538–2560, https://doi.org/10.1002/rcm.5129, 2011.
Corbin, J. D., Thomsen, M. A., Dawson, T. E., and D'Antonio, C. M.: Summer water use by California coastal prairie grasses: fog, drought, and community composition, Oecologia, 145, 511–21, https://doi.org/10.1007/s00442-005-0152-y, 2005.
Craig, H.: Isotopic variations in meteoric waters, Science, 133, 1702, 1961.
Craig, H. and Gordon, L.: Deuterium and Oxygen-18 Variations in the Ocean and Marine Atmosphere, in: Stable Isotopes in Oceanic Studies and Paleotemperatures, edited by: Tongiorgi, E., 9–130, Consiglio Nazionale delle Richerche, Pisa, Italy, 1965.
Criss, R. E.: Principles of Stable Isotope Distribution, Oxford University Press, Oxford, 1999.
Cui, J., An, S., Wang, Z., Fang, C., Liu, Y., Yang, H., Xu, Z. and Liu, S. Using deuterium excess to determine the sources of high-altitude precipitation: Implications in hydrological relations between sub-alpine forests and alpine meadows, J. Hydrol., 373, 24–33, 2009.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Dansgaard, W., Johnsen, S., Clausen, H., Dahl-Jensen, D., Gundestrup, N., Hammer, C., Hvidberg, C., Steffensen, J., Sveinbjörnsdottir, A., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, 1993.
Dawson, T. E.: Fog in the California redwood forest: ecosystem inputs and use by plants, Oecologia, 117, 476–485, https://doi.org/10.1007/s004420050683, 1998.
Demoz, B., Collett Jr., J. L., and Daube Jr., B.: On the Caltech active strand cloudwater collectors, Atmos. Res., 41, 47–62, https://doi.org/10.1016/0169-8095(95)00044-5, 1996.
Draxler, R.: Evaluation of an ensemble dispersion calculation, J. Appl. Meteor., 42, 308–317, 2003.
Draxler, R. and Hess, G.: Description of the HYSPLIT4 modeling system. NOAA Tech. Memo. ERL ARL-224, Tech. Rep. August 2002, Air Resources Laboratory Silver Spring, Maryland, USA, 1997.
Draxler, R. and Hess, G.: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition, Aust. Meteor. Mag., 47, 295–308, 1998.
Facy, L., Merlivat, L., Nief, G., and Roth, R.: The study of formation of hailstones by isotopic analysis, J. Geophys. Res., 68, 3841–3848, 1963.
Farquhar, G. D., Cernusak, L. A., and Barnes, B.: Heavy water fractionation during transpiration., Plant Physiol., 143, 11–18, https://doi.org/10.1104/pp.106.093278, 2007.
Feild, T. S. and Dawson, T. E.: Water sources used by Didymopanax pittieri at different life stages in a tropical cloud forest, Ecology, 79, 1448, https://doi.org/10.2307/176756, 1998.
Fischer, D. T. and Still, C. J.: Evaluating patterns of fog water deposition and isotopic composition on the California Channel Islands, Water Resour. Res., 43, W04420, https://doi.org/10.1029/2006WR005124, 2007.
Froehlich, K., Kralik, M., Papesch, W., Scheifinger, H., and Stichler, W.: Deuterium excess in precipitation of Alpine regions –- moisture recycling, Isot. Environ. Health Stud., 44, 61–70, 2008.
Gat, J. R. and Matsui, E.:{Atmospheric water balance in the Amazon Basin: An isotopic evapotranspiration model}, J. Geophys. Res., 96, 13179–13188, 1991.
Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev. Earth Planet. Sci., 24, 225–262, https://doi.org/10.1146/annurev.earth.24.1.225, 1996.
Gat, J. R.: Atmospheric water balance - the isotopic perspective, Hydrol. Process., 14, 1357–1369, https://doi.org/10.1002/1099-1085(20000615)14:8<1357::AID-HYP986>3.0.CO;2-7, 2000.
Gat, J. R., Klein, B., Kushnir, Y., Roether, W., Wernli, H., Yam, R., and Shemesh, A.: Isotope composition of air moisture over the Mediterranean Sea: an index of the air-sea interaction pattern, Tellus B, 55, 953–965, https://doi.org/10.1034/j.1600-0889.2003.00081.x, 2003.
Gedzelman, S.: Deuterium in water vapor above the atmospheric boundary layer, Tellus, 40B, 134–147, 1988.
Gehre, M., Geilmann, H., Richter, J., Werner, R., and Brand, W.: Continuous flow 2H/$^1$H and 18O/16 O analysis of water samples with dual inlet precision, Rapid Commun. Mass Spectrom., 18, 2650–2660, 2004.
Gerber, H.: Direct measurement of suspended particulate volume concentration and far-infrared extinction coefficient with a laser-diffraction instrument, Appl. Opt., 30, 4824–4831, 1991.
Heinold, B., Tilgner, A., Jaeschke, W., Haunold, W., Knoth, O., Wolke, R., and Herrmann, H.: Meteorological characterisation of the FEBUKO hill cap cloud experiments, Part II: Tracer experiments and flow characterisation with nested non-hydrostatic atmospheric models, Atmos. Environ., 39, 4195–4207, https://doi.org/10.1016/j.atmosenv.2005.02.036, 2005.
Herrmann, H., Wolke, R., Müller, K., Brüggemann, E., Gnauk, T., Barzaghi, P., Mertes, S., Lehmann, K., Massling, A., and Birmili, W.: FEBUKO and MODMEP: Field measurements and modelling of aerosol and cloud multiphase processes, Atmos. Environ., 39, 4169–4183, https://doi.org/10.1016/j.atmosenv.2005.02.004, 2005.
Horita, J. and Wesolowski, D.: Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature, Geochim. Cosmochim. Acta, 58, 3425–3437, https://doi.org/10.1016/0016-7037(94)90096-5, 1994.
Hurni, L., editor: Atlas of Switzerland, Version 3, Swisstopo, Wabern-Bern, www.atlasofswitzerland.ch, 2010.
IAEA: Reference Sheet for VSMOW2 and SLAP2 international measurement standards. Issued 2009-02-13, International Atomic Energy Agency, Vienna, 5 pp., http://curem.iaea.org/catalogue/SI/pdf/VSMOW2_SLAP2.pdf, 2009.
Ingraham, N. L. and Mark, A. F.: Isotopic assessment of the hydrologic importance of fog deposition on tall snow tussock grass on southern New Zealand uplands, Austral Ecology, 25, 402–408, https://doi.org/10.1046/j.1442-9993.2000.01052.x, 2000.
Ingraham, N. L. and Matthews, R. A.: Fog drip as a source of groundwater recharge in northern Kenya, Water Resour. Res., 24, 1406, https://doi.org/10.1029/WR024i008p01406, 1988.
Jacob, H. and Sonntag, C.: A 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany, Tellus B, 43, 291–300, 1991.
Jouzel, J.: Teneur isotopique de la vapeur d'eau atmosphérique. Mise au point d'un système embarquable, J. Rech. Atmos., 13, 261–269, 1979.
Jouzel, J.: Isotopes in Clouds Physics: Multiphase and Multistage Condensation Processes, in: Handbook of Environmental Isotope Geochemistry, Volume 2, The Terrestrial Environment, B, edited by: Fritz, P. and Fontes, J., chap. 2, pp. 61–112, Elsevier Science Publischer B.V, Amsterdam, The Netherlands, 1986.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and millennial Antarctic climate variability over the past 800,000 years, Science, 317, 793–6, https://doi.org/10.1126/science.1141038, 2007.
Knight, C. A., Knight, N., and Kime, K.: Deuterium content of storm inflow and hailstone growth layers, J. Atmos. Sci., 38, 2485–2499, 1981.
Lai, C.-T., Ehleringer, J. R., Bond, B. J., and Paw U, K. T.: Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the δ18O of water vapour in Pacific Northwest coniferous forests, Plant Cell Environ., 29, 77–94, 2006.
Lee, X., Sargent, S., Smith, R., and Tanner, B.: In situ measurement of the water vapor$ ^{18}$O/ 16O isotope ratio for atmospheric and ecological applications, J. Atmos. Oceanic Technol., 22, 555–565, https://doi.org/10.1175/JTECH1719.1, 2005.
Lee, X., Smith, R., and Williams, J.: Water vapour 18O/16O isotope ratio in surface air in New England, USA, Tellus B, 58, 293–304, https://doi.org/10.1111/j.1600-0889.2006.00191.x, 2006.
Majoube, M.: Fractionnement en oxygène-18 et en deuterium entre l'eau et sa vapeur, J. Chim. Phys., 68, 1423–1436, 1971.
Merlivat, L. and Jouzel, J.: Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation, J. Geophys. Res., 84, 5029–5033, 1979.
Michna, P., Schenk, J., Wanner, H., and Eugster, W.: MiniCASCC – A battery driven fog collector for ecological applications, in: Proceedings of the Fourth International Conference on Fog, Fog Collection and Dew, La Serena, Chile, 22–27 July 200, July, 169–172, 2007.
Petit, J., Jouzel, J., Raynaud, D., Barkov, N., Barnola, J., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V., Legrand, M., Lipenkov, V., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999.
Pfahl, S. and Wernli, H.: Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean, J. Geophys. Res., 113, D20104, https://doi.org/10.1029/2008JD009839, 2008.
Pierrehumbert, R. and Wyman, B.: Upstream Effects of Mesoscale Mountains, J. Atmos. Sci., 42, 977–1003, 1985.
Rank, D. and Papesch, W.: Isotopic composition of precipitation in the Mediterranean basin in relation to air circulation patterns and climate, in: IAEA-Tecdoc-1453, 19–35, Isotope Hydrology Section International Atomic Energy Agency, Vienna, Austria, 2005.
Risi, C.: Les isotopes stables de l'eau: applications à l'étude du cycle de l 'eau et des variations du climat, Phd, Université Paris, 2009.
Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R.: Isotopic Patterns in Modern Global Precipitation, in: Climate Change in Continental Isotope Records, edited by: Swart, P. K. and Lohman, K. C., vol. 78 of Geophysical Mongraph, 1–36, American Geophysical Union, 1993.
Scherhag, R.: Neue Methoden der Wetteranalyse und Wetterprognose, Springer, Berlin, 1948.
Schmid, S., Burkard, R., Frumau, K., Tobon, C., Bruijnzeel, L., Siegwolf, R., and Eugster, W.: Using eddy covariance and stable isotope mass balance techniques to estimate fog water contributions to a Costa Rican cloud forest during the dry season, Hydrol. Process., 25, 429–437, https://doi.org/10.1002/hyp.7739, 2010{a}.
Schmid, S., Burkard, R., Frumau, K., Tobon, C., Bruijnzeel, L., Siegwolf, R., and Eugster, W.: The Wet-canopy Water Balance of a Costa Rican Cloud Forest During the dry Season, in: Tropical Montane Cloud Forests, edited by: Bruijnzeel, L., Scatena, F., and Hamilton, L., p. 741, Cambridge University Press, Cambridge, 2010{b}.
Schoch-Fischer, H., Rozanski, K., Jacob, H., Sonntag, C., Jouzel, J., Östlun, G., and Geyh, M.: Hydrometeorological factors controlling the time variation of D, 18O and 3H in atmospheric water vapour and precipitation in the northern westwind belt, in: Isotope Hydrology, edited by: Street-Perrott, A., 3–30, IAEA Publications (SM-270/19), 1983.
Scholl, M., Eugster, W., and Burkard, R.: Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests, Hydrol. Process., 25, 353–366, https://doi.org/10.1002/hyp.7762, 2011.
Scholl, M. A., Giambelluca, T. W., Gingerich, S. B., Nullet, M. A., and Loope, L. L.: Cloud water in windward and leeward mountain forests: The stable isotope signature of orographic cloud water, Water Resour. Res., 43, 1–13, https://doi.org/10.1029/2007WR006011, 2007.
Sodemann, H., Schwierz, C., and Wernli, H.: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence, J. Geophys. Res., 113, D03 107, https://doi.org/10.1029/2007JD008503, 2008.
Spiegel, J. K., Aemisegger, F., Scholl, M., Wienhold, F. G., Collett Jr., J. L., Lee, T., van Pinxteren, D., Tilgner, A., Mertes, S., Herrmann, H., Werner, R. A., Buchmann, N., and Eugster, W.: Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent, Atmos. Chem. Phys., 12, 9855–9863, https://doi.org/10.5194/acp-12-9855-2012, 2012.
Steppeler, J., Doms, G., Schättler, U., Bitzer, H. W., Gassmann, A., Damrath, U., and Gregoric, G.: Meso-gamma scale forecasts using the nonhydrostatic model LM, Meteor. Atmos. Phys., 82, 75–96, https://doi.org/10.1007/s00703-001-0592-9, 2003.
Tilgner, A., Bräuer, P., Schöne, L., Birmili, W., Mertes, S., van Pinxteren, D., and Herrmann, H.: Critical assessment of meteorological conditions and flow connectivity during HCCT-2010, in preparation, 2012.
van Pinxteren, D., Brüggemann, E., Gnauk, T., Müller, K., Thiel, C., and Herrmann, H.: A GIS based approach to back trajectory analysis for the source apportionment of aerosol constituents and its first application, J. Atmos. Chem., 67, 1–28, https://doi.org/10.1007/s10874-011-9199-9, 2011.
Vimeux, F., Masson, V., Delaygue, G., Jouzel, J., Petit, J., and Stievenard, M.: A 420,000 year deuterium excess record from East Antarctica: information on past changes in the origin of precipitation at Vostok, J. Geophys. Res., 106, 31863, https://doi.org/10.1029/2001JD900076, 2001.
Welp, L. R., Lee, X., Kim, K., Griffis, T. J., Billmark, K. A., and Baker, J. M.: δ18O of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy, Plant Cell Environ., 31, 1214–1228, https://doi.org/10.1111/j.1365-3040.2008.01826.x, 2008.
Wen, X., Sun, X., Zhang, S., Yu, G., Sargent, S., and Lee, X.: Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere, J. Hydrol., 349, 489–500, https://doi.org/10.1016/j.jhydrol.2007.11.021, 2008.
Wen, X.-F., Zhang, S.-C., Sun, X.-M., Yu, G.-R., and Lee, X.: Water vapor and precipitation isotope ratios in Beijing, China, J. Geophys. Res., 115, D01103, https://doi.org/10.1029/2009JD012408, 2010.
Wernli, H. and Davies, H. C.: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications, Quart. J. Roy. Meteor. Soc., 123, 467–489, https://doi.org/10.1002/qj.49712353811, 1997.
White, J. and Gedzelman, S.: The isotopic composition of atmospheric water vapor and the concurrent meteorological conditions, J. Geophys. Res., 89, 4937–4939, 1984.
Yakir, D. and Sternberg, L. d. S. L.: The use of stable isotopes to study ecosystem gas exchange, Oecologia, 123, 297–311, https://doi.org/10.1007/s004420051016, 2000.
Altmetrics
Final-revised paper
Preprint