Articles | Volume 25, issue 6
https://doi.org/10.5194/acp-25-3785-2025
https://doi.org/10.5194/acp-25-3785-2025
Research article
 | 
01 Apr 2025
Research article |  | 01 Apr 2025

Microphysics regimes due to haze–cloud interactions: cloud oscillation and cloud collapse

Fan Yang, Hamed Fahandezh Sadi, Raymond A. Shaw, Fabian Hoffmann, Pei Hou, Aaron Wang, and Mikhail Ovchinnikov

Viewed

Total article views: 582 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
350 123 109 582 32 28
  • HTML: 350
  • PDF: 123
  • XML: 109
  • Total: 582
  • BibTeX: 32
  • EndNote: 28
Views and downloads (calculated since 12 Jun 2024)
Cumulative views and downloads (calculated since 12 Jun 2024)

Viewed (geographical distribution)

Total article views: 582 (including HTML, PDF, and XML) Thereof 582 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 01 Apr 2025
Download
Short summary
Large-eddy simulations of a convection cloud chamber show two new microphysics regimes, cloud oscillation and cloud collapse, due to haze–cloud interactions. Our results suggest that haze particles and their interactions with cloud droplets should be considered especially in polluted conditions. To properly simulate haze–cloud interactions, we need to resolve droplet activation and deactivation processes, instead of using Twomey-type activation parameterization.
Share
Altmetrics
Final-revised paper
Preprint