Articles | Volume 26, issue 2
https://doi.org/10.5194/acp-26-1587-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-26-1587-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A localized plant species-specific BVOC emission rate library of China established using a developed statistical approach based on field measurements
Huijuan Han
College of Environment and Geography, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao 266071, China
Yanqi Jia
College of Environment and Geography, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao 266071, China
Rende Shi
Eco-environment Monitoring Center of Qingdao, Shandong Province, Qingdao 266003, China
Changliang Nie
College of Environment and Geography, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao 266071, China
Yoshizumi Kajii
College of Environment and Geography, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao 266071, China
Yan Wu
School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
Lingyu Li
CORRESPONDING AUTHOR
College of Environment and Geography, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao 266071, China
Related authors
No articles found.
Yu Yang, Caiqing Yan, Ruyu Yuang, Ping Liu, Hanyuan Zhang, Haibiao Chen, Yujiao Zhu, Hengqing Shen, Yan Wu, Likun Xue, and Liubin Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-5606, https://doi.org/10.5194/egusphere-2025-5606, 2025
Short summary
Short summary
This work reveals that aromatic organosulfates can undergo rapid transformation by multiphase OH radical oxidation, leading to the formation of both functionalized and fragmented organosulfates as well as inorganic sulfate, and thereby enhancing light absorption and inducing new fluorescence features. These findings advance our understanding of the atmospheric fate of aromatic organosulfates and underscore the influence of this transformation pathway on the sulfur cycle and climate effects.
Haibiao Chen, Caiqing Yan, Liubin Huang, Lin Du, Yang Yue, Xinfeng Wang, Qingcai Chen, Mingjie Xie, Junwen Liu, Fengwen Wang, Shuhong Fang, Qiaoyun Yang, Hongya Niu, Mei Zheng, Yan Wu, and Likun Xue
Atmos. Chem. Phys., 25, 3647–3667, https://doi.org/10.5194/acp-25-3647-2025, https://doi.org/10.5194/acp-25-3647-2025, 2025
Short summary
Short summary
A comprehensive understanding of the optical properties of brown carbon (BrC) is essential to accurately assess its climatic effects. Based on multi-site spectroscopic measurements, this study demonstrated the significant spatial heterogeneity in the optical and structural properties of water-soluble organic carbon (WSOC) in different regions of China and revealed factors affecting WSOC light absorption and the relationship between fluorophores and light absorption of WSOC.
Jing Cao, Shuping Situ, Yufang Hao, Shaodong Xie, and Lingyu Li
Atmos. Chem. Phys., 22, 2351–2364, https://doi.org/10.5194/acp-22-2351-2022, https://doi.org/10.5194/acp-22-2351-2022, 2022
Short summary
Short summary
Based on localized emission factors and high-resolution vegetation data, we simulated the impacts of BVOC emissions on O3 and SOA during 1981–2018 in China. The interannual variation of BVOC emissions caused by increasing leaf biomass resulted in O3 and SOA concentrations increasing at average annual rates of 0.11 ppb and 0.008 μg m−3, respectively. The results show different variations which can be attributed to the different changing trends of leaf biomass by region and vegetation type.
Cited articles
Antonsen, S. G., Bunkan, A. J. C., Mikoviny, T., Nielsen, C. J., Stenstrøm, Y., Wisthaler, A., and Zardin, E.: Atmospheric Chemistry of diazomethane-an experimental and theoretical study, Mol. Phys., 118, e1718227, https://doi.org/10.1080/00268976.2020.1718227, 2020.
Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003.
Aydin, Y. M., Yaman, B., Koca, H., Dasdemir, O., Kara, M., Altiok, H., Dumanoglu, Y., Bayram, A., Tolunay, D., Odabasi, M., and Elbir, T.: Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species, Sci. Total Environ., 490, 239–253, https://doi.org/10.1016/j.scitotenv.2014.04.132, 2014.
Batista, C. E., Ye, J., Ribeiro, I. O., Guimarães, P. C., Medeiros, A. S. S., Barbosa, R. G., Oliveira, R. L., Duvoisin, S., Jardine, K. J., Gu, D., Guenther, A. B., McKinney, K. A., Martins, L. D., Souza, R. A. F., and Martin, S. T.: Intermediate-scale horizontal isoprene concentrations in the near-canopy forest atmosphere and implications for emission heterogeneity, P. Natl. Acad. Sci. USA, 116, 19318–19323, https://doi.org/10.1073/pnas.1904154116, 2019.
Benjamin, M., Sudol, M., Bloch, L., and Winer, A. M.: Low-emitting urban forests: A taxonomic methodology for assigning isoprene and monoterpene emission rates, Atmos. Environ., 30, 1437–1452, https://doi.org/10.1016/1352-2310(95)00439-4, 1996.
Blichner, S. M., Yli-Juuti, T., Mielonen, T., Pöhlker, C., Holopainen, E., Heikkinen, L., Mohr, C., Artaxo, P., Carbone, S., Meller, B. B., Dias-Júnior, C. Q., Kulmala, M., Petäjä, T., Scott, C. E., Svenhag, C., Nieradzik, L., Sporre, M., Partridge, D. G., Tovazzi, E., Virtanen, A., Kokkola, H., and Riipinen, I.: Process-evaluation of forest aerosol-cloud-climate feedback shows clear evidence from observations and large uncertainty in models, Nat. Commun., 15, 969, https://doi.org/10.1038/s41467-024-45001-y, 2024.
Bourtsoukidis, E., Pozzer, A., Williams, J., Makowski, D., Peñuelas, J., Matthaios, V. N., Lazoglou, G., Yañez-Serrano, A. M., Lelieveld, J., Ciais, P., Vrekoussis, M., Daskalakis, N., and Sciare, J.: High temperature sensitivity of monoterpene emissions from global vegetation, Commun. Earth Environ., 5, 23, https://doi.org/10.1038/s43247-023-01175-9, 2024.
Cai, B., Cheng, H., and Kang, T.: Establishing the emission inventory of biogenic volatile organic compounds and quantifying their contributions to O3 and PM2.5 in the Beijing–Tianjin–Hebei region, Atmos. Environ., 318, 120206, https://doi.org/10.1016/j.atmosenv.2023.120206, 2024.
Cao, J., Situ, S., Hao, Y., Xie, S., and Li, L.: Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981–2018 in China, Atmos. Chem. Phys., 22, 2351–2364, https://doi.org/10.5194/acp-22-2351-2022, 2022.
Cao, J., Han, H., Qiao, L., and Li, L.: Biogenic volatile organic vompound emission and its response to land cover changes in China during 2001–2020 using an improved high-precision vegetation data set, J. Geophys. Res.-Atmos., 129, e2023JD040421, https://doi.org/10.1029/2023JD040421, 2024a.
Cao, J., Han, H., Qiao, L., and Li, L.: High-Resolution Vegetation Distribution (HRVD) dataset, Version v1, Zenodo [data set], https://doi.org/10.5281/zenodo.10830151, 2024b.
Chatani, S., Okumura, M., Shimadera, H., Yamaji, K., Kitayama, K., and Matsunaga, S.: Effects of a detailed vegetation database on simulated meteorological fields, biogenic VOC emissions, and ambient pollutant concentrations over Japan, Atmosphere, 9, 179, https://doi.org/10.3390/atmos9050179, 2018.
Chen, X., Gong, D., Liu, S., Meng, X., Zhu, L., Lin, Y., Li, Q., Xu, R., Chen, S., Chang, Q., Ma, F., Ding, X., Deng, S., Zhang, C., Wang, H., and Wang, B.: In-situ online investigation of biogenic volatile organic compounds emissions from tropical rainforests in Hainan, China, Sci. Total Environ., 954, 176668, https://doi.org/10.1016/j.scitotenv.2024.176668, 2024.
Chong, K., Wang, Y., Liu, C., Gao, Y., Boersma, K. F., Tang, J., and Wang, X.: Remote sensing measurements at a rural site in China: Implications for satellite NO2 and HCHO measurement uncertainty and emissions from fires, J. Geophys. Res.-Atmos., 129, e2023JD039310, https://doi.org/10.1029/2023JD039310, 2024.
Ciccioli, P., Silibello, C., Finardi, S., Pepe, N., Ciccioli, P., Rapparini, F., Neri, L., Fares, S., Brilli, F., Mircea, M., Magliulo, E., and Baraldi, R.: The potential impact of biogenic volatile organic compounds (BVOCs) from terrestrial vegetation on a Mediterranean area using two different emission models, Agr. Forest Meteorol., 328, 109255, https://doi.org/10.1016/j.agrformet.2022.109255, 2023.
Duan, C., Wu, Z., Liao, H., and Ren, Y.: Interaction processes of environment and plant ecophysiology with BVOC emissions from dominant greening trees, Forests, 14, 523, https://doi.org/10.3390/f14030523, 2023.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra + Aqua land cover type yearly L3 global 500 m SIN grid V006, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MCD12Q1.006, 2019.
Gai, Y., Sun, L., Fu, S., Zhu, C., Zhu, C., Li, R., Liu, Z., Wang, B., Wang, C., Yang, N., Li, J., Xu, C., and Yan, G.: Impact of greening trends on biogenic volatile organic compound emissions in China from 1985 to 2022: Contributions of afforestation projects, Sci. Total Environ., 929, 172551, https://doi.org/10.1016/j.scitotenv.2024.172551, 2024.
Ghirardo, A., Xie, J., Zheng, X., Wang, Y., Grote, R., Block, K., Wildt, J., Mentel, T., Kiendler-Scharr, A., Hallquist, M., Butterbach-Bahl, K., and Schnitzler, J.-P.: Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing, Atmos. Chem. Phys., 16, 2901–2920, https://doi.org/10.5194/acp-16-2901-2016, 2016.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys. Res.-Atmos., 100, 8873–8892, https://doi.org/10.1029/94jd02950, 1995.
Guenther, A. B., Zimmerman, P. R., and Harley, P. C.: Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses, J. Geophys. Res.-Atmos., 98, 12609–12617, https://doi.org/10.1029/93JD00527, 1993.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Guo, P., Su, Y., Sun, X., Liu, C., Cui, B., Xu, X., Ouyang, Z., and Wang, X.: Urban–rural comparisons of biogenic volatile organic compounds and ground-level ozone in Beijing, Forests, 15, 508, https://doi.org/10.3390/f15030508, 2024.
Han, H., Jia, Y., Kajii, Y., and Li, L.: Localized plant species-specific BVOC emission rate dataset, Zenodo [data set], https://doi.org/10.5281/zenodo.14557394, 2024.
Huang, L., Zhao, X., Chen, C., Tan, J., Li, Y., Chen, H., Wang, Y., Li, L., Guenther, A., and Huang, H.: Uncertainties of biogenic VOC emissions caused by land cover data and implications on ozone mitigation strategies for the Yangtze River Delta region, Atmos. Environ., 337, 120765, https://doi.org/10.1016/j.atmosenv.2024.120765, 2024.
Kfoury, N., Scott, E., Orians, C., and Robbat, A.: Direct contact sorptive extraction: a robust method for sampling plant volatiles in the field, J. Agric. Food Chem., 65, 8501–8509, https://doi.org/10.1021/acs.jafc.7b02847, 2017.
Klinger, L. F., Li, Q. J., Guenther, A. B., Greenberg, J. P., Baker, B., and Bai, J. H.: Assessment of volatile organic compound emissions from ecosystems of China, J. Geophys. Res.-Atmos., 107, 4603, https://doi.org/10.1029/2001JD001076, 2002.
Li, J., Han, Z., Wu, J., Tao, J., Li, J., Sun, Y., Liang, L., Liang, M., and Wang, Q.: Secondary organic aerosol formation and source contributions over east China in summertime, Environ. Pollut., 306, 119383, https://doi.org/10.1016/j.envpol.2022.119383, 2022.
Li, L., Guenther, A. B., Xie, S., Gu, D., Seco, R., Nagalingam, S., and Yan, D.: Evaluation of semi-static enclosure technique for rapid surveys of biogenic volatile organic compounds (BVOCs) emission measurements, Atmos. Environ., 212, 1–5, https://doi.org/10.1016/j.atmosenv.2019.05.029, 2019.
Li, L., Zhang, B., Cao, J., Xie, S., and Wu, Y.: Isoprenoid emissions from natural vegetation increased rapidly in eastern China, Environ. Res., 200, 111462, https://doi.org/10.1016/j.envres.2021.111462, 2021.
Li, L., Bai, G., Han, H., Wu, Y., Xie, S., and Xie, W.: Localized biogenic volatile organic compound emission inventory in China: a comprehensive review, J. Environ. Manag., 353, 120121, https://doi.org/10.1016/j.jenvman.2024.120121, 2024.
Li, T., Baggesen, N., Seco, R., and Rinnan, R.: Seasonal and diel patterns of biogenic volatile organic compound fluxes in a subarctic tundra, Atmos. Environ., 292, 119430, https://doi.org/10.1016/j.atmosenv.2022.119430, 2023.
Lin, W., Yuan, H., Dong, W., Zhang, S., Liu, S., Wei, N., Lu, X., Wei, Z., Hu, Y., and Dai, Y.: Reprocessed MODIS version 6.1 leaf area index dataset and its evaluation for land surface and climate modeling, Remote Sensing, 15, 1780, https://doi.org/10.3390/rs15071780, 2023.
Liu, T., Yan, D., Chen, G., Lin, Z., Zhu, C., and Chen, J.: Distribution characteristics and photochemical effects of isoprene in a coastal city of southeast China, Sci. Total Environ., 956, 177392, https://doi.org/10.1016/j.scitotenv.2024.177392, 2024.
Lun, X., Lin, Y., Chai, F., Fan, C., Li, H., and Liu, J.: Reviews of emission of biogenic volatile organic compounds (BVOCs) in Asia, J. Environ. Sci., 95, 266–277, https://doi.org/10.1016/j.jes.2020.04.043, 2020.
Ndah, F. A., Maljanen, M., Rinnan, R., Bhattarai, H. R., Davie-Martin, C. L., Mikkonen, S., Michelsen, A., and Kivimäenpää, M.: Carbon and nitrogen-based gas fluxes in subarctic ecosystems under climate warming and increased cloudiness, Environ. Sci.: Atmos., 4, 942, https://doi.org/10.1039/d4ea00017j, 2024.
Ormeño, E., Gentner, D. R., Fares, S., Karlik, J., Park, J. H., and Goldstein, A. H.: Sesquiterpenoid emissions from agricultural crops: correlations to monoterpenoid emissions and leaf terpene content, Environ. Sci. Technol., 44, 3758–3764, https://doi.org/10.1021/es903674m, 2010.
Peñuelas, J. and Staudt, M.: BVOCs and global change, Trends Plant Sci., 15, 133–144, https://doi.org/10.1016/j.tplants.2009.12.005, 2010.
Préndez, M., Carvajal, V., Corada, K., Morales, J., Alarcon, F., and Peralta, H.: Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile, Environ. Pollut., 183, 143–150, https://doi.org/10.1016/j.envpol.2013.04.003, 2013.
Ren, J., Guo, F., and Xie, S.: Diagnosing ozone–NOx–VOC sensitivity and revealing causes of ozone increases in China based on 2013–2021 satellite retrievals, Atmos. Chem. Phys., 22, 15035–15047, https://doi.org/10.5194/acp-22-15035-2022, 2022.
Ren, Y., Ge, Y., Gu, B., Min, Y., Tani, A., Chang, J.: Role of management strategies and environmental factors in determining the emissions of biogenic volatile organic compounds from urban greenspaces, Environ. Sci. Technol., 48, 6237–6246, https://doi.org/10.1021/es4054434, 2014.
Rivas-Ruiz, R., Pérez-Rodríguez, M., and Talavera, J. O.: Clinical research XV. from the clinical judgment to the statistical model. Difference between means. Student's t test, Rev. Med. Inst. Mex. Seguro Soc., 51, 300–303, http://www.ncbi.nlm.nih.gov/pubmed/23883459 (last access: 10 May 2025), 2013.
Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., Hewitt, C. N., Janson, R., Khalil, M. A. K., Owen, S., Pierce, T. E., Puxbaum, H., Shearer, M., Skiba, U., Steinbrecher, R., Tarrasón, L., and Oquist, M. G.: Inventorying emissions from nature in Europe, J. Geophys. Res.-Atmos., 104, 8113−8152, https://doi.org/10.1029/98JD02747, 1999.
Stringari, G., Villanueva, J., Rosell-Melé, A., Moraleda-Cibrián, N., Orsini, F., Villalba, G., and Gabarrell, X.: Assessment of greenhouse emissions of the green bean through the static enclosure technique, Sci. Total Environ., 874, 162319, https://doi.org/10.1016/j.scitotenv.2023.162319, 2023.
Stringari, G., Villanueva, J., Appolloni, E., Orsini, F., Villalba, G., and Durany, X. G.: Measuring BVOC emissions released by tomato plants grown in a soilless integrated rooftop greenhouse, Heliyon, 10, e23854, https://doi.org/10.1016/j.heliyon.2023.e23854, 2024.
Sun, H., Lou, Y., Li, H., Di, X., and Gao, Z.: Unveiling the intrinsic mechanism of photoprotection in bamboo under high light, Ind. Crops Prod., 209, 118049, https://doi.org/10.1016/j.indcrop.2024.118049, 2024.
Tsui, J. K.-Y., Guenther, A., Yip, W.-K., and Chen, F.: A biogenic volatile organic compound emission inventory for Hong Kong, Atmos. Environ., 43, 6442–6448, https://doi.org/10.1016/j.atmosenv.2008.01.027, 2009.
Wanasinghe, D. N., Nimalrathna, T. S., Xian, L. Q., Faraj, T. K., Xu, J., and Mortimer, P. E.: Taxonomic novelties and global biogeography of Montagnula (Ascomycota, Didymosphaeriaceae), MycoKeys, 101, 191–232, https://doi.org/10.3897/mycokeys.101.113259, 2024.
Wang, C., Zhou, J., Xiao, H., Liu, J., and Wang, L.: Variations in leaf functional traits among plant species grouped by growth and leaf types in Zhenjiang, China, J. Forestry Res., 28, 241–248, https://doi.org/10.1007/s11676-016-0290-6, 2017.
Wang, J., Zhang, Y., Xiao, S., Wu, Z., and Wang, X.: Ozone formation at a suburban site in the Pearl River Delta region, China: role of biogenic volatile organic compounds, Atmosphere, 14, 609, https://doi.org/10.3390/atmos14040609, 2023a.
Wang, P., Zhang, Y., Gong, H., Zhang, H., Guenther, A., Zeng, J., Wang, T., and Wang, X.: Updating biogenic volatile organic compound (BVOC) emissions with locally measured emission rates in South China and the effect on modeled ozone and secondary organic aerosol production, J. Geophys. Res.-Atmos., 128, e2023JD039928, https://doi.org/10.1029/2023jd039928, 2023b.
Wang, Q., Han, Z., Wang, T., and Higano, Y.: An estimate of biogenic emissions of volatile organic compounds during summertime in China, Environ. Sci. Pollut. Res., 14, 69–75, https://doi.org/10.1065/espr2007.02.376, 2007.
Wei, D., Cao, C., Karambelas, A., Mak, J., Reinmann, A., and Commane, R.: High-resolution modeling of summertime biogenic isoprene emissions in New York city, Environ. Sci. Technol., 58, 13783–13794, https://doi.org/10.1021/acs.est.4c00495, 2024.
Wu, J.: Biogenic volatile organic compounds from 14 landscape woody species: Tree species selection in the construction of urban greenspace with forest healthcare effects, J. Environ. Manag., 300, 113761, https://doi.org/10.1016/j.jenvman.2021.113761, 2021.
Xu, X. L., Liu, J. Y., Zhang, S. W., Li, R. D., Yan, C. Z., and Wu, S. X.: The China multi-period land use/cover change remote sensing monitoring dataset (CNLUCC), Resource and Environmental Science Date Platform [data set], https://doi.org/10.12078/2018070201, 2020.
Yan, Y., Wang, Z., Bai, Y., Xie, S., and Shao, M.: Establishment of vegetation VOC emission inventory in China, China Environ. Sci., 25, 111–115. 2005.
Yan, Y. D., Zhou, L., and Wang, S. G.: Floral Morphology and Development of Female and Male Gametophytes of Bambusa textilis, Forest Research, 37, 150–158, https://doi.org/10.12403/j.1001-1498.20230222, 2024.
Yang, W., Zhang, B., Wu, Y., Liu, S., Kong, F., and Li, L.: Effects of soil drought and nitrogen deposition on BVOC emissions and their O3 and SOA formation for Pinus thunbergii, Environ. Pollut., 316, 120693, https://doi.org/10.1016/j.envpol.2022.120693, 2023.
Zhang, B., Qiao, L., Han, H., Xie, W., and Li, L.: Variations in VOCs emissions and their O3 and SOA formation potential among different ages of plant foliage, Toxics, 11, 645, https://doi.org/10.3390/toxics11080645, 2023.
Zhang, B., Jia, Y., Bai, G., Han, H., Yang, W., Xie, W., and Li, L.: Characterizing BVOC emissions of common plant species in northern China using real world measurements: Towards strategic species selection to minimize ozone forming potential of urban greening, Urban Fore. Urban Green., 96, 128341, https://doi.org/10.1016/j.ufug.2024.128341, 2024.
Zeng, J., Zhang, Y., Pang, W., Ran, H., Guo, H., Song, W., and Wang, X.: Optimizing in-situ measurement of representative BVOC emission factors considering intraspecific variability, Geophys. Res. Lett., 51, e2024GL108870, https://doi.org/10.1029/2024GL108870, 2024.
Short summary
Chinese biogenic volatile organic compound (BVOC) emission estimate mainly applies global emission rates, causing its high uncertainty. We established a localized plant species-specific BVOC emission rate library using a developed statistical approach, based on local measurements. The usage of library can improve the emission model performance by better catching the spatial variations of emissions.
Chinese biogenic volatile organic compound (BVOC) emission estimate mainly applies global...
Altmetrics
Final-revised paper
Preprint