Articles | Volume 25, issue 7
https://doi.org/10.5194/acp-25-4053-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-4053-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Momentum flux characteristics of vertically propagating gravity waves
Prosper K. Nyassor
CORRESPONDING AUTHOR
Space Weather Division, National Institute of Space Research (INPE), São José dos Campos, Brazil
Cristiano M. Wrasse
Space Weather Division, National Institute of Space Research (INPE), São José dos Campos, Brazil
Igo Paulino
Academic Unit of Physics, Federal University of Campina Grande (UFCG), Campina Grande, Brazil
Erdal Yiğit
Department of Physics and Astronomy, George Mason University, Fairfax, VA, USA
Vera Y. Tsali-Brown
Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, Brazil
Ricardo A. Buriti
Academic Unit of Physics, Federal University of Campina Grande (UFCG), Campina Grande, Brazil
Cosme A. O. B. Figueiredo
Academic Unit of Physics, Federal University of Campina Grande (UFCG), Campina Grande, Brazil
Gabriel A. Giongo
Space Weather Division, National Institute of Space Research (INPE), São José dos Campos, Brazil
Fábio Egito
Academic Unit of Physics, Federal University of Campina Grande (UFCG), Campina Grande, Brazil
Oluwasegun M. Adebayo
Division of Heliophysics, Planetary Science and Aeronomy, INPE, São José dos Campos, Brazil
Hisao Takahashi
Space Weather Division, National Institute of Space Research (INPE), São José dos Campos, Brazil
Delano Gobbi
Space Weather Division, National Institute of Space Research (INPE), São José dos Campos, Brazil
Related authors
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Tracy Moffat-Griffin, Damian John Murphy, Toyese Tunde Ayorinde, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3114, https://doi.org/10.5194/egusphere-2025-3114, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This work analyzes the medium-scale atmospheric gravity waves observed by ground-based airglow imaging over the Antarctic continent. Medium-scale gravity waves refer to waves larger than 50 km of horizontal wavelength, and have not been analyzed in that region so far. Wave parameters and horizontal propagation characteristics were obtained by a recently improved methodology and are described thoroughly.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3344, https://doi.org/10.5194/egusphere-2024-3344, 2024
Short summary
Short summary
A new algorithm for medium-scale gravity waves analysis was developed for studies of gravity waves observed by airglow imaging. With this procedure, observation datasets can be analyzed to extract the gravity waves parameters for climatological purposes. The procedure showed reliable performance and are ready to be used in other observation sites.
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024, https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary
Short summary
This present work investigates the propagation dynamics and the sources–source mechanisms of quasi-monochromatic gravity waves (QMGWs) observed between April 2017 and April 2022 at São Martinho da Serra. The QMGW parameters were estimated using a 2D spectral analysis, and their source locations were identified using a backward ray-tracing model. Furthermore, the propagation conditions, sources, and source mechanisms of the QMGWs were extensively studied.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Qinzeng Li, Jiyao Xu, Yajun Zhu, Cristiano M. Wrasse, José V. Bageston, Wei Yuan, Xiao Liu, Weijun Liu, Ying Wen, Hui Li, and Zhengkuan Liu
Atmos. Chem. Phys., 25, 9719–9736, https://doi.org/10.5194/acp-25-9719-2025, https://doi.org/10.5194/acp-25-9719-2025, 2025
Short summary
Short summary
This study explores intense concentric gravity waves (CGWs) based on ground-based and multi-satellite observations over southern Brazil, revealing significant airglow perturbations and strong momentum release. Triggered by deep convection and enabled by weaker wind fields, these CGWs reached the mesopause and thermosphere. Consistent detection via OI and OH airglow emissions confirms their vertical propagation, while asymmetric thermosphere propagation is linked to Doppler-induced wavelength changes.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Tracy Moffat-Griffin, Damian John Murphy, Toyese Tunde Ayorinde, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3114, https://doi.org/10.5194/egusphere-2025-3114, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This work analyzes the medium-scale atmospheric gravity waves observed by ground-based airglow imaging over the Antarctic continent. Medium-scale gravity waves refer to waves larger than 50 km of horizontal wavelength, and have not been analyzed in that region so far. Wave parameters and horizontal propagation characteristics were obtained by a recently improved methodology and are described thoroughly.
Ana Roberta Paulino, Igo Paulino, and José Augusto Pereira
EGUsphere, https://doi.org/10.5194/egusphere-2025-3085, https://doi.org/10.5194/egusphere-2025-3085, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
In this paper, atmospheric responses to the 23 October 2023 annular solar eclipse is discussed considering almost simultaneous temperature measurements from the TIMED/SABER satellite. Reductions of the temperature in troposphere, mesosphere and mesopause were observed. On the other hand, the temperature increased by about 7 K around 33 km. The temporal and spatial configuration of the measurements is consistent with the observed structures.
Ana Roberta Paulino, Delis Otildes Rodrigues, Igo Paulino, Lourivaldo Mota Lima, Ricardo Arlen Buriti, Paulo Prado Batista, Aaron Ridley, and Chen Wu
Ann. Geophys., 43, 183–191, https://doi.org/10.5194/angeo-43-183-2025, https://doi.org/10.5194/angeo-43-183-2025, 2025
Short summary
Short summary
Comparisons of wind measurements using two different techniques (ground-based radar and satellite) in Brazil during 2006 were made in order to point out the advantages of each instrument for studies in the mesosphere and upper thermosphere. (i) For short-period variations, the measurements of the satellite were more advantageous. (ii) The monthly climatology using the radar was more appropriate. (iii) For long periods (longer than a few months), both instruments responded satisfactorily.
Josemaria Gomez Socola, Fabiano S. Rodrigues, Isaac G. Wright, Igo Paulino, and Ricardo Buriti
Atmos. Meas. Tech., 18, 909–919, https://doi.org/10.5194/amt-18-909-2025, https://doi.org/10.5194/amt-18-909-2025, 2025
Short summary
Short summary
New low-cost, off-the-shelf Global Navigation Satellite System (GNSS) receivers enable the estimation of zonal ionospheric irregularity drifts using the scintillation spaced-receiver technique, previously tested only with commercial GNSS receivers. Despite their low C/No resolution (1 dB-Hz), we demonstrate that the recorded raw data can be used to estimate irregularity drifts. Further, our observations are consistent with the behavior of an empirical model of the thermospheric winds (HMW14).
Toyese Tunde Ayorinde, Cristiano Max Wrasse, Hisao Takahashi, Luiz Fernando Sapucci, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Ligia Alves da Silva, Patrick Essien, and Anderson Vestena Bilibio
EGUsphere, https://doi.org/10.5194/egusphere-2024-4083, https://doi.org/10.5194/egusphere-2024-4083, 2025
Short summary
Short summary
We studied how the Intertropical Convergence Zone (ITCZ) interacts with atmospheric gravity waves high in the sky and how global climate patterns like El Niño affect them. Using RO, ERA5, and NCEP reanalysis data, we found that the ITCZ shifts with seasons but stays strong year-round, influencing weather and energy flow. Our findings show how climate patterns shape weather systems and help predict changes, improving understanding of the atmosphere and its effects on global climate.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3344, https://doi.org/10.5194/egusphere-2024-3344, 2024
Short summary
Short summary
A new algorithm for medium-scale gravity waves analysis was developed for studies of gravity waves observed by airglow imaging. With this procedure, observation datasets can be analyzed to extract the gravity waves parameters for climatological purposes. The procedure showed reliable performance and are ready to be used in other observation sites.
Oluwasegun M. Adebayo, Esfhan A. Kherani, and Alexandre A. Pimenta
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-16, https://doi.org/10.5194/angeo-2024-16, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
We studied a deep-focus earthquake's impact in the Brazilian region using GNSS and seismic data, finding that it caused ionospheric disturbances, known as ionoquakes. These disturbances, detected 8.3 minutes after the quake, traveled at speeds of 550 to 743 m/s and were characterized by distinct wave patterns. This is the first report of such disturbances from a deep earthquake in Brazil.
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024, https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary
Short summary
This present work investigates the propagation dynamics and the sources–source mechanisms of quasi-monochromatic gravity waves (QMGWs) observed between April 2017 and April 2022 at São Martinho da Serra. The QMGW parameters were estimated using a 2D spectral analysis, and their source locations were identified using a backward ray-tracing model. Furthermore, the propagation conditions, sources, and source mechanisms of the QMGWs were extensively studied.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Hisao Takahashi, Cosme A. O. B. Figueiredo, Patrick Essien, Cristiano M. Wrasse, Diego Barros, Prosper K. Nyassor, Igo Paulino, Fabio Egito, Geangelo M. Rosa, and Antonio H. R. Sampaio
Ann. Geophys., 40, 665–672, https://doi.org/10.5194/angeo-40-665-2022, https://doi.org/10.5194/angeo-40-665-2022, 2022
Short summary
Short summary
We observed two different wave propagations in the earth’s upper atmosphere: a gravity wave in the mesosphere and the ionospheric disturbances. We investigated the wave propagations by using airglow imaging techniques. It is found that there was a gravity wave generation from the tropospheric convection spot, and it propagated upward in the ionosphere. This reports observational evidence of gravity wave propagation from the troposphere to ionosphere.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Igo Paulino, Ana Roberta Paulino, Amauri F. Medeiros, Cristiano M. Wrasse, Ricardo Arlen Buriti, and Hisao Takahashi
Ann. Geophys., 39, 1005–1012, https://doi.org/10.5194/angeo-39-1005-2021, https://doi.org/10.5194/angeo-39-1005-2021, 2021
Short summary
Short summary
In the present work, the lunar semidiurnal tide (M2) was investigated in the equatorial plasma bubble (EPB) zonal drifts over Brazil from 2000 to 2007. On average, the M2 contributes 5.6 % to the variability of the EPB zonal drifts. A strong seasonal and solar cycle dependency was also observed, the amplitudes of the M2 being stronger during the summer and high solar activity periods.
Ana Roberta Paulino, Fabiano da Silva Araújo, Igo Paulino, Cristiano Max Wrasse, Lourivaldo Mota Lima, Paulo Prado Batista, and Inez Staciarini Batista
Ann. Geophys., 39, 151–164, https://doi.org/10.5194/angeo-39-151-2021, https://doi.org/10.5194/angeo-39-151-2021, 2021
Short summary
Short summary
Long- and short-period oscillations in the lunar semidiurnal tidal amplitudes in the ionosphere derived from the total electron content were investigated over Brazil from 2011 to 2014. The results showed annual, semiannual and triannual oscillations as the dominant components. Additionally, the most pronounced short-period oscillations were observed between 7 and 11 d, which suggest a possible coupling of the lunar tide and planetary waves.
Ricardo A. Buriti, Wayne Hocking, Paulo P. Batista, Igo Paulino, Ana R. Paulino, Marcial Garbanzo-Salas, Barclay Clemesha, and Amauri F. Medeiros
Ann. Geophys., 38, 1247–1256, https://doi.org/10.5194/angeo-38-1247-2020, https://doi.org/10.5194/angeo-38-1247-2020, 2020
Short summary
Short summary
Solar atmospheric tides are natural oscillations of 24, 12, 8... hours that contribute to the circulation of the atmosphere from low to high altitudes. The Sun heats the atmosphere periodically because, mainly, water vapor and ozone absorb solar radiation between the ground and 50 km height during the day. Tides propagate upward and they can be observed in, for example, the wind field. This work presents diurnal tides observed by meteor radars which measure wind between 80 and 100 km height.
Cited articles
Bageston, J. V., Wrasse, C. M., Batista, P. P., Hibbins, R. E., C Fritts, D., Gobbi, D., and Andrioli, V. F.: Observation of a mesospheric front in a thermal-doppler duct over King George Island, Antarctica, Atmos. Chem. Phys., 11, 12137–12147, https://doi.org/10.5194/acp-11-12137-2011, 2011. a, b, c, d
Becker, E. and Schmitz, G.: Climatological Effects of Orography and Land–Sea Heating Contrasts on the Gravity Wave–Driven Circulation of the Mesosphere, J. Atmos. Sci., 60, 103–118, https://doi.org/10.1175/1520-0469(2003)060<0103:CEOOAL>2.0.CO;2, 2003. a
Bowman, K. P.: An Introduction to Programming with IDL: Interactive data language, Elsevier, https://doi.org/10.1016/B978-0-12-088559-6.X5000-6, 2006. a
Buriti, R., Takahashi, H., and Gobbi, D.: First results from mesospheric airglow observations at 7.5° S., Rev. Bras. Geofisica, 19, 169–176, 2001. a
Chimonas, G. and Hines, C.: Doppler ducting of atmospheric gravity waves, J. Geophys. Res.-Atmos., 91, 1219–1230, 1986. a
Chou, M. Y., Lin, C. C., Yue, J., Tsai, H. F., Sun, Y. Y., Liu, J. Y., and Chen, C. H.: Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016), Geophys. Res. Lett., 44, 1219–1226, https://doi.org/10.1002/2016GL072205, 2017. a
EMBRACE: Estudo e Monitoramento Brasileiro do Clima Espacial – EMBRACE/INPE, EMBRACE [data set], http://www2.inpe.br/climaespacial/portal/en (last access: 19 May 2024), 2024. a
Figueiredo, C., Takahashi, H., Wrasse, C., Otsuka, Y., Shiokawa, K., and Barros, D.: Investigation of nighttime MSTIDS observed by optical thermosphere imagers at low latitudes: Morphology, propagation direction, and wind filtering, J. Geophys. Res.-Space, 123, 7843–7857, https://doi.org/10.1029/2018JA025438, 2018. a, b
Figueiredo, C., Vadas, S., Becker, E., Wrasse, C., Takahashi, H., Nyassor, P., and Barros, D.: Secondary gravity waves from the Tonga volcano eruption: Observation and modeling over New Zealand and Australia, J. Geophys. Res.-Space, 128, e2023JA031476, https://doi.org/10.1029/2023JA031476, 2023. a
Fritts, D. C., Janches, D., Riggin, D. M., Stockwell, R. G., Sulzer, M. P., and Gonzalez, S.: Gravity waves and momentum fluxes in the mesosphere and lower thermosphere using 430 MHz dual-beam measurements at Arecibo: 2. Frequency spectra, momentum fluxes, and variability, J. Geophys. Res.-Atmos., 111, D18108, https://doi.org/10.1029/2005JD006883, 2006. a, b
Heale, C. and Snively, J.: Gravity wave propagation through a vertically and horizontally inhomogeneous background wind, J. Geophys. Res.-Atmos., 120, 5931–5950, https://doi.org/10.1002/2015JD023505, 2015. a
Heale, C. J., Bossert, K., Vadas, S. L., Hoffmann, L., Dörnbrack, A., Stober, G., Snively, J., and Jacobi, C.: Secondary gravity waves generated by breaking mountain waves over Europe, J. Geophys. Res.-Atmos., 125, e2019JD031662, https://doi.org/10.1029/2019JD031662, 2020. a, b
Holton, J. R.: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere, J. Atmos. Sci., 39, 791–799, https://doi.org/10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2, 1982. a
Innis, J. L., Phillips, F. A., Burns, G. B., Greet, P. A., French, W. J. R., and Dyson, P. L.: Mesospheric temperatures from observations of the hydroxyl (6–2) emission above Davis, Antarctica: A comparison of rotational and Doppler measurements, Ann. Geophys., 19, 359–365, https://doi.org/10.5194/angeo-19-359-2001, 2001. a
Isler, J. R., Taylor, M. J., and Fritts, D. C.: Observational evidence of wave ducting and evanescence in the mesosphere, J. Geophys. Res.-Atmos., 102, 26301–26313, 1997. a
Kaifler, N., Kaifler, B., Ehard, B., Gisinger, S., Dörnbrack, A., Rapp, M., Kivi, R., Kozlovsky, A., Lester, M., and Liley, B.: Observational indications of downward-propagating gravity waves in middle atmosphere lidar data, J. Atmos. Sol.-Terr. Phy., 162, 16–27, 2017. a
Kaifler, N., Kaifler, B., Dörnbrack, A., Rapp, M., Hormaechea, J. L., and de la Torre, A.: Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina, Sci. Rep., 10, 14529, https://doi.org/10.1038/s41598-020-71443-7, 2020. a, b
Kogure, M., Yue, J., Nakamura, T., Hoffmann, L., Vadas, S. L., Tomikawa, Y., Ejiri, M. K., and Janches, D.: First Direct Observational Evidence for Secondary Gravity Waves Generated by Mountain Waves Over the Andes, Geophys. Res. Lett., 47, e2020GL088845, https://doi.org/10.1029/2020GL088845, 2020. a
Kubota, M., Fukunishi, H., and Okano, S.: Characteristics of medium-and large-scale TIDs over Japan derived from OI 630-nm nightglow observation, Earth Planets Space, 53, 741–751, 2001. a
Le Du, T., Keckhut, P., Hauchecorne, A., and Simoneau, P.: Observation of gravity wave vertical propagation through a mesospheric inversion layer, Atmosphere, 13, 1003, https://doi.org/10.3390/atmos13071003, 2022. a
Li, Q., Xu, J., Liu, H., Liu, X., and Yuan, W.: How do gravity waves triggered by a typhoon propagate from the troposphere to the upper atmosphere?, Atmos. Chem. Phys., 22, 12077–12091, https://doi.org/10.5194/acp-22-12077-2022, 2022. a
Lima, L., Batista, P., Takahashi, H., and Clemesha, B.: Quasi-two-day wave observed by meteor radar at 22.7° S, J. Atmos. Sol.-Terr. Phy., 66, 529–537, 2004. a
Lindzen, R. S.: Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res.-Oceans, 86, 9707–9714, https://doi.org/10.1029/JC086iC10p09707, 1981. a
Love, P. T. and Murphy, D. J.: Gravity wave momentum flux in the mesosphere measured by VHF radar at Davis, Antarctica, J. Geophys. Res.-Atmos., 121, 12–723, https://doi.org/10.1002/2016JD025627, 2016. a, b, c
Maekawa, R.: Observations of gravity waves in the mesopause region by multicolor airglow imaging, Master Thesis, Kyoto University, 2000. a
Medeiros, A., Taylor, M. J., Takahashi, H., Batista, P., and Gobbi, D.: An investigation of gravity wave activity in the low-latitude upper mesosphere: Propagation direction and wind filtering, J. Geophys. Res.-Atmos., 108, 1–8, https://doi.org/10.1029/2002JD002593, 2003. a
Medvedev, A. S., Klaassen, G. P., and Yiğit, E.: On the dynamical importance of gravity wave sources distributed over different heights in the atmosphere, J. Geophys. Res.-Space, 128, e2022JA031152, https://doi.org/10.1029/2022JA031152, 2023. a
Nappo, C. J.: An introduction to atmospheric gravity waves, Academic Press, Ed. 2, ISBN-13 978-0123852236, 2013. a
Narayanan, V. L., Wright, C., Mlynczak, M., Hindley, N., Kavanagh, A., Moffat-Griffin, T., and Noble, P.: Observations of mesospheric gravity waves generated by geomagnetic activity, J. Geophys. Res.-Space, 129, e2023JA032157, https://doi.org/10.1029/2023JA032157, 2024. a
Nyassor, P. K., Buriti, R. A., Paulino, I., Medeiros, A. F., Takahashi, H., Wrasse, C. M., and Gobbi, D.: Determination of gravity wave parameters in the airglow combining photometer and imager data, Ann. Geophys., 36, 705–715, https://doi.org/10.5194/angeo-36-705-2018, 2018. a, b, c, d, e, f, g, h, i
Nyassor, P. K., Wrasse, C. M., Gobbi, D., Paulino, I., Vadas, S. L., Naccarato, K. P., Takahashi, H., Bageston, J. V., Figueiredo, C. A. O. B., and Barros, D.: Case Studies on Concentric Gravity Waves Source Using Lightning Flash Rate, Brightness Temperature and Backward Ray Tracing at São Martinho da Serra (29.44° S, 53.82° W), J. Geophys. Res.-Atmos., 126, e2020JD034527, https://doi.org/10.1029/2020JD034527, 2021. a, b
Nyassor, P. K., Wrasse, C. M., Paulino, I., Gobbi, D., Yiğit, E., Takahashi, H., Batista, P. P., Naccarato, K. P., Buriti, R. A., Paulino, A. R., Barros, D., and Figueiredo, C. A. O. B.: Investigations on Concentric Gravity Wave Sources Over the Brazilian Equatorial Region, J. Geophys. Res.-Atmos., 127, e2021JD035149, https://doi.org/10.1029/2021JD035149, 2022a. a
Nyassor, P. K., Wrasse, C. M., Paulino, I., São Sabbas, E. F. M. T., Bageston, J. V., Naccarato, K. P., Gobbi, D., Figueiredo, C. A. O. B., Ayorinde, T. T., Takahashi, H., and Barros, D.: Sources of concentric gravity waves generated by a moving mesoscale convective system in southern Brazil, Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, 2022b. a
Paulino, I., Figueiredo, C. A. O. B., Rodrigues, F. S., Buriti, R. A., Wrasse, C. M., Paulino, A. R., Barros, D., Takahashi, H., Batista, I. S., Medeiros, A. F., Batista, P. P., Abdu, M. A., de Paula, E. R., Denardini, C. M., Lima, L. M., Cueva, R. Y., and Makela, J. J.: Atmospheric Gravity Waves Observed in the Nightglow Following the 21 August 2017 Total Solar Eclipse, Geophys. Res. Lett., 47, e2020GL088924, https://doi.org/10.1029/2020GL088924, 2020. a
Roach, F. E.: The light of the night sky, vol. 8, Springer Science & Business Media, https://doi.org/10.1007/978-94-010-2553-9, 2013. a
SABER: Sounding of the Atmosphere using Broadband Emission Radiometry/Thermosphere Ionosphere Mesosphere Energetics Dynamics (SABER/TIMED), https://saber.gats-inc.com/data.php (last access: 25 November 2024), 2024. a
Sato, K. and Yoshiki, M.: Gravity wave generation around the polar vortex in the stratosphere revealed by 3-hourly radiosonde observations at Syowa Station, J. Atmos. Sci., 65, 3719–3735, https://doi.org/10.1175/2008JAS2539.1, 2008. a
Schöch, A., Baumgarten, G., Fritts, D., Hoffmann, P., Serafimovich, A., Wang, L., Dalin, P., Müllemann, A., and Schmidlin, F.: Gravity waves in the troposphere and stratosphere during the MaCWAVE/MIDAS summer rocket program, Geophys. Res. Lett., 31, 1–4, https://doi.org/10.1029/2004GL019837, 2004. a
Sentman, D., Wescott, E., Picard, R., Winick, J., Stenbaek-Nielsen, H., Dewan, E., Moudry, D., Sao Sabbas, F., Heavner, M., and Morrill, J.: Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm, J. Atmos. Sol.-Terr. Phy., 65, 537–550, https://doi.org/10.1016/S1364-6826(02)00328-0, 2003. a
Silverman, S.: Night airglow phenomenology, Space Sci. Rev., 11, 341–379, 1970. a
Sivjee, G. and Hamwey, R.: Temperature and chemistry of the polar mesopause OH, J. Geophys. Res.-Space, 92, 4663–4672, 1987. a
Snively, J. B. and Pasko, V. P.: Excitation of ducted gravity waves in the lower thermosphere by tropospheric sources, J. Geophys. Res.-Space, 113, 1–21, https://doi.org/10.1029/2007JA012693, 2008. a
Snively, J. B., Pasko, V. P., Taylor, M. J., and Hocking, W. K.: Doppler ducting of short-period gravity waves by midlatitude tidal wind structure, J. Geophys. Res.-Space, 112, 1–9, https://doi.org/10.1029/2006JA011895, 2007. a
Suzuki, S., Shiokawa, K., Otsuka, Y., Ogawa, T., Kubota, M., Tsutsumi, M., Nakamura, T., and Fritts, D. C.: Gravity wave momentum flux in the upper mesosphere derived from OH airglow imaging measurements, Earth Planets Space, 59, 421–428, 2007. a
Suzuki, S., Lübken, F.-J., Baumgarten, G., Kaifler, N., Eixmann, R., Williams, B. P., and Nakamura, T.: Vertical propagation of a mesoscale gravity wave from the lower to the upper atmosphere, J. Atmos. Sol.-Terr. Phy., 97, 29–36, https://doi.org/10.1016/j.jastp.2013.01.012, 2013. a, b, c, d
Takahashi, H., Sahai, Y., Teixeira, N. R.: Airglow intensity and temperature response to atmospheric wave propagation in the mesopause region, Adv. Space Res., 77–81 pp., ISSN 0273-1177, https://doi.org/10.1016/0273-1177(90)90012-O, 1990. a
Takahashi, H., Batista, P. P., Buriti, R., Gobbi, D., Nakamura, T., Tsuda, T., and Fukao, S.: Simultaneous measurements of airglow oh emissionand meteor wind by a scanning photometer and the muradar, J. Atmos. Sol.-Terr. Phy., 60, 1649–1668, 1998. a
Taori, A., Taylor, M. J., and Franke, S.: Terdiurnal wave signatures in the upper mesospheric temperature and their association with the wind fields at low latitudes (20° N), J. Geophys. Res.-Atmos., 110, 1–12, https://doi.org/10.1029/2004JD004564, 2005. a
Taylor, M. J. and Hapgood, M.: Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions, Planet. Space Sci., 36, 975–985, https://doi.org/10.1016/0032-0633(88)90035-9, 1988. a
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998. a
Townsend, A.: Internal waves produced by a convective layer, J. Fluid Mech., 24, 307–319, https://doi.org/10.1017/S0022112066000661, 1966. a
Vadas, S. L.: Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources, J. Geophys. Res.-Space, 112, A06305, https://doi.org/10.1029/2006JA011845, 2007. a
Vadas, S. L., Fritts, D. C., and Alexander, M. J.: Mechanism for the generation of secondary waves in wave breaking regions, J. Atmos. Sci., 60, 194–214, https://doi.org/10.1175/1520-0469(2003)060<0194:MFTGOS>2.0.CO;2, 2003. a, b, c
Vadas, S. L., Taylor, M. J., Pautet, P.-D., Stamus, P. A., Fritts, D. C., Liu, H.-L., São Sabbas, F. T., Rampinelli, V. T., Batista, P., and Takahashi, H.: Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign, Ann. Geophys., 27, 231–259, https://doi.org/10.5194/angeo-27-231-2009, 2009. a, b
Vadas, S. L., Zhao, J., Chu, X., and Becker, E.: The excitation of secondary gravity waves from local body forces: Theory and observation, J. Geophys. Res.-Atmos., 123, 9296–9325, https://doi.org/10.1029/2017JD027970, 2018. a, b, c, d
Vargas, F., Swenson, G., Liu, A., and Gobbi, D.: O(1S), OH, and O2(b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere, J. Geophys. Res.-Atmos., 112, D14102, https://doi.org/10.1029/2006JD007642, 2007. a
Vargas, F., Gobbi, D., Takahashi, H., and Lima, L. M.: Gravity wave amplitudes and momentum fluxes inferred from OH airglow intensities and meteor radar winds during SpreadFEx, Ann. Geophys., 27, 2361–2369, https://doi.org/10.5194/angeo-27-2361-2009, 2009. a
Wrasse, C. M., Takahashi, H., and Gobbi, D.: Comparison of the OH (8-3) and (6-2) band rotational temperature of the mesospheric airglow emissions, Rev. Bras. Geofisica, 22, 223–231, https://doi.org/10.1590/S0102-261X2004000300002, 2004. a, b
Wrasse, C. M., Takahashi, H., Medeiros, A. F., Lima, L. M., Taylor, M. J., Gobbi, D., and Fechine, J.: Determinaçao dos parâmetros de ondas de gravidade através da análise espectral de imagens de aeroluminescência, Rev. Bras. Geofisica, 25, 257–265, https://doi.org/10.1590/S0102-261X2007000300003, 2007. a, b
Wrasse, C. M., Nyassor, P. K., da Silva, L. A., Figueiredo, C. A. O. B., Bageston, J. V., Naccarato, K. P., Barros, D., Takahashi, H., and Gobbi, D.: Studies on the propagation dynamics and source mechanism of quasi-monochromatic gravity waves observed over São Martinho da Serra (29° S, 53° W), Brazil, Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024, 2024. a, b, c, d, e
Yamashita, C., Chu, X., Liu, H.-L., Espy, P. J., Nott, G. J., and Huang, W.: Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica, J. Geophys. Res.-Atmos., 114, D12101, https://doi.org/10.1029/2008JD011472, 2009. a
Yiğit, E. and Medvedev, A. S.: Heating and cooling of the thermosphere by internal gravity waves, Geophys. Res. Lett., 36, L14807, https://doi.org/10.1029/2009GL038507, 2009. a
Yiğit, E. and Medvedev, A. S.: Role of gravity waves in vertical coupling during sudden stratospheric warmings, Geoscience Letters, 3, 1–13, https://doi.org/10.1186/s40562-016-0056-1, 2016. a
Yiğit, E., Aylward, A. D., and Medvedev, A. S.: Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study, J. Geophys. Res.-Atmos., 113, D19106, https://doi.org/10.1029/2008JD010135, 2008. a
Yiğit, E., Knížová, P. K., Georgieva, K., and Ward, W.: A review of vertical coupling in the Atmosphere–Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity, J. Atmos. Sol.-Terr. Phy., 141, 1–12, 2016. a
Yiğit, E., Medvedev, A. S., and Ern, M.: Effects of latitude-dependent gravity wave source variations on the middle and upper atmosphere, Frontiers in Astronomy and Space Sciences, 7, 614018, https://doi.org/10.3389/fspas.2020.614018, 2021. a, b
Yue, J., Vadas, S. L., She, C.-Y., Nakamura, T., Reising, S. C., Liu, H.-L., Stamus, P., Krueger, D. A., Lyons, W., and Li, T.: Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado, J. Geophys. Res.-Atmos., 114, D06104, https://doi.org/10.1029/2008JD011244, 2009. a
Yue, J., Miller, S. D., Straka III, W. C., Noh, Y.-J., Chou, M.-Y., Kahn, R., and Flower, V.: La Soufriere volcanic eruptions launched gravity waves into Space, Geophys. Res. Lett., 49, e2022GL097952, https://doi.org/10.1029/2022GL097952, 2022. a
Short summary
This work explores the dynamics of the momentum and energy of propagating mesospheric gravity waves (GWs). A photometer was used to observe the vertical component of the GWs, whereas the horizontal component was observed by an all-sky imager. Using the parameters from these two instruments and background wind from meteor radar, the momentum flux and potential energy of the GWs were determined and studied. It is noted that the dynamics of the downward-propagating GWs were controlled by observed ducts.
This work explores the dynamics of the momentum and energy of propagating mesospheric gravity...
Altmetrics
Final-revised paper
Preprint