Articles | Volume 6, issue 10
https://doi.org/10.5194/acp-6-3023-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
https://doi.org/10.5194/acp-6-3023-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Homogeneous nucleation rates of nitric acid dihydrate (NAD) at simulated stratospheric conditions – Part I: Experimental results
O. Stetzer
Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Germany
Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland
O. Möhler
Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Germany
R. Wagner
Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Germany
S. Benz
Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Germany
H. Saathoff
Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Germany
H. Bunz
Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Germany
O. Indris
Max-Planck-Institut für Kernphysik, Abt. Atmosphärenphysik, Heidelberg, Germany
Viewed
Total article views: 2,679 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 28 Mar 2006)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,401 | 1,127 | 151 | 2,679 | 121 | 71 |
- HTML: 1,401
- PDF: 1,127
- XML: 151
- Total: 2,679
- BibTeX: 121
- EndNote: 71
Total article views: 2,134 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 24 Jul 2006)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,149 | 853 | 132 | 2,134 | 102 | 68 |
- HTML: 1,149
- PDF: 853
- XML: 132
- Total: 2,134
- BibTeX: 102
- EndNote: 68
Total article views: 545 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 28 Mar 2006)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
252 | 274 | 19 | 545 | 19 | 3 |
- HTML: 252
- PDF: 274
- XML: 19
- Total: 545
- BibTeX: 19
- EndNote: 3
Cited
29 citations as recorded by crossref.
- Spectroscopic evidence of large aspherical <i>β</i>-NAT particles involved in denitrification in the December 2011 Arctic stratosphere W. Woiwode et al. 10.5194/acp-16-9505-2016
- Determination of the Solid–Vapor Interfacial Tension of Nitric Acid Dihydrate Crystals via Experiments on the Freezing of Aqueous Nitric Acid Droplets Y. Djikaev & E. Ruckenstein 10.1021/acs.jpcc.6b09514
- Homogeneous nucleation rates of nitric acid dihydrate (NAD) at simulated stratospheric conditions – Part II: Modelling O. Möhler et al. 10.5194/acp-6-3035-2006
- The MIPAS/Envisat climatology (2002–2012) of polar stratospheric cloud volume density profiles M. Höpfner et al. 10.5194/amt-11-5901-2018
- Experimental and theoretical studies of the interaction of gas phase nitric acid and water with a self-assembled monolayer S. Moussa et al. 10.1039/C2CP42405C
- On the linkage between tropospheric and Polar Stratospheric clouds in the Arctic as observed by space–borne lidar P. Achtert et al. 10.5194/acp-12-3791-2012
- Nucleation of nitric acid hydrates in polar stratospheric clouds by meteoric material A. James et al. 10.5194/acp-18-4519-2018
- Vibrational exciton coupling as a probe for phase transitions and shape changes of fluoroform aerosol particles Ó. Sigurbjörnsson et al. 10.1039/B813756K
- Investigation of polar stratospheric clouds in January 2008 by means of ground-based and spaceborne lidar measurements and microphysical box model simulations P. Achtert et al. 10.1029/2010JD014803
- Phase, shape, and architecture of SF6 and SF6∕CO2 aerosol particles: Infrared spectra and modeling of vibrational excitons G. Firanescu et al. 10.1063/1.2913535
- Polar Stratospheric Clouds: Satellite Observations, Processes, and Role in Ozone Depletion I. Tritscher et al. 10.1029/2020RG000702
- Widespread polar stratospheric ice clouds in the 2015–2016 Arctic winter – implications for ice nucleation C. Voigt et al. 10.5194/acp-18-15623-2018
- Mobile Monomers and Dimers in Precipitation Kinetics: a Microscopic Approach G. Berim et al. 10.1021/acs.jpcb.6b10573
- Understanding the Formation and Growth of New Atmospheric Particles at the Molecular Level through Laboratory Molecular Beam Experiments Y. Wang et al. 10.1002/cplu.202400108
- Particle shapes and infrared extinction spectra of nitric acid dihydrate (NAD) crystals: optical constants of the β-NAD modification R. Wagner et al. 10.5194/acp-23-6789-2023
- Nucleation of Mixed Nitric Acid–Water Ice Nanoparticles in Molecular Beams that Starts with a HNO3 Molecule J. Lengyel et al. 10.1021/jz3013886
- Climatology Perspective of Sensitive Regimes and Active Regions of Aerosol Indirect Effect for Cirrus Clouds over the Global Oceans X. Zhao et al. 10.3390/rs12050823
- Intrinsic Particle Properties from Vibrational Spectra of Aerosols Ó. Sigurbjörnsson et al. 10.1146/annurev.physchem.040808.090356
- In situ balloon‐borne measurements of HNO3 and HCl stratospheric vertical profiles influenced by polar stratospheric cloud formation during the 2005–2006 Arctic winter A. Grossel et al. 10.1029/2009JD012947
- Free energy of formation of a crystal nucleus in incongruent solidification: Implication for modeling the crystallization of aqueous nitric acid droplets in polar stratospheric clouds Y. Djikaev & E. Ruckenstein 10.1063/1.4979069
- The mid‐IR Absorption Cross Sections of α‐ and β‐NAT (HNO3 · 3H2O) in the range 170 to 185 K and of metastable NAD (HNO3 · 2H2O) in the range 172 to 182 K R. Iannarelli & M. Rossi 10.1002/2015JD023903
- Reply to “Comment on ‘Do NAD and NAT Form in Liquid Stratospheric Aerosols by Pseudoheterogeneous Nucleation?'” D. Knopf 10.1021/jp066423q
- Metastabiles Salpetersäuretrihydrat in Eiswolken F. Weiss et al. 10.1002/ange.201510841
- Polar stratospheric cloud microphysics and chemistry D. Lowe & A. MacKenzie 10.1016/j.jastp.2007.09.011
- Metastable Nitric Acid Trihydrate in Ice Clouds F. Weiss et al. 10.1002/anie.201510841
- Metastable nitric acidhydrates—possible constituents of polar stratospheric clouds? H. Grothe et al. 10.1039/B702343J
- Kinetics of Supersaturated Solution with Restricted Size of Precipitates in the Presence of Dimer Adsorption/Emission and Monomer–Monomer Agglomeration G. Berim et al. 10.1021/acs.jpcb.7b08443
- Volume versus surface nucleation in freezing aerosols Ó. Sigurbjörnsson & R. Signorell 10.1103/PhysRevE.77.051601
- Ice structures, patterns, and processes: A view across the icefields T. Bartels-Rausch et al. 10.1103/RevModPhys.84.885
28 citations as recorded by crossref.
- Spectroscopic evidence of large aspherical <i>β</i>-NAT particles involved in denitrification in the December 2011 Arctic stratosphere W. Woiwode et al. 10.5194/acp-16-9505-2016
- Determination of the Solid–Vapor Interfacial Tension of Nitric Acid Dihydrate Crystals via Experiments on the Freezing of Aqueous Nitric Acid Droplets Y. Djikaev & E. Ruckenstein 10.1021/acs.jpcc.6b09514
- Homogeneous nucleation rates of nitric acid dihydrate (NAD) at simulated stratospheric conditions – Part II: Modelling O. Möhler et al. 10.5194/acp-6-3035-2006
- The MIPAS/Envisat climatology (2002–2012) of polar stratospheric cloud volume density profiles M. Höpfner et al. 10.5194/amt-11-5901-2018
- Experimental and theoretical studies of the interaction of gas phase nitric acid and water with a self-assembled monolayer S. Moussa et al. 10.1039/C2CP42405C
- On the linkage between tropospheric and Polar Stratospheric clouds in the Arctic as observed by space–borne lidar P. Achtert et al. 10.5194/acp-12-3791-2012
- Nucleation of nitric acid hydrates in polar stratospheric clouds by meteoric material A. James et al. 10.5194/acp-18-4519-2018
- Vibrational exciton coupling as a probe for phase transitions and shape changes of fluoroform aerosol particles Ó. Sigurbjörnsson et al. 10.1039/B813756K
- Investigation of polar stratospheric clouds in January 2008 by means of ground-based and spaceborne lidar measurements and microphysical box model simulations P. Achtert et al. 10.1029/2010JD014803
- Phase, shape, and architecture of SF6 and SF6∕CO2 aerosol particles: Infrared spectra and modeling of vibrational excitons G. Firanescu et al. 10.1063/1.2913535
- Polar Stratospheric Clouds: Satellite Observations, Processes, and Role in Ozone Depletion I. Tritscher et al. 10.1029/2020RG000702
- Widespread polar stratospheric ice clouds in the 2015–2016 Arctic winter – implications for ice nucleation C. Voigt et al. 10.5194/acp-18-15623-2018
- Mobile Monomers and Dimers in Precipitation Kinetics: a Microscopic Approach G. Berim et al. 10.1021/acs.jpcb.6b10573
- Understanding the Formation and Growth of New Atmospheric Particles at the Molecular Level through Laboratory Molecular Beam Experiments Y. Wang et al. 10.1002/cplu.202400108
- Particle shapes and infrared extinction spectra of nitric acid dihydrate (NAD) crystals: optical constants of the β-NAD modification R. Wagner et al. 10.5194/acp-23-6789-2023
- Nucleation of Mixed Nitric Acid–Water Ice Nanoparticles in Molecular Beams that Starts with a HNO3 Molecule J. Lengyel et al. 10.1021/jz3013886
- Climatology Perspective of Sensitive Regimes and Active Regions of Aerosol Indirect Effect for Cirrus Clouds over the Global Oceans X. Zhao et al. 10.3390/rs12050823
- Intrinsic Particle Properties from Vibrational Spectra of Aerosols Ó. Sigurbjörnsson et al. 10.1146/annurev.physchem.040808.090356
- In situ balloon‐borne measurements of HNO3 and HCl stratospheric vertical profiles influenced by polar stratospheric cloud formation during the 2005–2006 Arctic winter A. Grossel et al. 10.1029/2009JD012947
- Free energy of formation of a crystal nucleus in incongruent solidification: Implication for modeling the crystallization of aqueous nitric acid droplets in polar stratospheric clouds Y. Djikaev & E. Ruckenstein 10.1063/1.4979069
- The mid‐IR Absorption Cross Sections of α‐ and β‐NAT (HNO3 · 3H2O) in the range 170 to 185 K and of metastable NAD (HNO3 · 2H2O) in the range 172 to 182 K R. Iannarelli & M. Rossi 10.1002/2015JD023903
- Reply to “Comment on ‘Do NAD and NAT Form in Liquid Stratospheric Aerosols by Pseudoheterogeneous Nucleation?'” D. Knopf 10.1021/jp066423q
- Metastabiles Salpetersäuretrihydrat in Eiswolken F. Weiss et al. 10.1002/ange.201510841
- Polar stratospheric cloud microphysics and chemistry D. Lowe & A. MacKenzie 10.1016/j.jastp.2007.09.011
- Metastable Nitric Acid Trihydrate in Ice Clouds F. Weiss et al. 10.1002/anie.201510841
- Metastable nitric acidhydrates—possible constituents of polar stratospheric clouds? H. Grothe et al. 10.1039/B702343J
- Kinetics of Supersaturated Solution with Restricted Size of Precipitates in the Presence of Dimer Adsorption/Emission and Monomer–Monomer Agglomeration G. Berim et al. 10.1021/acs.jpcb.7b08443
- Volume versus surface nucleation in freezing aerosols Ó. Sigurbjörnsson & R. Signorell 10.1103/PhysRevE.77.051601
1 citations as recorded by crossref.
Saved (preprint)
Latest update: 23 Nov 2024
Altmetrics
Final-revised paper
Preprint