Articles | Volume 25, issue 17
https://doi.org/10.5194/acp-25-9999-2025
https://doi.org/10.5194/acp-25-9999-2025
Research article
 | 
09 Sep 2025
Research article |  | 09 Sep 2025

Synthesis of surface snowfall rates and radar-observed storm structures in 10+ years of northeastern US winter storms

Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms

Related authors

Hunting for gravity waves in non-orographic winter storms using 3+ years of regional surface air pressure network and radar observations
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Chem. Phys., 25, 1765–1790, https://doi.org/10.5194/acp-25-1765-2025,https://doi.org/10.5194/acp-25-1765-2025, 2025
Short summary
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024,https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Objective identification of pressure wave events from networks of 1 Hz, high-precision sensors
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Meas. Tech., 17, 113–134, https://doi.org/10.5194/amt-17-113-2024,https://doi.org/10.5194/amt-17-113-2024, 2024
Short summary
Image muting of mixed precipitation to improve identification of regions of heavy snow in radar data
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen
Atmos. Meas. Tech., 15, 5515–5525, https://doi.org/10.5194/amt-15-5515-2022,https://doi.org/10.5194/amt-15-5515-2022, 2022
Short summary
Detecting wave features in Doppler radial velocity radar observations
Matthew A. Miller, Sandra E. Yuter, Nicole P. Hoban, Laura M. Tomkins, and Brian A. Colle
Atmos. Meas. Tech., 15, 1689–1702, https://doi.org/10.5194/amt-15-1689-2022,https://doi.org/10.5194/amt-15-1689-2022, 2022
Short summary

Cited articles

Ansari, S., Greco, S. D., Kearns, E., Brown, O., Wilkins, S., Ramamurthy, M., Weber, J., May, R., Sundwall, J., Layton, J., Gold, A., Pasch, A., and Lakshmanan, V.: Unlocking the Potential of NEXRAD Data through NOAA's Big Data Partnership, B. Am. Meteorol. Soc., 99, 189–204, https://doi.org/10.1175/BAMS-D-16-0021.1, 2018. a
Baxter, M. A. and Schumacher, P. N.: Distribution of Single-Banded Snowfall in Central U.S. Cyclones, Weather Forecast., 32, 533–554, https://doi.org/10.1175/WAF-D-16-0154.1, 2017. a
Bentley, A. M., Bosart, L. F., and Keyser, D.: A Climatology of Extratropical Cyclones Leading to Extreme Weather Events over Central and Eastern North America, Mon. Weather Rev., 147, 1471–1490, https://doi.org/10.1175/MWR-D-18-0453.1, 2019. a
Bruce, J. P. and Clark, R. H.: Introduction to Hydrometeorology, Pergamon Press Ltd., London, ISBN 9780080117140, ISBN 0080117147, 1966. a
Clark, J. H. E., James, R. P., and Grumm, R. H.: A Reexamination of the Mechanisms Responsible for Banded Precipitation, Mon. Weather Rev., 130, 3074–3086, https://doi.org/10.1175/1520-0493(2002)130<3074:AROTMR>2.0.CO;2, 2002. a
Download
Short summary
This study investigates how radar-detected snow bands relate to snowfall rates during winter storms in the northeastern United States. Using over a decade of data, we found that snow bands are not consistently linked to heavy snowfall at the surface, as snow particles are often dispersed by wind before reaching the ground. These findings highlight limitations of using radar reflectivity for predicting snow rates and suggest focusing on radar echo duration to better understand snowfall patterns.
Share
Altmetrics
Final-revised paper
Preprint