Articles | Volume 9, issue 21
https://doi.org/10.5194/acp-9-8139-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-9-8139-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Daytime SABER/TIMED observations of water vapor in the mesosphere: retrieval approach and first results
A. G. Feofilov
The Catholic University of America, 620 Michigan Ave., Washington D.C. 20064, USA
NASA Goddard Space Flight Center, Mailcode 674, Greenbelt Rd., Greenbelt, MD 20771, USA
A. A. Kutepov
The Catholic University of America, 620 Michigan Ave., Washington D.C. 20064, USA
NASA Goddard Space Flight Center, Mailcode 674, Greenbelt Rd., Greenbelt, MD 20771, USA
W. D. Pesnell
NASA Goddard Space Flight Center, Mailcode 674, Greenbelt Rd., Greenbelt, MD 20771, USA
R. A. Goldberg
NASA Goddard Space Flight Center, Mailcode 674, Greenbelt Rd., Greenbelt, MD 20771, USA
B. T. Marshall
GATS Inc., 1164 Canon Blvd., Suite 101, Newport News, VA 23606, USA
L. L. Gordley
GATS Inc., 1164 Canon Blvd., Suite 101, Newport News, VA 23606, USA
M. García-Comas
Instituto de Astrofísica de Andalucía (CSIC), C/Camino Bajo de Huetor, 50, Granada, 18008, Spain
M. López-Puertas
Instituto de Astrofísica de Andalucía (CSIC), C/Camino Bajo de Huetor, 50, Granada, 18008, Spain
R. O. Manuilova
Institute for Physics, St.Petersburg State University, Ulianovskaja, 1, St. Petersburg, 198904, Russia
V. A. Yankovsky
Institute for Physics, St.Petersburg State University, Ulianovskaja, 1, St. Petersburg, 198904, Russia
S. V. Petelina
La Trobe University, Victoria, 3086, Australia
J. M. Russell III
Hampton University, Hampton, VA 23668, USA
Related subject area
Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Significant decline of mesospheric water vapor at the NDACC site near Bern in the period 2007 to 2018
Mesospheric nitric oxide model from SCIAMACHY data
Production and transport mechanisms of NO in the polar upper mesosphere and lower thermosphere in observations and models
The airglow layer emission altitude cannot be determined unambiguously from temperature comparison with lidars
Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors
The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements
Measuring FeO variation using astronomical spectroscopic observations
Global investigation of the Mg atom and ion layers using SCIAMACHY/Envisat observations between 70 and 150 km altitude and WACCM-Mg model results
Unusually strong nitric oxide descent in the Arctic middle atmosphere in early 2013 as observed by Odin/SMR
Longitudinal hotspots in the mesospheric OH variations due to energetic electron precipitation
Diurnal variations in middle-atmospheric water vapor by ground-based microwave radiometry
Lifetime and production rate of NOx in the upper stratosphere and lower mesosphere in the polar spring/summer after the solar proton event in October–November 2003
Metal concentrations in the upper atmosphere during meteor showers
Martin Lainer, Klemens Hocke, Ellen Eckert, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 6611–6620, https://doi.org/10.5194/acp-19-6611-2019, https://doi.org/10.5194/acp-19-6611-2019, 2019
Short summary
Short summary
A middle atmospheric water vapor time series of more than 11 years (April 2007 to May 2018) from the NDACC microwave remote sensing site at Bern (Switzerland) is investigated to estimate the trend by means of a robust multilinear parametric trend model. Between 61 and 72 km altitude a significant decline in water vapor could be detected. The reduction of water vapor maximizes to about −12 % per decade at 72 km altitude.
Stefan Bender, Miriam Sinnhuber, Patrick J. Espy, and John P. Burrows
Atmos. Chem. Phys., 19, 2135–2147, https://doi.org/10.5194/acp-19-2135-2019, https://doi.org/10.5194/acp-19-2135-2019, 2019
Short summary
Short summary
We present an empirical model for nitric oxide (NO) in the mesosphere (60–90 km) derived from SCIAMACHY limb scan data. Our model relates the daily (longitudinally) averaged NO number densities from SCIAMACHY as a function of geomagnetic latitude to the solar Lyman-alpha and the geomagnetic AE indices. We use a non-linear regression model, incorporating a finite and seasonally varying lifetime for the geomagnetically induced NO.
Koen Hendrickx, Linda Megner, Daniel R. Marsh, and Christine Smith-Johnsen
Atmos. Chem. Phys., 18, 9075–9089, https://doi.org/10.5194/acp-18-9075-2018, https://doi.org/10.5194/acp-18-9075-2018, 2018
Short summary
Short summary
The mechanisms that produce, destroy and transport nitric oxide (NO) in the Antarctic mesosphere and lower thermosphere are investigated in AIM-SOFIE satellite observations and compared to SD-WACCM simulations. During winter, NO concentrations are most similar while the altitude of maximum NO number densities is most separated. Even though the rate of descent is similar in both datasets, the simulated descending NO flux is too low in concentration, which reflects a missing source of NO.
Tim Dunker
Atmos. Chem. Phys., 18, 6691–6697, https://doi.org/10.5194/acp-18-6691-2018, https://doi.org/10.5194/acp-18-6691-2018, 2018
Short summary
Short summary
Often, the emission height of the mesospheric hydroxyl layer has been inferred from a comparison of temperature measured by ground-based lidars and hydroxyl spectrometers. I use temperatures measured by two independent instruments to show that such comparisons usually lead to ambiguous height determinations, especially if a variable layer width is taken into account. Even though this dataset is from a single location, the results apply to all airglow layers at any location.
Niall J. Ryan, Douglas E. Kinnison, Rolando R. Garcia, Christoph G. Hoffmann, Mathias Palm, Uwe Raffalski, and Justus Notholt
Atmos. Chem. Phys., 18, 1457–1474, https://doi.org/10.5194/acp-18-1457-2018, https://doi.org/10.5194/acp-18-1457-2018, 2018
Short summary
Short summary
We used model output and instrument data to assess how well polar atmospheric descent rates can be derived using concentration measurements of long-lived gases in the atmosphere. The results indicate that the method incurs errors as large as the descent rates, and often leads to a misinterpretation of the direction of air motion. The rates derived using this method do not appear to represent the mean vertical wind in the middle atmosphere, and we suggest an alternate definition.
Gerald E. Nedoluha, Michael Kiefer, Stefan Lossow, R. Michael Gomez, Niklaus Kämpfer, Martin Lainer, Peter Forkman, Ole Martin Christensen, Jung Jin Oh, Paul Hartogh, John Anderson, Klaus Bramstedt, Bianca M. Dinelli, Maya Garcia-Comas, Mark Hervig, Donal Murtagh, Piera Raspollini, William G. Read, Karen Rosenlof, Gabriele P. Stiller, and Kaley A. Walker
Atmos. Chem. Phys., 17, 14543–14558, https://doi.org/10.5194/acp-17-14543-2017, https://doi.org/10.5194/acp-17-14543-2017, 2017
Short summary
Short summary
As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. In the lower mesosphere, we quantify instrumental differences in the observed trends and annual variations at six sites. We then present a range of observed trends in water vapor over the past 20 years.
Stefanie Unterguggenberger, Stefan Noll, Wuhu Feng, John M. C. Plane, Wolfgang Kausch, Stefan Kimeswenger, Amy Jones, and Sabine Moehler
Atmos. Chem. Phys., 17, 4177–4187, https://doi.org/10.5194/acp-17-4177-2017, https://doi.org/10.5194/acp-17-4177-2017, 2017
Short summary
Short summary
This study focuses on the analysis of astronomical medium-resolution spectra from the VLT in Chile to measure airglow pseudo-continuum emission of FeO in the optical regime. Compared to OH or Na emissions, this emission is difficult to measure. Using 3.5 years of spectroscopic data, we found annual and semi-annual variations of the FeO emission. Furthermore, we used WACCM to determine the quantum yield of the FeO-producing Fe + O3 reaction in the atmosphere, which has not been done before.
M. P. Langowski, C. von Savigny, J. P. Burrows, W. Feng, J. M. C. Plane, D. R. Marsh, D. Janches, M. Sinnhuber, A. C. Aikin, and P. Liebing
Atmos. Chem. Phys., 15, 273–295, https://doi.org/10.5194/acp-15-273-2015, https://doi.org/10.5194/acp-15-273-2015, 2015
Short summary
Short summary
Global concentration fields of Mg and Mg+ in the Earth's upper mesosphere and lower thermosphere (70-150km) are presented. These are retrieved from SCIAMACHY/Envisat satellite grating spectrometer measurements in limb viewing geometry between 2008 and 2012.
These were compared with WACCM-Mg model results and a large fraction of the available measurement results for these species, and an interpretation of the results is done. The variation of these species during NLC presence is discussed.
K. Pérot, J. Urban, and D. P. Murtagh
Atmos. Chem. Phys., 14, 8009–8015, https://doi.org/10.5194/acp-14-8009-2014, https://doi.org/10.5194/acp-14-8009-2014, 2014
M. E. Andersson, P. T. Verronen, C. J. Rodger, M. A. Clilverd, and S. Wang
Atmos. Chem. Phys., 14, 1095–1105, https://doi.org/10.5194/acp-14-1095-2014, https://doi.org/10.5194/acp-14-1095-2014, 2014
D. Scheiben, A. Schanz, B. Tschanz, and N. Kämpfer
Atmos. Chem. Phys., 13, 6877–6886, https://doi.org/10.5194/acp-13-6877-2013, https://doi.org/10.5194/acp-13-6877-2013, 2013
F. Friederich, T. von Clarmann, B. Funke, H. Nieder, J. Orphal, M. Sinnhuber, G. P. Stiller, and J. M. Wissing
Atmos. Chem. Phys., 13, 2531–2539, https://doi.org/10.5194/acp-13-2531-2013, https://doi.org/10.5194/acp-13-2531-2013, 2013
J. Correira, A. C. Aikin, J. M. Grebowsky, and J. P. Burrows
Atmos. Chem. Phys., 10, 909–917, https://doi.org/10.5194/acp-10-909-2010, https://doi.org/10.5194/acp-10-909-2010, 2010
Cited articles
Barnet, J. J.: Satellite-borne measurements of middle-atmosphere temperature, Phil. Trans. R. Soc. London, A, 323, 527–544, 1987.
Bass, H. E.: Vibrational relaxation in CO2/O2 mixtures, J. Chem. Phys., 58(11), 4783–4786, 1973.
Bass, H. E. and Shields, F. D.: Vibrational relaxation and sound absorption in O2/H2O mixtures, J. Acoust. Soc. Am., 56(3), 856–859, 1974.
Bass, H. E., Keeton, R. G., and Williams, D.: Vibrational and rotational relaxation in mixtures of water vapor and oxygen, J. Acoust. Soc. Am., 60(1), 74–77, 1976.
Bass, H. E.: Absorption of sound by air: high temperature predictions, J. Acoust. Soc. Am., 69, 124–138, 1981.
Berger, U.: Modeling of middle atmosphere dynamics with LIMA, J. Atmos. Solar-Terr. Phy., 1170–1200, https://doi.org/10.1016/j.jastp.2008.02.004, 2008.
Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P. F., Colin, R., DeCola, P., DeMazière, M., Drummond, J. R., Dufour, D., Evans, W. F. J., Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn, E. J., Lowe, R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P., Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J. J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric Chemistry Experiment (ACE): Mission overview, Geophys. Res. Lett., 32, L15S01, https://doi.org/10.1029/2005GL022386, 2005.
Bevilacqua, R. M., Schwartz, P. R., Bologna, J. M., Thacker, D. J., Olivero, J. J., and Gibbins, C. J.: An observational study of water vapor in the mid-latitude mesosphere using ground-based microwave techniques, J. Geophys. Res., 88, 8523–8534, 1983.
Boone, C. D., Nassar, R., Walker, K. A., Rochon, Y., McLeod, S. D., Rinsland, C. P., and Bernath, P. F.: Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer, Appl. Optics, 44(33), 7218–7231, 2005.
Boone, C. D., Walker, K. A., and Bernath, P. F.: Speed-dependent Voigt profile for water vapor in infrared remote sensing applications, J. Quant. Spectrosc. Ra., 105, 525–532, 2007.
Brasseur, G. P. and Solomon, S.: Aeronomy of the middle atmosphere, Springer, 644 pp, 2005.
Breen, J. E., Quy, R. B., and Glass, G. P.: Vibrational relaxation of O2 in the presence of atomic oxygen, J. Chem. Phys., 59, 556–557, 1973.
Carleer, M. R., Boone, C. D., Walker, K. A., Bernath, P. F., Strong, K., Sica, R. J., Randall, C. E., Vömel, H., Kar, J., Höpfner, M., Milz, M., von Clarmann, T., Kivi, R., Valverde-Canossa, J., Sioris, C. E., Izawa, M. R. M., Dupuy, E., McElroy, C. T., Drummond, J. R., Nowlan, C. R., Zou, J., Nichitiu, F., Lossow, S., Urban, J., Murtagh, D., and Dufour, D. G.: Validation of water vapour profiles from the Atmospheric Chemistry Experiment (ACE), Atmos. Chem. Phys. Discuss., 8, 4499–4559, 2008.
Chandra, S., Jackman, C. H., Fleming, E. L., and Russell III, J. M.: The seasonal and long-term changes in mesospheric water vapor, Geophys. Res. Lett., 24(6), 639–642, 1997.
Copeland, R. A.: Measurement of oxygen vibrational relaxation rate constant with oxygen atoms at low temperature, SRI Project P18443, Monthly Report MP 08-067, 2008.
Croom, D. L., Gibbins, C. J., Birks, A. R., and Wrench, C. L.: Ground-based remote sensing of atmospheric H2O in the 25–100 km region of the atmosphere, in: Union Radio Scientifique Internationale, Open Symposium, La Baule, Loire-Atlantique, France, 28 April–6 May 1977, Proceedings, A78-25801 09-32 Issy-les-Moulineaux, Hauts-de-Seine, France, Comite National Francais de la Radio-electricite Scientifique, 547–550, 1977.
Diskin, G. S., Lempert, W. R., and Miles, R. B.: Observation of vibrational dynamics in X$^{3}§igma _{g}^{-}$-oxygen following stimulated Raman excitation to the v=1 level: implications for the RELIEF flow tagging technique; AIAA 96-3001, 34-th Aerospace Sciences Meeting and Exhibit: Reno, NV, 15–18 January 1996.
Drummond, J. R., Houghton, J. T., Peskett, G. D., Rodgers, C. D., Wale, M. J., Whitney, J., and Williamson, E. J.: The Stratospheric and Mesospheric Sounder on Nimbus 7, Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 296(1418), The Middle Atmosphere as Observed form Balloons, Rockets and Satellites, 219–241, 1980.
Edwards, D. P., Kumer, J. B., López-Puertas, M., Mlynczak, M. G., Gopalan, A., Gille, J. C., and Roche, A.: Non-local thermodynamic equilibrium limb radiance near 10 μm as measured by UARS CLAES, J. Geophys. Res., 101(D21) 26577–26588, 1996.
Edwards, D. P., Zaragoza, G., Riese, M., and López-Puertas, M.: Evidence of H2O nonlocal thermodynamic equilibrium emission near 6.4 μm as measured by cryogenic infrared spectrometers and telescopes for the atmosphere (CRISTA 1), J. Geophys. Res., 105(D23), 29003–29021, 2000.
Esposito, F. and Capitelli, M.: The relaxation of vibrationally excited O2 molecules by atomic oxygen, Chem. Phys. Lett., 443, 222–226, 2007.
Finzi, J., Hovis, F. E., Panfilov, V. N., Hess, P., and Moore, C. B.: Vibrational relaxation of water vapor, J. Chem. Phys., 67(9), 4053–4061, 1977.
Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M., Flaud, J. M., Gessner, R., Kleinert, A., Koopman, R., Langen, J., López-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G., Remedios, J., Ridolfi, M., Stiller, G., and Zander, R.: MIPAS: an instrument for atmospheric and climate research, Atmos. Chem. Phys., 8, 2151–2188, 2008.
Funke, B., Martin-Torres, F.-J., López-Puertas, M., Hoepfner, M., Hase, F., López-Valverde, M. A., and Garcia-Cómas, M.: A generic non-LTE population model for MIPAS–ENVISAT data analysis, Geophys. Res. Abstr., 4, abstract {#}4915, 2002.
Garcia, R. R. and Solomon, S.: A new numerical model of the middle atmosphere. 2. Ozone and related species, J. Geophys. Res., 99(D6), 12937–12951, 1994.
Gille, J. C., Bailey, P. L., and Russell III, J. M.: Temperature and composition measurements from the LRIR and LIMS experiments on Nimbus 6 and 7, Philos. Tr. R. Soc. S.-A., 89, 205–218, 1980.
Gille, J. C. and Russell III, J. M.: The Limb Infrared Monitor of the Stratosphere – Experiment description, performance, and results, J. Geophys. Res., 89(D4), 5125–5140, 1984.
Goody, R. M. and Young, Y. L.: Atmospheric radiation: Theoretical Basis, Oxford University Press, USA, 544 pp, 1995.
Gordley, L. L. and Russell III, J. M.: Rapid inversion of limb radiance using an emissivity growth approximation, Appl. Optics, 20, 807–813, 1981.
Gordley, L. L., Hervig, M., Fish, C., Russell III, J. M., Bailey, S., Cook, J., Hansen, S., Shumway, A., Paxton, G., Deaver, L., Marshall, T., Burton, J., Magill, B., Brown, C., Thompson, E., and Kemp, J.: The Solar Occultation For Ice Experiment (SOFIE), J. Atmos. Solar-Terr. Phys., 71(3–4), 300–315, https://doi.org/10.1016/j.jastp.2008.07.012, 2009.
Grossmann, K. U., Offermann, D., Gusev, O., Oberheide, J., Riese, M., and Spang, R.: The CRISTA-2 mission, J. Geophys. Res., 107(D23), 8173–8185, https://doi.org/10.1029/2001JD000667, 2002.
Gunson, M. R., Abbas, M. M., Abrams, M. C., Allen, M., Brown, L. R., Brown, T. L., Chang, A. Y., Goldman, A., Irion, F. W., Lowes, L. L., Mahieu, E., Manney, G. L., Michelsen, H. A., Newchurch, M. J., Rinsland, C. P., Salawitch, R. J., Stiller, G. P., Toon, G. C., Yung, Y. L., and Zander, R.: The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment: Deployment on the ATLAS Space Shuttle missions, Geophys. Res. Lett., 23(17), 2333–2336, https://doi.org/10.1029/96GL01569, 1996.
Gusev, O. A.: Non-LTE diagnostics of infrared observations of the planetary atmospheres, PhD thesis, University of Munich, http://deposit.ddb.de/cgi-bin/dokserv?idn=968893651&dok_var=d1&dok_ext=pdf&filename=968893651.pdf, 2003.
Gusev, O., Kaufmann, M., Grossmann, K. U., Schmidlin, F. J., and Shepherd, M. G.: Atmospheric neutral temperature distribution at the mesopause/turbopause altitude, J. Atmos. Sol.-Terr. Phy., 68(15), 1684–1697, https://doi.org/10.1016/j.jastp.2005.12.010, 2006.
Gusev, O. A. and Kutepov, A. A.: Non-LTE gas in planetary atmospheres, in: book: Stellar Atmosphere Modeling, edited by: Hubeny, I., Mihalas, D., and Werner, K., ASP Conference Series, 288, 318–330, 2003.
Harris, R. D. and Adams, G. W.: Where does the O(1D) energy go?, J. Geophys. Res., 88(A6), 4918–4928, 1983.
Hartogh, P., Jarchow, C., and Song, L.: Ground-based detection of middle atmospheric water vapor, Proc. SPIE, 2586, Global Process Monitoring and Remote Sensing of the Ocean and Sea Ice, edited by: Deering, D. W. and Gudmandsen, P., 188–195, 1995.
Huestis, D. L.: Vibrational energy transfer and relaxation in O2 and H2O, J. Phys. Chem. A, 110, 6638–6642, 2006.
Ivanov, M. V., Schinke, R., and Mcbane, G. C.: Theoretical investigation of vibrational relaxation of NO($^{2}\Pi )$, O$_{2}(^{3}§igma _{g}^{-})$, and N$_{2}(^{1}§igma _{g}^{+})$ in collisions with O(3P), Mol. Phys., 105(9), 1183–1191, https://doi.org/10.1080/00268970701288087, 2007.
Kalogerakis, K. S., Copeland, R. A., and Slanger, T. G.: Measurements of the rate coefficient for collisional removal of O2(X$^{3}§igma _{g}^{-}$, v=1) by O(3P), J. Chem. Phys., 123, 044309, https://doi.org/10.1063/1.2110227, 2005.
Kaufmann, M., Gusev, O. A., Grossmann, K. U., Roble, R. G., Hagan, M. E., Hartsough, C., and Kutepov, A. A.: The vertical and horizontal distribution of CO2 densities in the upper mesosphere and lower thermosphere as measured by CRISTA, J. Geophys. Res., D107, 8182, https://doi.org/10.1029/2001JD000704, 2002.
Kaufmann, M., Gusev, O. A., Grossmann, K. U., Martin-Torres, F. J., Marsh, D. R., and Kutepov, A. A.: Satellite observations of day- and nighttime ozone in the mesosphere and lower thermosphere, J. Geophys. Res., 108(D9), 4272, https://doi.org/10.1029/2002JD002800, 2003.
Körner, U. and Sonnemann, G. R.: Global three-dimensional modeling of the water vapor concentration of the mesosphere-mesopause region and implications with respect to the noctilucent cloud region, J. Geophys. Res., 106(9), 9639–9651, 2001.
Kutepov, A. A., Gusev, O. A., and Ogibalov, V. P.: Solution of the non-LTE problem for molecular gas in planetary atmospheres: Superiority of accelerated lambda iteration, J. Quant. Spectrosc. Radiat., 60, 199–220, 1998.
Kutepov, A. A., Feofilov, A. G., Marshall, B. T., Gordley, L. L., Pesnell, W. D., Goldberg, R. A., and Russell III, J. M.: SABER temperature observations in the summer polar mesosphere and lower thermosphere: importance of accounting for the CO_{2} \quad \nu 2-quanta V–V exchange, Geophys. Res. Lett., 33, L21809, https://doi.org/10.1029/2006GL026591, 2006.
Lambert, A., Read, W. G., Livesey, N. J., Santee, M. L., Manney, G. L., Froidevaux, L., Wu, D. L., Schwartz, M. J., Pumphrey, H. C., Jimenez, C., Nedoluha, G. E., Cofield, R. E., Cuddy, D. T., Daffer, W. H., Drouin, B. J., Fuller, R. A., Jarnot, R. F., Knosp, B. W., Pickett, H. M., Perun, V. S., Snyder, W. V., Stek, P. C., Thurstans, R. P., Wagner, P. A., Waters, J. W., Jucks, K. W., Toon, G. C., Stachnik, R. A., Bernath, P. F., Boone, C. D., Walker, K. A., Urban, J., Murtagh, D., Elkins, J. W., and Atlas, E.: Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements. J. Geophys. Res., 112, D24S36, https://doi.org/10.1029/2007JD008724, 2007.
López-Puertas, M., Zaragoza, G., Kerridge, B. J., and Taylor, F. W.: Non-local thermodynamic equilibrium model for H2O 6.3 and 2.7 μm bands in the middle atmosphere, J. Geophys. Res., 100, 9131–9147, 1995.
López-Puertas, M. and Taylor, F. W.: Non-LTE Radiative Transfer in the Atmosphere, World Scientific Publishing Co., River Edge, N.J., 504 pp, 2001.
Lübken, F.-J., Rapp, M., and Strelnikova, I.: The sensitivity of mesospheric ice layers to atmospheric background temperatures and water vapor, Adv. Space Res., 40, 794–801, https://doi.org/10.1016/j.asr.2007.01.014, 2007.
Manuilova, R. O., Yankovsky, V. A., Semenov, A. O., Gusev, O. A., Kutepov, A. A., Sulakshina, O. N., and Borkov, Yu. G.: Non-equilibrium emission of the middle atmosphere in the IR ro-vibrational water vapor bands, Atmos. Oceanic Opt., 14, 864–867, 2001.
Marshall, B. T. and Gordley, L. L.: BANDPAK: Algorithms for Modeling Broadband Transmission and Radiance, J. Quant. Spectrosc. Radiat., 52(5), 581–599, 1994.
Mertens, C. J., Mlynczak, M. G., López-Puertas, M., Wintersteiner, P.P., Picard, R. H., Winick, J. R., Gordley, L. L., and Russell III, J. M.: Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 μm Earth limb emission under non-LTE conditions, Geophys. Res. Lett., 28(7), 1391–1394, 2001.
Murtagh, D., Frisk, U., Merino, F., Ridal, M., Jonsson, A., Stegman, J., Witt, G., Eriksson, P., Jimenez, C., Mégie, G., de La Noëë, J., Ricaud, P., Baron, P., Pardo, J.-R., Hauchecorne, A., Llewellyn, E. J., Degenstein, D. A., Gattinger, R. L., Lloyd, N. D., Evans, W. F. J., McDade, I. C., Haley, C., Sioris, C., von Savigny, C., Solheim, B. H., McConnell, J. C., Strong, K., Richardson, E. H., Leppelmeier, G. W., Kyrölä, E., Auvinen, H., and Oikarinen, L.: An overview of the Odin atmospheric mission, Can. J. Phys., 80, 309–319, 2002.
Nedoluha, G. E., Bevilacqua, R. M., Gomez, R. M., Waltman, W. B., and Hicks, B. C.: Measurements of water vapor in the middle atmosphere and implications for mesospheric transport, J. Geophys. Res., 101, 21183–21193, 1996.
Nedoluha, G., Bevilacqua, R., Gomez, R., Waltman, W., Hicks, B., Thacker, D., Russell III, J., Abrams, M., Pumphrey, H., and Connor, B.: A comparative study of mesospheric water vapor measurements from the ground-based water vapor millimeter-wave spectrometer and space-based instruments, J. Geophys. Res., 102(D14), 16647–16661, 1997.
Nedoluha, G. E., Bevilacqua, R. M., Gomez, R. M., Siskind, D. E., Hicks, B. C., Russell III, J. M., and Connor, B. J.: Increases in middle atmospheric water vapor as observed by the Halogen Occulation Experiment and the ground-based Water Vapor Millimeter-wave Spectrometer from 1991–1997, J. Geophys. Res., 103, 3531–3543, 1998.
Nedoluha, G. E., Gomez, R. M., Hicks, B. C., Bevilacqua, R. M., Russell III, J. M., Connor, B. J., and Lambert, A.: A comparison of middle atmospheric water vapor as measured by WVMS, EOS-MLS, and HALOE, J. Geophys. Res., 112, D24S39, https://doi.org/10.1029/2007JD008757, 2007.
Offermann, D., Grossmann, K. U., Barthol, P., Knieling, P., Riese, M., and Trant, R.: Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) experiment and middle atmosphere variability, J. Geophys. Res., 104, 16311–16325, 1999.
Petelina, S. V. and Zasetsky, A. Y.: Temperature of mesospheric ice retrieved from the O-H stretch band, Geophys. Res. Lett., 36, L15804, https://doi.org/10.1029/2009GL038488, 2009.
Peter, R.: Stratospheric and mesospheric latitudinal water vapor distributions obtained by an airborne millimeter-wave spectrometer, J. Geophys. Res., 103(D13), 16275–16290, 1998.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical Recipes in C++, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1002 pp, 2002.
Rapp, M. and Thomas, G.: Modeling the microphysics of mesospheric ice particles: Assessment of current capabilities and basic sensitivities, J. Atmos. Solar-Terr. Phys., 68(7), 715–744, 2006.
Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D., Lingenfelser, G. S., Martin-Torres, J., Mlynczak, M. G., Russell, J. M., Smith, A. K., Zhao, Y., Brown, C., Gordley, L. L., Lopez-Gonzalez, M. J., Lopez-Puertas, M., She, C.-Y., Taylor, M. J., and Thompson, R. E.: Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER, J. Geophys. Res., 113, D17101, https://doi.org/10.1029/2008JD010013, 2008.
Rothman, L. S., Jacquemart, D., Barbe, A., Benner, D. C., Birk, M., Brown, L. R., Carleer, M. R., Chackerian Jr., C., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Flaud, J.-M., Gamache, R. R., Goldman, A., Hartmann, J.-M., Jucks, K. W., Maki, A. G., Mandin, J.-Y., Massie, S. T., Orphal, J., Perrin, A., Rinsland, C. P., Smith, M. A. H., Tennyson, J., Tolchenov, R. N., Toth, R. A., Vander, J., Auwera, Varanasi, P., and Wagner, G.: The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 96, 139–204, 2005.
Russell III, J. M., Gordley, L. L., Park, J. H., Drayson, S. R., Hesketh, D. H., Cicerone, R. J., Tuck, A. F., Frederick, J. E., Harries, J. E., and Crutzen, P. J.: The Halogen Occultation Experiment, J. Geophys. Res., 98(D6), 10777–10797, 1993.
Russell III, J. M., Mlynczak, M. G., Gordley, L. L., Tansock, J. J., and Esplin, R. W.: An Overview of the SABER Experiment and Preliminary Calibration Results, SPIE 3756, 277–288, 1999.
Rybicki, G. B. and Hummer, D. G.: An accelerated lambda iteration method for multilevel radiative transfer. I – Non-overlapping lines with background continuum, Astron. Astrophys., 245, 171–181, 1991.
Saran, D. V., Pejakovic, D. A., and Copeland, R. A.: Vibrational Relaxation of Ground-State Oxygen Molecules With Atomic Oxygen and Carbon Dioxide, AGU Fall Meeting, San Francisco, California, USA, 15–19 December 2008, Abstract SA31A-1601, 2008.
She, C. Y. and von Zahn, U.: Concept of a two-level mesopause: Support through new lidar observations, J. Geophys. Res., 103, 5855–5863, 1998.
Siskind, D. E., Stevens, M. H., Emmert, J. T., Drob, D. P., Kochenash, A. J., Russell, J. M., Gordley, L. L., and Mlynczak, M. G.: Signatures of shuttle and rocket exhaust plumes in TIMED/SABER radiance data, Geophys. Res. Lett., 30(15), 1819, https://doi.org/10.1029/2003GL017627, 2003.
Sonnemann, G. R., Grygalashvyly, M., and Berger, U.: Autocatalytic water vapor production as a source of large mixing ratios within the middle to upper mesosphere, J. Geophys. Res., 110, D15303, https://doi.org/10.1029/2004JD005593, 2005.
Sonnemann, G. R., Hartogh, P., Li, S., Grygalashvyly, M., and Berger, U.: A QBO-signal in mesospheric water vapor measurements at ALOMAR (69.29° N, 16.03° E) and in model calculations by LIMA over a solar cycle, Atmos. Chem. Phys. Discuss., 9, 883–903, 2009.
Stevens, M. H., Gumbel, J., Englert, C. R., Grossmann, K. U., Rapp, M., and Hartogh, P.: Polar mesospheric clouds formed from space shuttle exhaust, Geophys. Res. Lett., 30(10), 1546, https://doi.org/10.1029/2003GL017249, 2003.
Stevens, M. H., Meier, R. R., Chu, X., DeLand, M. T., and Plane, J. M. C.: Antarctic mesospheric clouds formed from space shuttle exhaust, Geophys. Res. Lett., 32, L13810, https://doi.org/10.1029/2005GL023054, 2005.
Stiller, G. P. (Ed.), with contributions from v. Clarmann, T., Dudhia, A., Echle, G., Funke, B., Glatthor, N., Hase, F., Höpfner, M., Kellmann, S., Kemnitzer, H., Kuntz, M., Linden, A., Linder, M., Stiller, G. P., and Zorn, S.: The Karlsruhe Optimized and Precise Radiative transfer Algorithm (KOPRA), Forschungszentrum Karlsruhe, Wissenschaftliche Berichte, Bericht Nr. 6487, http://www-imk.fzk.de/asf/ame/publications/kopra_docu/, 2000.
Tachikawa, H., Hamabayashi, T., and Yoshida, H.: Electronic-to-Vibrational and -Rotational Energy Transfer in the O(1D) + N2 Quenching Reaction: Ab Initio MO and Surface-Hopping Trajectory Studies, J. Phys. Chem., 99, 16630–16635, 1995.
Taylor, F. W., Rodgers, C. D., Whitney, J. G., Werrett, S. T., Barnett, J. J., Peskett, G. D., Venters, P., Ballard, J., Palmer, C. W. P., Knight, R. J., Morris, P., Nightingale, T., and Dudhia, A.: Remote sensing of the atmospheric structure and composition by pressure modulator radiometry from space: the ISAMS experiment on UARS, J. Geophys. Res., 98(D6), 10799–10814, https://doi.org/10.1029/92JD03029, 1993.
Thomas, G. E.: Are noctilucent clouds harbingers of global change in the middle atmosphere?, Adv. Space Res., 32(9), 1737–1746, 2003.
Waters, J. W., Read, W. G., Froidevaux, L., Jarnot, R. F., Cofield, R. E., Flower, D. A., Lau, G. K., Pickett, H. M., Santee, M. L., Wu, D. L., Boyles, M. A., Burke, J. R., Lay, R. R., Loo, M. S., Livesey, N. J., Lungu, T. A., Manney, G. L., Nakamura, L. L., Perun, V. S., Ridenoure, B. P., Shippony, Z., Siegel, P. H., and Thurstans, R. P.: The UARS and EOS Microwave Limb Sounder (MLS) Experiments, J. Atmos. Sci., 56(2), 194–218, https://doi.org/10.1175/1520-0469, 1999.
Whitson, M. E. and McNeal, R. J.: Temperature dependence of the quenching of vibrationally excited N2 by NO and H2O, J. Chem. Phys. 66(6), 2696–2700, https://doi.org/10.1063/1.434217, 1977.
Yankovsky, V. A. and Manuilova, R. O.: Model of daytime emissions of electronically-vibrationally excited products of O3 and O2 photolysis: application to ozone retrieval, Ann. Geophys., 24, 2823–2839, 2006.
Yankovsky, V. A. and Babaev, A. S.: Specified calculation of the distribution of molecules of O2 (X, v=1–30) in the mesosphere using new data on the quenching rate constant of reaction O2 (X, v) with atomic oxygen, Atmos. Oceanic Optics, accepted, 2009 (in Russian).
Yee, J.-H., Cameron, G. E., and Kusnierkiewicz, D. Y.: Overview of TIMED, SPIE, 3756, 244–254, 1999.
Zahr, G. E., Preston, R. K., and Miller, W. H.: Theoretical treatment of quenching in O(1D) + N2 collisions, J. Chem. Phys., 62(3), 1127–1135, 1975.
Zaragoza, G., López-Puertas, M., Lambert, A., Remedios, J. J., and Taylor, F. W.: Non-local thermodynamic equilibrium in H2O 6.9 μm emission as measured by the improved stratospheric and mesospheric sounder, J. Geophys. Res., 103(D23), 31293–31308, 1998.
Zhou, D. K., Mlynczak, M. G., López-Puertas, M., and Zaragoza, G.: Evidence of Non-LTE Effects in Mesospheric Water Vapor from Spectrally-Resolved Emissions Observed by CIRRIS-1A, Geophys. Res. Lett., 26(1), 67–70, 1999.
Zittel, P. F. and Masturzo, D. E.: Vibrational relaxation of H2O from 295 to 1020 K, J. Chem. Phys., 90(2), 977–989, 1989.
Altmetrics
Final-revised paper
Preprint