Articles | Volume 11, issue 15
https://doi.org/10.5194/acp-11-7817-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-11-7817-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Radon activity in the lower troposphere and its impact on ionization rate: a global estimate using different radon emissions
K. Zhang
Max Planck Institute for Meteorology, Hamburg, Germany
now at: Pacific Northwest National Laboratory, Richland, Washington, USA
J. Feichter
Max Planck Institute for Meteorology, Hamburg, Germany
J. Kazil
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado, USA
NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado, USA
H. Wan
Max Planck Institute for Meteorology, Hamburg, Germany
W. Zhuo
Institute of Radiation Medicine, Fudan University, Shanghai, China
A. D. Griffiths
Australian Nuclear Science and Technology Organisation, Lucas Heights NSW 2234, Australia
H. Sartorius
Federal Office for Radiation Protection (BfS), Salzgitter, Germany
W. Zahorowski
Australian Nuclear Science and Technology Organisation, Lucas Heights NSW 2234, Australia
M. Ramonet
Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA, UVSQ, CNRS, Gif-sur-Yvette, France
M. Schmidt
Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA, UVSQ, CNRS, Gif-sur-Yvette, France
C. Yver
Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA, UVSQ, CNRS, Gif-sur-Yvette, France
R. E. M. Neubert
Centre for Isotope Research, University of Groningen, Groningen, The Netherlands
E.-G. Brunke
South African Weather Service, Stellenbosch, South Africa
Related subject area
Subject: Isotopes | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Estimating emissions of methane consistent with atmospheric measurements of methane and δ13C of methane
Disentangling the impact of air–sea interaction and boundary layer cloud formation on stable water isotope signals in the warm sector of a Southern Ocean cyclone
Stable water isotope signals in tropical ice clouds in the West African monsoon simulated with a regional convection-permitting model
Disentangling different moisture transport pathways over the eastern subtropical North Atlantic using multi-platform isotope observations and high-resolution numerical modelling
Firewood residential heating – local versus remote influence on the aerosol burden
Controls on the water vapor isotopic composition near the surface of tropical oceans and role of boundary layer mixing processes
Kinetic mass-transfer calculation of water isotope fractionation due to cloud microphysics in a regional meteorological model
The influence of 14CO2 releases from regional nuclear facilities at the Heidelberg 14CO2 sampling site (1986–2014)
Lagrangian process attribution of isotopic variations in near-surface water vapour in a 30-year regional climate simulation over Europe
How does sea ice influence δ18O of Arctic precipitation?
Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations
To what extent could water isotopic measurements help us understand model biases in the water cycle over Western Siberia
Simulating the integrated summertime Δ14CO2 signature from anthropogenic emissions over Western Europe
Variations of oxygen-18 in West Siberian precipitation during the last 50 years
Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition
The isotopic composition of precipitation from a winter storm – a case study with the limited-area model COSMOiso
Theory of isotopic fractionation on facetted ice crystals
Sourish Basu, Xin Lan, Edward Dlugokencky, Sylvia Michel, Stefan Schwietzke, John B. Miller, Lori Bruhwiler, Youmi Oh, Pieter P. Tans, Francesco Apadula, Luciana V. Gatti, Armin Jordan, Jaroslaw Necki, Motoki Sasakawa, Shinji Morimoto, Tatiana Di Iorio, Haeyoung Lee, Jgor Arduini, and Giovanni Manca
Atmos. Chem. Phys., 22, 15351–15377, https://doi.org/10.5194/acp-22-15351-2022, https://doi.org/10.5194/acp-22-15351-2022, 2022
Short summary
Short summary
Atmospheric methane (CH4) has been growing steadily since 2007 for reasons that are not well understood. Here we determine sources of methane using a technique informed by atmospheric measurements of CH4 and its isotopologue 13CH4. Measurements of 13CH4 provide for better separation of microbial, fossil, and fire sources of methane than CH4 measurements alone. Compared to previous assessments such as the Global Carbon Project, we find a larger microbial contribution to the post-2007 increase.
Iris Thurnherr and Franziska Aemisegger
Atmos. Chem. Phys., 22, 10353–10373, https://doi.org/10.5194/acp-22-10353-2022, https://doi.org/10.5194/acp-22-10353-2022, 2022
Short summary
Short summary
Stable water isotopes in marine boundary layer vapour are strongly influenced by the strength of air–sea fluxes. Here, we investigate a distinct vapour isotope signal observed in the warm sector of Southern Ocean cyclones. Single-process air parcel models are used together with high-resolution isotope-enabled simulations with the weather prediction model COSMOiso to improve our understanding of the importance of air–sea fluxes for the moisture cycling in the context of extratropical cyclones.
Andries Jan de Vries, Franziska Aemisegger, Stephan Pfahl, and Heini Wernli
Atmos. Chem. Phys., 22, 8863–8895, https://doi.org/10.5194/acp-22-8863-2022, https://doi.org/10.5194/acp-22-8863-2022, 2022
Short summary
Short summary
The Earth's water cycle contains the common H2O molecule but also the less abundant, heavier HDO. We use their different physical properties to study tropical ice clouds in model simulations of the West African monsoon. Isotope signals reveal different processes through which ice clouds form and decay in deep-convective and widespread cirrus. Previously observed variations in upper-tropospheric vapour isotopes are explained by microphysical processes in convective updraughts and downdraughts.
Fabienne Dahinden, Franziska Aemisegger, Heini Wernli, Matthias Schneider, Christopher J. Diekmann, Benjamin Ertl, Peter Knippertz, Martin Werner, and Stephan Pfahl
Atmos. Chem. Phys., 21, 16319–16347, https://doi.org/10.5194/acp-21-16319-2021, https://doi.org/10.5194/acp-21-16319-2021, 2021
Short summary
Short summary
We use high-resolution numerical isotope modelling and Lagrangian backward trajectories to identify moisture transport pathways and governing physical and dynamical processes that affect the free-tropospheric humidity and isotopic variability over the eastern subtropical North Atlantic. Furthermore, we conduct a thorough isotope modelling validation with aircraft and remote-sensing observations of water vapour isotopes.
Clara Betancourt, Christoph Küppers, Tammarat Piansawan, Uta Sager, Andrea B. Hoyer, Heinz Kaminski, Gerhard Rapp, Astrid C. John, Miriam Küpper, Ulrich Quass, Thomas Kuhlbusch, Jochen Rudolph, Astrid Kiendler-Scharr, and Iulia Gensch
Atmos. Chem. Phys., 21, 5953–5964, https://doi.org/10.5194/acp-21-5953-2021, https://doi.org/10.5194/acp-21-5953-2021, 2021
Short summary
Short summary
For the first time, we included stable isotopes in the Lagrangian particle dispersion model FLEXPART to investigate firewood home heating aerosol. This is an innovative source apportionment methodology since comparison of stable isotope ratio model predictions with observations delivers quantitative understanding of atmospheric processes. The main outcome of this study is that the home heating aerosol in residential areas was not of remote origin.
Camille Risi, Joseph Galewsky, Gilles Reverdin, and Florent Brient
Atmos. Chem. Phys., 19, 12235–12260, https://doi.org/10.5194/acp-19-12235-2019, https://doi.org/10.5194/acp-19-12235-2019, 2019
Short summary
Short summary
Water molecules can be light (one oxygen atom and two hydrogen atoms) or heavy (one hydrogen atom is replaced by a deuterium atom). These different molecules are called water isotopes. The isotopic composition of water vapor can potentially provide information about physical processes along the water cycle, but the factors controlling it are complex. As a first step, we propose an equation to predict the water vapor isotopic composition near the surface of tropical oceans.
I-Chun Tsai, Wan-Yu Chen, Jen-Ping Chen, and Mao-Chang Liang
Atmos. Chem. Phys., 19, 1753–1766, https://doi.org/10.5194/acp-19-1753-2019, https://doi.org/10.5194/acp-19-1753-2019, 2019
Short summary
Short summary
In conventional models, isotope exchange between liquid and gas phases is usually assumed to be in equilibrium, and the highly kinetic phase transformation processes inferred in clouds are yet to be fully investigated. We show that different factors controlling isotopic composition, including water vapor sources, atmospheric transport, phase transition pathways of water in clouds, and kinetic-versus-equilibrium mass transfer, contributed significantly to the variations in isotope composition.
Matthias Kuderer, Samuel Hammer, and Ingeborg Levin
Atmos. Chem. Phys., 18, 7951–7959, https://doi.org/10.5194/acp-18-7951-2018, https://doi.org/10.5194/acp-18-7951-2018, 2018
Short summary
Short summary
Atmospheric 14CO2 measurements allow for estimating the regional fossil fuel CO2 component. However, results potentially need to be corrected for 14CO2 contamination from near-by nuclear facilities (NF). Our dispersion estimates of corresponding contaminations for Heidelberg, based on differently resolved wind fields, show differences of up to a factor of 2. Estimates from highly resolved models coupled with temporally resolved 14CO2 emissions from NFs are required for more accurate results.
Marina Dütsch, Stephan Pfahl, Miro Meyer, and Heini Wernli
Atmos. Chem. Phys., 18, 1653–1669, https://doi.org/10.5194/acp-18-1653-2018, https://doi.org/10.5194/acp-18-1653-2018, 2018
Short summary
Short summary
Atmospheric processes are imprinted in the concentrations of stable water isotopes. Therefore, isotopes can be used to gain insight into these processes and improve our understanding of the water cycle. In this study, we present a new method that quantitatively shows which atmospheric processes influence isotope concentrations in near-surface water vapour over Europe. We found that the most important processes are evaporation from the ocean, evapotranspiration from land, and turbulent mixing.
Anne-Katrine Faber, Bo Møllesøe Vinther, Jesper Sjolte, and Rasmus Anker Pedersen
Atmos. Chem. Phys., 17, 5865–5876, https://doi.org/10.5194/acp-17-5865-2017, https://doi.org/10.5194/acp-17-5865-2017, 2017
Short summary
Short summary
The recent decades loss of Arctic sea ice provide an interesting opportunity to study the impact of sea ice changes on the isotopic composition of Arctic precipitation. Using a climate model that can simulate water isotopes, we find that reduced sea ice extent yields more enriched isotope values while increased sea ice extent yields more
depleted isotope values. Results also show that the spatial distribution of the sea ice extent are important.
Sourish Basu, John Bharat Miller, and Scott Lehman
Atmos. Chem. Phys., 16, 5665–5683, https://doi.org/10.5194/acp-16-5665-2016, https://doi.org/10.5194/acp-16-5665-2016, 2016
Short summary
Short summary
We present a dual tracer atmospheric inversion technique to separately estimate biospheric and fossil fuel CO2 fluxes from atmospheric measurements of CO2 and 14CO2. In addition to estimating monthly regional fossil fuel fluxes of CO2, this system can also reduce biases in biospheric fluxes that arise in a traditional CO2 inversion from prescribing a fixed but inaccurate fossil fuel flux.
V. Gryazin, C. Risi, J. Jouzel, N. Kurita, J. Worden, C. Frankenberg, V. Bastrikov, K. Gribanov, and O. Stukova
Atmos. Chem. Phys., 14, 9807–9830, https://doi.org/10.5194/acp-14-9807-2014, https://doi.org/10.5194/acp-14-9807-2014, 2014
D. Bozhinova, M. K. van der Molen, I. R. van der Velde, M. C. Krol, S. van der Laan, H. A. J. Meijer, and W. Peters
Atmos. Chem. Phys., 14, 7273–7290, https://doi.org/10.5194/acp-14-7273-2014, https://doi.org/10.5194/acp-14-7273-2014, 2014
M. Butzin, M. Werner, V. Masson-Delmotte, C. Risi, C. Frankenberg, K. Gribanov, J. Jouzel, and V. I. Zakharov
Atmos. Chem. Phys., 14, 5853–5869, https://doi.org/10.5194/acp-14-5853-2014, https://doi.org/10.5194/acp-14-5853-2014, 2014
A. Stohl, P. Seibert, G. Wotawa, D. Arnold, J. F. Burkhart, S. Eckhardt, C. Tapia, A. Vargas, and T. J. Yasunari
Atmos. Chem. Phys., 12, 2313–2343, https://doi.org/10.5194/acp-12-2313-2012, https://doi.org/10.5194/acp-12-2313-2012, 2012
S. Pfahl, H. Wernli, and K. Yoshimura
Atmos. Chem. Phys., 12, 1629–1648, https://doi.org/10.5194/acp-12-1629-2012, https://doi.org/10.5194/acp-12-1629-2012, 2012
J. Nelson
Atmos. Chem. Phys., 11, 11351–11360, https://doi.org/10.5194/acp-11-11351-2011, https://doi.org/10.5194/acp-11-11351-2011, 2011
Cited articles
Anspaugh, L., Bennett, B., Bouville, A., Burkart, W., Cox, R., Croft, J., Hall, P., Leenhouts, H., Muirhead, C., Ron, E., Savkin, M., Shrimpton, P., Stather, J., Thacker, J., and Wrixon, A.: Exposures from natural radiation sources, ANNEX B of Sources and effects of ionizing radiation, UNSCEAR 2000 Report to the General Assembly, Tech. Rep. E.00.IX.3, United Nations Scientific Committee on the Effects of Atomic Radiation, New York, USA, 2000.
Bakwin, P. S., Zhao, C., Ussler, W., Tans, P. P., and Quesnell, E.: Measurements of carbon dioxide on a very tall tower, Tellus B, 47, 535–549, 1995.
Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., and Turekian, K. K.: Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of Pb., J. Geophys. Res., 98, 20573–20586, 1993.
Brinkop, S. and Roeckner, E.: Sensitivity of a general circulationmodel to parameterizations of cloud-turbulence interactions inthe atmospheric boundary layer, Tellus A, 47, 197–220, 1995.
Brunke, E. G., Labuschagne, C., Parker, B., Scheel, H. E., and Whittlestone, S.: Baseline air mass selection at Cape Point, South Africa: application of 222Rn and other filter criteria to CO2, Atmos. Environ., 38, 5693–5702, 2004.
Chevillard, A., Ciais, P., Karstens, U., Heimann, M., and Schmidt, M.: Transport of 222Rn using the regional model REMO: a detailed comparison with measurements over Europe, Tellus B, 54, 850–871, 2002.
Clement, C. F. and Harrison, R. G.: The charging of radioactive aerosols, J. Aerosol Sci., 23, 481–504, 1992.
Conen, F. and Robertson, L. B.: Latitudinal distribution of radon-222 flux from continents, Tellus B, 54, 127–133, 2002.
Dentener, F., Feichter, J., and Jeuken, A.: Simulation of 222{R}adon using on-line and off-line global models, Tellus B, 51, 573–602, 1999.
Downey, A., Jasper, J. D., Gras, J. J., and Whittlestone, S.: Lower tropospheric transport over the Southern Ocean, J. Atmos. Chem., 11, 43–68, 1990.
Dubal, M., Wood, N., and Staniforth, A.: Analysis of parallel versus sequential splittings for time-stepping physical parameterizations, Mon. Weather Rev., 132, 121–132, 2004.
Emsley, J.: Nature's building blocks: an A–Z guide to the elements, Oxford University Press Inc., New York, USA, 354–355, 2001.
Gagné, S., Nieminen, T., Kurtén, T., Manninen, H. E., Petäjä, T., Laakso, L., Kerminen, V.-M., Boy, M., Kulmala, M.: Factors influencing the contribution of ion-induced nucleation in a boreal forest, Finland, Atmos. Chem. Phys., 10, 3743–3757, https://doi.org/10.5194/acp-10-3743-2010, 2010.
Gold, S., Barkhau, H. W., Shleien, B., and Kahn, B.: Measurement of naturally occurring radionuclides in air, University of Chicago Press, Chicago, United States, 1964.
Goto, M., Moriizumi, J., Yamazawa, H., Iida, T., and Zhuo, W.: Estimation of global radon exhalation rate distribution, AIP Conf. Proc., 1034, 169–172, 2008.
Griffiths, A. D., Zahorowski, W., Element, A., and Werczynski, S.: A map of radon flux at the Australian land surface, Atmos. Chem. Phys., 10, 8969–8982, https://doi.org/10.5194/acp-10-8969-2010, 2010.
Guelle, W., Balkanski, Y. J., Schulz, M., Dulac, F., and Monfray, P.: Wet deposition in a global size-dependent aerosol transport model 1. Comparison of a 1 year 210Pb simulation with ground measurements, J. Geophys. Res., 103(D10), 11429–11445, 1998.
Harrison, R. G. and Carslaw, K. S.: Ion-aerosol-cloud processes in the lower atmosphere, Rev. Geophys., 41, 1012, https://doi.org/10.1029/2002RG000114, 2003.
Hatakka, J., Aalto, T., Aaltonen, V., and Aurela, M.: Overview of the atmospheric research activities and results at Pallas GAW station, Boreal Environ. Res., 8, 365–383, 2003.
Hauglustaine, D. A., Hourdin, F., Jourdain, L., Filiberti, M. A., Walters, S., Lamarque, J. F., and Holland, E. A.: Interactive chemistry in the laboratoire de meteorologie dynamique general circulation model, J. Geophys. Res., 109, D04314, https://doi.org/10.1029/2003JD003957, 2004.
Heimann, M., Monfray, P., and Polian, G.: Modeling the long-range transport of 222{R}n to subantarctic and arctic areas, Tellus B, 42, 83–99, 1990.
Hirao, S., Nono, Y., Yamazawa, H., Moriizumi, J., Iida, T., and Yoshioka, K.: Development and verification of long-range atmospheric transport model of radon-222 and lead-210 including scavenging process, in: The Natural Radiation Environment, edited by: Paschoa, A. S. and Steinh{ä}usler, F., vol. 1034, American Institute of Physics, Buzios, Brazil, 407–410, 2008.
Hosler, C. R.: Urban-rural climatology of atmospheric radon concentration, J. Geophys. Res., 73, 1155–1166, 1968.
Hutter, A. R., Larsen, R. J., Maring, H., and Merrill, J. T.: 222Rn at Bermuda and Mauna Loa: local and distant sources, J. Radioanal. Nucl. Ch., 193, 309–318, 1995.
Jacob, D. J. and Prather, M. J.: Radon-222 as a test of convective transport in a general circulation model, Tellus B, 42, 118–134, 1990.
Jacob, D. J., Prather, M. J., Rasch, P. J., Shia, R.-L., Balkanski, Y. J., Beagley, S. R., Bergmann, D. J., Blackshear, W. T., Brown, M., Chiba, M., Chipperfield, M. P., Grandpré, J., Dignon, J. E., Feichter, J., Genthon, C., Grose, W. L., Kasibhatla, P. S., Köhler, I., Kritz, M. A., Law, K., Penner, J. E., Ramonet, M., Reeves, C. E., Rotman, D. A., Stockwell, D. Z., Van Velthoven, P., Verver, G., Wild, O., Yang, H., and Zimmermann, P.: Evaluation and intercomparison of global atmospheric transport models using 222{R}n and other short-lived tracers, J. Geophys. Res., 102, 5953–5970, 1997.
Jesse, W. P.: Precision measurements of W for polonium alpha particles in various gases, Radiat. Res., 33, 229–237, 1968.
Jeuken, A., Siegmund, P., Heijboer, L., Feichter, J., and Bengtsson, L.: On the potential of assimilating meteorological analyses in a global climate model for the purposes of model validation, J. Geophys. Res., 101, 16939–16950, 1996.
Jin, Y., Iida, T., Wang, Z., Ikebe, Y., and Abe, S.: A subnationwide survey of outdoor and indoor 222{R}n concentrations in China by passive method. Radon and thoron in the human environment, in: Radon and Thorn in the Human Environment, in: Proceedings of the 7th Tohwa University International Symposium, edited by: Katase, A. and Shimo, M., World Scientific Publishing Co. Pre. Ltd., Singapore, 276–281, 1998.
Josse, B., Simon, P., and Peuch, V. H.: Radon global simulations with the multiscale chemistry and transport model MOCAGE., Tellus B, 56, 339–356, 2004.
Kazil, J., Lovejoy, E. R., Barth, M. C., and O'Brien, K.: Aerosol nucleation over oceans and the role of galactic cosmic rays, Atmos. Chem. Phys., 6, 4905–4924, https://doi.org/10.5194/acp-6-4905-2006, 2006.
Kazil, J., Stier, P., Zhang, K., Quaas, J., Kinne, S., O'Donnell, D., Rast, S., Esch, M., Ferrachat, S., Lohmann, U., and Feichter, J.: Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 10, 10733–10752, https://doi.org/10.5194/acp-10-10733-2010, 2010.
Koch, D., Schmidt, G. A., and Field, C. V.: Sulfur, sea salt and radionuclide aerosols in GISS ModelE, J. Geophys. Res., 111, D06206, https://doi.org/10.1029/2004JD005550, 2006.
Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Aerosol Sci., 35, 143–176, 2004.
Laakso, L., Petäjä, T., Lehtinen, K. E. J., Kulmala, M., Paatero, J., Hörrak, U., Tammet, H., and Joutsensaari, J.: Ion production rate in a boreal forest based on ion, particle and radiation measurements, Atmos. Chem. Phys., 4, 1933–1943, https://doi.org/10.5194/acp-4-1933-2004, 2004.
Laaksonen, A., Kulmala, M., O'Dowd, C. D., Joutsensaari, J., Vaattovaara, P., Mikkonen, S., Lehtinen, K. E. J., Sogacheva, L., Dal Maso, M., Aalto, P., Petaja, T., Sogachev, A., Yoon, Y. J., Lihavainen, H., Nilsson, D., Facchini, M. C., Cavalli, F., Fuzzi, S., Hoffmann, T., Arnold, F., Hanke, M., Sellegri, K., Umann, B., Junkermann, W., Coe, H., Allan, J. D., Alfarra, M. R., Worsnop, D. R., Riekkola, M.-L., Hyotylainen, T., and Viisanen, Y.: The role of VOC oxidation products in continental new particle formation, Atmos. Chem. Phys., 8, 2657–2665, https://doi.org/10.5194/acp-8-2657-2008, 2008.
van der Laan, S., Neubert, R. E. M., and Meijer, H. A. J.: Methane and nitrous oxide emissions in The Netherlands: ambient measurements support the national inventories, Atmos. Chem. Phys., 9, 9369–9379, https://doi.org/10.5194/acp-9-9369-2009, 2009.
Lambert, G., Polian, G., Sanak, J., Ardouin, B., Buisson, A., Jegou, A., and Le Roulley, J. C.: Cycle du radon et de ses descendants: application à l'étude des échanges troposphère-stratosphère, Ann. Geophys., 38, 497–531, 1982.
Lee, H. N. and Feichter, J.: An intercomparison of wet precipitation scavenging schemes and the emission rates of 222{R}n for the simulation of global transport and deposition of 210Pb., J. Geophys. Res., 54, 23252–23270, 1995.
Levin, I., Born, M., Cuntz, M., Langendorfer, U., Mantsch, S., Naegler, T., Schmidt, M., Varlagin, A., Verclas, S., and Wagenbach, D.: Observations of atmospheric variability and soil exhalation rate of radon-222 at a Russian forest site. Technical approach and deployment for boundary layer studies, Tellus B, 54, 462–475, 2002.
Lin, S. J. and Rood, R. B.: Multidimensional flux-form semi-{L}agrangian transport schemes, Mon. Weather Rev., 124, 2046–2070, 1996.
Lindeken, C. L.: Seasonal variations in the concentration of airborne radon and thoron daughters, Tech. Rep. USAEC Rep. UCRL-50007, University of California Lawrence Radiation Laboratory, Livermore, CA, USA, 1966.
Lockhart, L. B.: Atmospheric radioactivity in South America and Antarctica, J. Geophys. Res., 65, 3999–4005, 1960.
Lockhart, L. B.: Radioactivity of the radon-222 and radon-220 series in the air at ground level, in: The Natural Radiation Environment, edited by: Adams, J. A. and Lowder, W. M., University of Chicago Press, Chicago, USA, 331–344, 1964.
Lockhart, L. B., Patterson, R. L., and Saunders, A. W.: Airborne radioactivity in Antarctica, J. Geophys. Res., 71, 1985–1991, 1966.
Louis, J. F.: A parametric model of vertical eddy uses in the atmosphere, Bound.-Lay. Meteorol., 17, 187–202, 1979.
Lovejoy, E. R., Curtius, J., and Froyd, K. D.: Atmospheric ion-induced nucleation of sulfuric acid and water, J. Geophys. Res., 109, D08204, https://doi.org/10.1029/2003JD004460, 2004.
Lupu, A. and Cuculeanu, V.: Vertical distribution of radon progeny over vegetated ground, J. Geophys. Res., 104, 27527–27533, 1999.
Martens, C. S., Shay, T. J., Mendlovitz, H. P., Matross, D. M., Saleska, S. R., Wofsy, S. C., Stephen Woodward, W., Menton, M. C., De Moura, J. M. S., Crill, P. M., De Moraes, O. L. L., and Lima, R. L.: Radon fluxes in tropical forest ecosystems of Brazilian Amazonia: night-time CO2 net ecosystem exchange derived from radon and eddy covariance methods., Global Change Biol., 10, 618–629, 2004.
Mattsson, R.: Seasonal variation of short-lived radon progeny, Pb210 and Po210, in ground level air in Finland, J. Geophys. Res., 75, 1741–1744, 1970.
Mishra, U. C., Rangarajan, C., and Eapen, C. D.: Natural radioactivity of the atmosphere over the Indian land mass, inside deep mines, and over adjoining oceans, US Department of Energy, Washington, DC, USA, 327–346, 1980.
Nagaraja, K., Prasad, B. S. N., Madhava, M. S., Chandrashekara, M. S., Paramesh, L., Sannappa, J., Pawar, S. D., Murugavel, P., and Kamra, A. K.: Radon and its short-lived progeny: variations near the ground, Radiat. Meas., 36, 413–417, 2003.
Nordeng, T. E.: Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics, ECMWF Research Department, Technical Momorandum 206, European Centre for Medium-Range Weather Forecast, Reading, UK, 1994.
Papastefanou, C.: Radioactive Aerosols, Elsevier, Amsterdam, The Netherlands, 16–17, 2008.
Polian, G., Lambert, G., Ardouin, B., and Jegou, A.: Long-range transport of continental radon in sub-Antarctic and Antarctic areas, Tellus B, 38, 178–189, 1986.
Porstendörfer, J.: Properties and behaviour of radon and thoron and their decay products in the air, J. Aerosol Sci., 25, 219–263, 1994.
Ramamurthi, M., Strydom, R., Hopke, P. K., and Holub, R. F.: Nanometer and ultrafine aerosols from radon radiolysis, J. Aerosol Sci., 24, 393–407, 1993.
Ramonet, M., Schmidt, M., Pépin, L., Kazan, V., Picard, D., Filippi, D., Jourd'heuil, L., Valant, C., Monvoisin, G., Sarda, R., and Ciais, R.: The F}rench {T}race {G}as {M}onitoring {P}rogram {RAMCES, in: Report of the Eleventh WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques, edited by: Toru, S. and Kazuto, S., WMO/GAW Report 148, Tokyo, Japan, 136–148, 2003.
Rasch, P. J., Feichter, J., Law, K., Mahowald, N., Penner, J., Benkovitz, C., Genthon, C., Giannakopoulos, C., Kasibhatla, P., Koch, D., Levy, H., Maki, T., Prather, M., Roberts, D. L., Roelofs, G.-J., Stevenson, D., Stockwell, Z., Taguchi, S., Kritz, M., Chipperfield, M., Baldocchi, D., McMurry, P., Barrie, L., Balkanski, Y., Chatfield, R., Kjellstrom, E., Lawrence, M., Lee, H. N., Lelieveld, J., Noone, K. J., Seinfeld, J., Stenchikov, G., Schwartz, S., Walcek, C., and Williamson, D.: A comparison of scavenging and deposition processes in global models: results from the WCRP {C}ambridge {W}orkshop of 1995, Tellus B, 52, 1025–1056, 2000.
Robertson, L. B., Stevenson, D. S., and Conen, F.: Test of a northwards-decreasing 222Rn source term by comparison of modelled and observed atmospheric 222Rn concentrations, Tellus B, 57, 116–123, 2005.
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A.: The atmospheric general circulation model ECHAM 5. {PART I}: model description, MPI Technical Report 349, Max Planck Institute for Meteorology, Hamburg, Germany, 2003.
Ross, J. O.: Simulation of atmospheric krypton-85 transport to assess the detectability of clandestine nuclear reprocessing, Reports on Earth System Science 82, Max Planck Institute for Meteorology, Hamburg, 2010.
Schery, D.: Progress on Global 222Rn Flux Maps and Recommendations for Future Research, in: 1st International Expert Meeting on Sources and Measurements of Natural Radionuclides Applied to Climate and Air Quality Studies (Gif-sur-Yvette, France, June 2003), edited by: Barrie, L. A. and Lee, H. N., WMO TD 1201, Gif-sur-Yvette, France, 43–47, 2004.
Schery, S. D. and Huang, S.: An estimate of the global distribution of radon emissions from the ocean, Geophys. Res. Lett., 31, L19104, https://doi.org/10.1029/2004GL021051, 2004.
Schery, S. D. and Wasiolek, M. A.: Modeling radon flux from the Earth's surface, in: Radon and Thorn in the Human Environment, in: Proceedings of the 7th Tohwa University International Symposium, edited by: Katase, A. and Shimo, M., World Scientific Publishing Co. Pre. Ltd., Singapore, 73–78, 1998.
Servant, J. and Tanaevsky, O.: Mesures de la radioactivite naturelle dans la region Parisienne, Ann. Geophys., 17, 405–409, 1961.
Sesana, L., Ottobrini, B., Polla, G., and Facchini, U.: 222Rn as indicator of atmospheric turbulence: measurements at Lake Maggiore and on the pre-Alps, J. Environ. Radioactiv., 86, 271–288, 2006.
Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher, O., Minikin, A., and Petzold, A.: The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125–1156, https://doi.org/10.5194/acp-5-1125-2005, 2005.
Sesana, L., Ottobrini, B., Polla, G., and Facchini, U.: 222Rn as indicator of atmospheric turbulence: measurements at Lake Maggiore and on the pre-Alps, J. Environ. Radioactiv., 86, 271–288, 2006.
Szegvary, T.: European 222Rn flux map for atmospheric tracer applications, Ph.D. thesis, Institute of Environmental Geosciences, University of Basel, Switzerland, Basel, 2007.
Szegvary, T., Leuenberger, M. C., and Conen, F.: Predicting terrestrial 222Rn flux using gamma dose rate as a proxy, Atmos. Chem. Phys., 7, 2789–2795, https://doi.org/10.5194/acp-7-2789-2007, 2007.
Szegvary, T., Conen, F., and Ciais, P.: European 222Rn inventory for applied atmospheric studies, Atmos. Eviron., 43, 1536–1539, 2009.
Taguchi, S., Lida, T., and Moriizumi, J.: Evaluation of the atmospheric transport model NIRE-CTM-96 by using measured radon-222 concentrations, Tellus B, 54, 250–268, 2002.
Taylor, K. E., Williamson, D., and Zwiers, F.: The sea surface temperature and sea ice concentration boundary conditions for AMIP II simulations, Tech. Rep. 60, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, USA, 2000.
Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in large scale models, Mon. Weather Rev., 117, 1779–1800, 1989.
Turekian, K. K., Nozaki, Y., and Benninger, L. K.: Geochemistry of atmospheric radon and radon products., Ann. Rev. Earth Planet. Sci., 5, 227–255, 1977.
Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., H{ó}lm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, {J.-F.}, Morcrette, {J.-J.}, Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteorol. Soc., 131, 2961–3012, 2005.
Valentine, J. M. and Curran, S. C.: Average energy expenditure per ion pair in gases and gas mixtures, Rep. Prog. Phys., 21, 1, 1958.
van der Laan, S., Neubert, R. E. M., and Meijer, H. A. J.: Methane and nitrous oxide emissions in The Netherlands: ambient measurements support the national inventories, Atmos. Chem. Phys., 9, 9369–9379, https://doi.org/10.5194/acp-9-9369-2009, 2009.
Vinuesa, J.-F., Basu, S., and Galmarini, S.: The diurnal evolution of 222Rn and its progeny in the atmospheric boundary layer during the Wangara experiment, Atmos. Chem. Phys., 7, 5003–5019, https://doi.org/10.5194/acp-7-5003-2007, 2007.
Vohra, K. G., Subba Ramu, M. C., and Muraleedharan, T. S.: An experimental study of the role of radon and its daughters in the conversion of sulphur dioxide into aerosol particles in the atmosphere, Atmos. Environ., 18, 1653–1656, 1984.
Whittlestone, S. and Zahorowski, W.: Radon measurements at Mawson and Macquarie Island, CAASM Metadata, updated 2006, Australian Antarctic Data Centre, available online at: http://data.aad.gov.au/aadc/portal/index.cfm?file_id=827, 2000.
Wilkening, M. H.: Daily and annual courses of natural atmospheric radioactivity., J. Geophys. Res., 64, 521–526, 1959.
Williamson, D. L.: Time-split versus process-split coupling of parameterizations and dynamical core, Mon. Weather Rev., 130, 2024–2041, 2002.
Xia, Y., Sartorius, H., Schlosser, C., Stöhlker, U., Conen, F., and Zahorowski, W.: Comparison of one- and two-filter detectors for atmospheric 222Rn measurements under various meteorological conditions, Atmos. Meas. Tech., 3, 723–731, https://doi.org/10.5194/amt-3-723-2010, 2010.
Yu, F.: Ion-mediated nucleation in the atmosphere: key controlling parameters, implications, and look-up table, J. Geophys. Res., 115, D03206, https://doi.org/10.1029/2009JD012630, 2010.
Yu, F. and Turco, R. P.: Ultrafine aerosol formation via ion-mediated nucleation, Geophys. Res. Lett., 27, 883–886, 2000.
Yu, F., Wang, Z., Luo, G., and Turco, R.: Ion-mediated nucleation as an important global source of tropospheric aerosols, Atmos. Chem. Phys., 8, 2537–2554, https://doi.org/10.5194/acp-8-2537-2008, 2008.
Yver, C., Schmidt, M., Bousquet, P., Zahorowski, W., and Ramonet, M.: Estimation of the molecular hydrogen soil uptake and traffic emissions at a suburban site near Paris through hydrogen, carbon monoxide, and radon-222 semicontinuous measurements, J. Geophys. Res., 114, D18304, https://doi.org/10.1029/2009JD012122, 2009.
Zahorowski, W. and Whittlestone, S.: Radon database 1987–1996: a review, Bureau of Meteorology and CSIRO Atmospheric Research, Melbourne, 71–80, 1999.
Zahorowski, W., Chambers, S., Wang, T., Kang, C.-H., Uno, I., Poon, S., Oh, S.-N., Werczynski, S., Kim, J., and Henderson-Sellers, A.: Radon-222 in boundary layer and free tropospheric continental outflow events at the three ACE-Asian sites, Tellus B, 57, 124–140, 2005.
Zellweger, C., Klausen, J., and Buchmann, B.: System and Performance Audit of Surface Ozone and Carbon Monoxide at the Global GAW Station Hohenpeissenberg, Germany., Tech. Rep. WCC-Empa Report, WMO World Calibration Centre for Surface Ozone, Carbon Monoxide and Methane, Empa Dübendorf, Switzerland, available online at: http://gaw.empa.ch/audits/HPB_2006.pdf, 2006.
Zhang, K., Wan, H., Zhang, M., and Wang, B.: Evaluation of the atmospheric transport in a GCM using radon measurements: sensitivity to cumulus convection parameterization, Atmos. Chem. Phys., 8, 2811–2832, https://doi.org/10.5194/acp-8-2811-2008, 2008.
Zhuo, W., Guo, Q., Chen, B., and Cheng, G.: Estimating the amount and distribution of radon flux density from the soil surface in China, J. Environ. Radioactiv., 99, 1143–1148, 2008.
Altmetrics
Final-revised paper
Preprint