Articles | Volume 25, issue 7
https://doi.org/10.5194/acp-25-4053-2025
https://doi.org/10.5194/acp-25-4053-2025
Research article
 | 
10 Apr 2025
Research article |  | 10 Apr 2025

Momentum flux characteristics of vertically propagating gravity waves

Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Erdal Yiğit, Vera Y. Tsali-Brown, Ricardo A. Buriti, Cosme A. O. B. Figueiredo, Gabriel A. Giongo, Fábio Egito, Oluwasegun M. Adebayo, Hisao Takahashi, and Delano Gobbi

Related authors

Medium-scale gravity waves observational methodology for antarctic airglow observations
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3344,https://doi.org/10.5194/egusphere-2024-3344, 2024
Short summary
Studies on the propagation dynamics and source mechanism of quasi-monochromatic gravity waves observed over São Martinho da Serra (29° S, 53° W), Brazil
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024,https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary
Sources of concentric gravity waves generated by a moving mesoscale convective system in southern Brazil
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022,https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Extreme Concentric Gravity Waves Observed in the Mesosphere and Thermosphere Regions over Southern Brazil Associated with Fast-Moving Severe Thunderstorms
Qinzeng Li, Jiyao Xu, Yajun Zhu, Cristiano M. Wrasse, José V. Bageston, Wei Yuan, Xiao Liu, Weijun Liu, Ying Wen, Hui Li, and Zhengkuan Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1417,https://doi.org/10.5194/egusphere-2025-1417, 2025
Short summary
Did the 2022 Hunga eruption impact the noctilucent cloud season in 2023/24 and 2024?
Sandra Wallis, Matthew DeLand, and Christian von Savigny
Atmos. Chem. Phys., 25, 3635–3645, https://doi.org/10.5194/acp-25-3635-2025,https://doi.org/10.5194/acp-25-3635-2025, 2025
Short summary
Lidar measurements of noctilucent clouds at Río Grande, Tierra del Fuego, Argentina
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
Atmos. Chem. Phys., 24, 14029–14044, https://doi.org/10.5194/acp-24-14029-2024,https://doi.org/10.5194/acp-24-14029-2024, 2024
Short summary
Upper-atmosphere responses to the 2022 Hunga Tonga–Hunga Ha′apai volcanic eruption via acoustic gravity waves and air–sea interaction
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024,https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary
Influences of sudden stratospheric warmings on the ionosphere above Okinawa
Klemens Hocke, Wenyue Wang, and Guanyi Ma
Atmos. Chem. Phys., 24, 5837–5846, https://doi.org/10.5194/acp-24-5837-2024,https://doi.org/10.5194/acp-24-5837-2024, 2024
Short summary

Cited articles

Bageston, J. V., Wrasse, C. M., Batista, P. P., Hibbins, R. E., C Fritts, D., Gobbi, D., and Andrioli, V. F.: Observation of a mesospheric front in a thermal-doppler duct over King George Island, Antarctica, Atmos. Chem. Phys., 11, 12137–12147, https://doi.org/10.5194/acp-11-12137-2011, 2011. a, b, c, d
Becker, E. and Schmitz, G.: Climatological Effects of Orography and Land–Sea Heating Contrasts on the Gravity Wave–Driven Circulation of the Mesosphere, J. Atmos. Sci., 60, 103–118, https://doi.org/10.1175/1520-0469(2003)060<0103:CEOOAL>2.0.CO;2, 2003. a
Bowman, K. P.: An Introduction to Programming with IDL: Interactive data language, Elsevier, https://doi.org/10.1016/B978-0-12-088559-6.X5000-6, 2006. a
Buriti, R., Takahashi, H., and Gobbi, D.: First results from mesospheric airglow observations at 7.5° S., Rev. Bras. Geofisica, 19, 169–176, 2001. a
Chimonas, G. and Hines, C.: Doppler ducting of atmospheric gravity waves, J. Geophys. Res.-Atmos., 91, 1219–1230, 1986. a
Download
Short summary
This work explores the dynamics of the momentum and energy of propagating mesospheric gravity waves (GWs). A photometer was used to observe the vertical component of the GWs, whereas the horizontal component was observed by an all-sky imager. Using the parameters from these two instruments and background wind from meteor radar, the momentum flux and potential energy of the GWs were determined and studied. It is noted that the dynamics of the downward-propagating GWs were controlled by observed ducts.
Share
Altmetrics
Final-revised paper
Preprint