Articles | Volume 7, issue 19
https://doi.org/10.5194/acp-7-5129-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
https://doi.org/10.5194/acp-7-5129-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet – results from the EU-project SCENIC
V. Grewe
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82230 Wessling, Germany
A. Stenke
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82230 Wessling, Germany
M. Ponater
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82230 Wessling, Germany
R. Sausen
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82230 Wessling, Germany
G. Pitari
Dipartimento di Fisica, Universita' L'Aquila, Italy
D. Iachetti
Dipartimento di Fisica, Universita' L'Aquila, Italy
H. Rogers
Center of Atmospheric Science, Department of Chemistry, University of Cambridge, United Kingdom
O. Dessens
Center of Atmospheric Science, Department of Chemistry, University of Cambridge, United Kingdom
J. Pyle
Center of Atmospheric Science, Department of Chemistry, University of Cambridge, United Kingdom
I.S.A. Isaksen
Department of Geoscience, University of Oslo, Norway
L. Gulstad
Department of Geoscience, University of Oslo, Norway
O.A. Søvde
Department of Geoscience, University of Oslo, Norway
C. Marizy
AIRBUS, Toulouse, France
E. Pascuillo
AIRBUS, Hamburg, Germany
Viewed
Total article views: 5,592 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 08 May 2007)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,309 | 3,028 | 255 | 5,592 | 129 | 87 |
- HTML: 2,309
- PDF: 3,028
- XML: 255
- Total: 5,592
- BibTeX: 129
- EndNote: 87
Total article views: 5,055 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 05 Oct 2007)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,091 | 2,722 | 242 | 5,055 | 121 | 84 |
- HTML: 2,091
- PDF: 2,722
- XML: 242
- Total: 5,055
- BibTeX: 121
- EndNote: 84
Total article views: 537 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 08 May 2007)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
218 | 306 | 13 | 537 | 8 | 3 |
- HTML: 218
- PDF: 306
- XML: 13
- Total: 537
- BibTeX: 8
- EndNote: 3
Cited
27 citations as recorded by crossref.
- Radiative forcing caused by rocket engine emissions M. Ross & P. Sheaffer 10.1002/2013EF000160
- NOx emissions estimation methodology for air-breathing reusable access to space vehicle in conceptual design R. Fusaro et al. 10.1016/j.actaastro.2023.12.060
- Potential Impacts of Supersonic Aircraft Emissions on Ozone and Resulting Forcing on Climate: An Update on Historical Analysis J. Zhang et al. 10.1029/2020JD034130
- Stratospheric Ozone and Climate Forcing Sensitivity to Cruise Altitudes for Fleets of Potential Supersonic Transport Aircraft J. Zhang et al. 10.1029/2021JD034971
- Potential Impacts on Ozone and Climate From a Proposed Fleet of Supersonic Aircraft J. Zhang et al. 10.1029/2022EF003409
- Exergy and NOx Emission-Based Ecological Performance Analysis of the Scimitar Engine T. Tanbay & A. Durmayaz 10.1115/1.4047785
- Contribution of emissions to concentrations: the TAGGING 1.0 submodel based on the Modular Earth Submodel System (MESSy 2.52) V. Grewe et al. 10.5194/gmd-10-2615-2017
- NOx reduction strategies in scramjet combustors A. Ingenito 10.1016/j.ast.2016.10.020
- Estimates of the climate impact of future small-scale supersonic transport aircraft – results from the HISAC EU-project V. Grewe et al. 10.1017/S000192400000364X
- The Climate and Ozone Impacts of Black Carbon Emissions From Global Rocket Launches C. Maloney et al. 10.1029/2021JD036373
- Radiative forcing from particle emissions by future supersonic aircraft G. Pitari et al. 10.5194/acp-8-4069-2008
- Formation and radiative forcing of contrail cirrus B. Kärcher 10.1038/s41467-018-04068-0
- The climate impact of hydrogen-powered hypersonic transport J. Pletzer et al. 10.5194/acp-22-14323-2022
- Aircraft routing with minimal climate impact: the REACT4C climate cost function modelling approach (V1.0) V. Grewe et al. 10.5194/gmd-7-175-2014
- Performance Assessment of an Integrated Environmental Control System of Civil Hypersonic Vehicles N. Viola et al. 10.3390/aerospace9040201
- Aircraft emission mitigation by changing route altitude: A multi-model estimate of aircraft NOx emission impact on O3 photochemistry O. Søvde et al. 10.1016/j.atmosenv.2014.06.049
- Review and prospect of supersonic business jet design Y. Sun & H. Smith 10.1016/j.paerosci.2016.12.003
- Assessment of NOx emissions of the Scimitar engine at Mach 5 based on a thermodynamic cycle analysis T. Tanbay et al. 10.1016/j.ijhydene.2019.02.133
- AirClim: an efficient tool for climate evaluation of aircraft technology V. Grewe & A. Stenke 10.5194/acp-8-4621-2008
- Identifying the ozone-neutral aircraft cruise altitude T. Fritz et al. 10.1016/j.atmosenv.2022.119057
- Impacts of a near-future supersonic aircraft fleet on atmospheric composition and climate S. Eastham et al. 10.1039/D1EA00081K
- Review: The Effects of Supersonic Aviation on Ozone and Climate S. Matthes et al. 10.3390/aerospace9010041
- Global temperature change from the transport sectors: Historical development and future scenarios R. Skeie et al. 10.1016/j.atmosenv.2009.05.025
- The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY P. Hoor et al. 10.5194/acp-9-3113-2009
- Impact of combustion chamber wall heat loss on the energy, exergy, ecology, NOx emission based performance and multiobjective optimization of the precooled scimitar engine T. Tanbay & A. Durmayaz 10.1016/j.ijhydene.2022.11.282
- Do supersonic aircraft avoid contrails? A. Stenke et al. 10.5194/acp-8-955-2008
- Investigating lower stratospheric model transport: Lagrangian calculations of mean age and age spectra in the GCM ECHAM4 C. Reithmeier et al. 10.1007/s00382-007-0294-1
26 citations as recorded by crossref.
- Radiative forcing caused by rocket engine emissions M. Ross & P. Sheaffer 10.1002/2013EF000160
- NOx emissions estimation methodology for air-breathing reusable access to space vehicle in conceptual design R. Fusaro et al. 10.1016/j.actaastro.2023.12.060
- Potential Impacts of Supersonic Aircraft Emissions on Ozone and Resulting Forcing on Climate: An Update on Historical Analysis J. Zhang et al. 10.1029/2020JD034130
- Stratospheric Ozone and Climate Forcing Sensitivity to Cruise Altitudes for Fleets of Potential Supersonic Transport Aircraft J. Zhang et al. 10.1029/2021JD034971
- Potential Impacts on Ozone and Climate From a Proposed Fleet of Supersonic Aircraft J. Zhang et al. 10.1029/2022EF003409
- Exergy and NOx Emission-Based Ecological Performance Analysis of the Scimitar Engine T. Tanbay & A. Durmayaz 10.1115/1.4047785
- Contribution of emissions to concentrations: the TAGGING 1.0 submodel based on the Modular Earth Submodel System (MESSy 2.52) V. Grewe et al. 10.5194/gmd-10-2615-2017
- NOx reduction strategies in scramjet combustors A. Ingenito 10.1016/j.ast.2016.10.020
- Estimates of the climate impact of future small-scale supersonic transport aircraft – results from the HISAC EU-project V. Grewe et al. 10.1017/S000192400000364X
- The Climate and Ozone Impacts of Black Carbon Emissions From Global Rocket Launches C. Maloney et al. 10.1029/2021JD036373
- Radiative forcing from particle emissions by future supersonic aircraft G. Pitari et al. 10.5194/acp-8-4069-2008
- Formation and radiative forcing of contrail cirrus B. Kärcher 10.1038/s41467-018-04068-0
- The climate impact of hydrogen-powered hypersonic transport J. Pletzer et al. 10.5194/acp-22-14323-2022
- Aircraft routing with minimal climate impact: the REACT4C climate cost function modelling approach (V1.0) V. Grewe et al. 10.5194/gmd-7-175-2014
- Performance Assessment of an Integrated Environmental Control System of Civil Hypersonic Vehicles N. Viola et al. 10.3390/aerospace9040201
- Aircraft emission mitigation by changing route altitude: A multi-model estimate of aircraft NOx emission impact on O3 photochemistry O. Søvde et al. 10.1016/j.atmosenv.2014.06.049
- Review and prospect of supersonic business jet design Y. Sun & H. Smith 10.1016/j.paerosci.2016.12.003
- Assessment of NOx emissions of the Scimitar engine at Mach 5 based on a thermodynamic cycle analysis T. Tanbay et al. 10.1016/j.ijhydene.2019.02.133
- AirClim: an efficient tool for climate evaluation of aircraft technology V. Grewe & A. Stenke 10.5194/acp-8-4621-2008
- Identifying the ozone-neutral aircraft cruise altitude T. Fritz et al. 10.1016/j.atmosenv.2022.119057
- Impacts of a near-future supersonic aircraft fleet on atmospheric composition and climate S. Eastham et al. 10.1039/D1EA00081K
- Review: The Effects of Supersonic Aviation on Ozone and Climate S. Matthes et al. 10.3390/aerospace9010041
- Global temperature change from the transport sectors: Historical development and future scenarios R. Skeie et al. 10.1016/j.atmosenv.2009.05.025
- The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY P. Hoor et al. 10.5194/acp-9-3113-2009
- Impact of combustion chamber wall heat loss on the energy, exergy, ecology, NOx emission based performance and multiobjective optimization of the precooled scimitar engine T. Tanbay & A. Durmayaz 10.1016/j.ijhydene.2022.11.282
- Do supersonic aircraft avoid contrails? A. Stenke et al. 10.5194/acp-8-955-2008
Saved (preprint)
Latest update: 21 Jan 2025
Altmetrics
Final-revised paper
Preprint