Articles | Volume 25, issue 10
https://doi.org/10.5194/acp-25-5313-2025
https://doi.org/10.5194/acp-25-5313-2025
Research article
 | 
27 May 2025
Research article |  | 27 May 2025

The critical number and size of precipitation embryos to accelerate warm rain initiation

Jung-Sub Lim, Yign Noh, Hyunho Lee, and Fabian Hoffmann

Related authors

On the processes determining the slope of cloud water adjustments in weakly and non-precipitating stratocumulus
Fabian Hoffmann, Yao-Sheng Chen, and Graham Feingold
Atmos. Chem. Phys., 25, 8657–8670, https://doi.org/10.5194/acp-25-8657-2025,https://doi.org/10.5194/acp-25-8657-2025, 2025
Short summary
Aerosol-Cloud Interactions in Marine Low-Clouds in a Warmer Climate
Prasanth Prabhakaran, Timothy A. Myers, Fabian Hoffmann, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2025-2935,https://doi.org/10.5194/egusphere-2025-2935, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus
Yao-Sheng Chen, Prasanth Prabhakaran, Fabian Hoffmann, Jan Kazil, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 25, 6141–6159, https://doi.org/10.5194/acp-25-6141-2025,https://doi.org/10.5194/acp-25-6141-2025, 2025
Short summary
Opinion: Inferring Process from Snapshots of Cloud Systems
Graham Feingold, Franziska Glassmeier, Jianhao Zhang, and Fabian Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-1869,https://doi.org/10.5194/egusphere-2025-1869, 2025
Short summary
The Chemical Mechanism Integrator Cminor v1.0: A Stand-Alone Fortran Environment for the Particle-Based Simulation of Chemical Multiphase Mechanisms
Levin Rug, Willi Schimmel, Fabian Hoffmann, and Oswald Knoth
EGUsphere, https://doi.org/10.5194/egusphere-2025-380,https://doi.org/10.5194/egusphere-2025-380, 2025
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Building a comprehensive library of observed Lagrangian trajectories for testing modeled cloud evolution, aerosol–cloud interactions, and marine cloud brightening
Ehsan Erfani, Robert Wood, Peter Blossey, Sarah J. Doherty, and Ryan Eastman
Atmos. Chem. Phys., 25, 8743–8768, https://doi.org/10.5194/acp-25-8743-2025,https://doi.org/10.5194/acp-25-8743-2025, 2025
Short summary
On the processes determining the slope of cloud water adjustments in weakly and non-precipitating stratocumulus
Fabian Hoffmann, Yao-Sheng Chen, and Graham Feingold
Atmos. Chem. Phys., 25, 8657–8670, https://doi.org/10.5194/acp-25-8657-2025,https://doi.org/10.5194/acp-25-8657-2025, 2025
Short summary
Ambient and intrinsic dependencies of evolving ice-phase particles within a decaying winter storm during IMPACTS
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 25, 8087–8106, https://doi.org/10.5194/acp-25-8087-2025,https://doi.org/10.5194/acp-25-8087-2025, 2025
Short summary
High-resolution modeling of early contrail evolution from hydrogen-powered aircraft
Annemarie Lottermoser and Simon Unterstrasser
Atmos. Chem. Phys., 25, 7903–7924, https://doi.org/10.5194/acp-25-7903-2025,https://doi.org/10.5194/acp-25-7903-2025, 2025
Short summary
Accelerated impact of airborne glaciogenic seeding of stratiform clouds by turbulence
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Atmos. Chem. Phys., 25, 7581–7596, https://doi.org/10.5194/acp-25-7581-2025,https://doi.org/10.5194/acp-25-7581-2025, 2025
Short summary

Cited articles

Alfonso, L. and Raga, G. B.: The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 1: Numerical calculation of post-gel droplet size distribution, Atmos. Chem. Phys., 17, 6895–6905, https://doi.org/10.5194/acp-17-6895-2017, 2017. a
Alfonso, L., Raga, G. B., and Baumgardner, D.: The validity of the kinetic collection equation revisited – Part 3: Sol–gel transition under turbulent conditions, Atmos. Chem. Phys., 13, 521–529, https://doi.org/10.5194/acp-13-521-2013, 2013. a, b
Alfonso, L., Raga, G. B., and Baumgardner, D.: The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 2: Observational evidence of gel formation in warm clouds, Atmos. Chem. Phys., 19, 14917–14932, https://doi.org/10.5194/acp-19-14917-2019, 2019. a, b
Ayala, O., Rosa, B., and Wang, L.-P.: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization, New J. Phys., 10, 075016, https://doi.org/10.1088/1367-2630/10/9/099802, 2008. a
Baker, M., Corbin, R., and Latham, J.: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing, Q. J. Roy. Meteor. Soc., 106, 581–598, https://doi.org/10.1002/qj.49710644914, 1980. a
Download
Short summary
Rain formation in warm clouds begins when small droplets collide, but this process can be slow without larger droplets. We used simulations to explore the role of bigger droplets, known as precipitation embryos, in triggering rain. We found that they speed up rain only when their size and number exceed a critical threshold. This threshold becomes larger when collisions are naturally efficient, such as in clouds with broad droplet size distributions or strong turbulence. 
Share
Altmetrics
Final-revised paper
Preprint