Emergent constraints are becoming popular for the identification of statistical relationships in observed current and past climate data that can be used to guide projections of future climate states. Their application is not without controversy, however, due to uncertainties about whether these relationships are indeed climate-invariant. This Opinion introduces an argument that Machine Learning tools can be useful for identifying climate-invariant relationships in historical data, especially those that are more complex, that can be expected to remain consistent under future climate scenarios.
Emergent constraints are becoming popular for the identification of statistical relationships in...
In our article, we review uncertainties in global climate change projections and current methods using Earth observations as constraints, which is crucial for climate risk assessments and for informing society. We then discuss how machine learning can advance the field, discussing recent work that provides potentially stronger and more robust links between observed data and future climate projections. We further discuss the challenges of applying machine learning to climate science.
In our article, we review uncertainties in global climate change projections and current methods...