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Abstract. Global climate change projections are subject to substantial modelling uncertainties. A variety of
emergent constraints, as well as several other statistical model evaluation approaches, have been suggested to
address these uncertainties. However, they remain heavily debated in the climate science community. Still, the
central idea to relate future model projections to already observable quantities has no real substitute. Here, we
highlight the validation perspective of predictive skill in the machine learning community as a promising al-
ternative viewpoint. Specifically, we argue for quantitative approaches in which each suggested constraining
relationship can be evaluated comprehensively based on out-of-sample test data – on top of qualitative physical
plausibility arguments that are already commonplace in the justification of new emergent constraints. Building
on this perspective, we review machine learning ideas for new types of controlling-factor analyses (CFAs). The
principal idea behind these CFAs is to use machine learning to find climate-invariant relationships in historical
data which hold approximately under strong climate change scenarios. On the basis of existing data archives,
these climate-invariant relationships can be validated in perfect-climate-model frameworks. From a machine
learning perspective, we argue that such approaches are promising for three reasons: (a) they can be objectively
validated for both past data and future data, (b) they provide more direct – and, by design, physically plausible
– links between historical observations and potential future climates, and (c) they can take high-dimensional
and complex relationships into account in the functions learned to constrain the future response. We demon-
strate these advantages for two recently published CFA examples in the form of constraints on climate feedback
mechanisms (clouds, stratospheric water vapour) and discuss further challenges and opportunities using the ex-
ample of a rapid adjustment mechanism (aerosol–cloud interactions). We highlight several avenues for future
work, including strategies to address non-linearity, to tackle blind spots in climate model ensembles, to integrate
helpful physical priors into Bayesian methods, to leverage physics-informed machine learning, and to enhance
robustness through causal discovery and inference.
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1 Introduction

Machine learning applications are now ubiquitous in the at-
mospheric sciences (e.g. Huntingford et al., 2019; Reichstein
et al., 2019; Thomas et al., 2021; Hess et al., 2022; Hickman
et al., 2023). However, there is not a single recipe for ma-
chine learning to advance the field. Prominently, there is an
important distinction between machine learning for weather
forecasting (Dueben and Bauer, 2018; Rasp and Thuerey,
2021; Bi et al., 2023; Lam et al., 2023; Kurth et al., 2023;
Bouallègue et al., 2024) and machine learning for climate
modelling (Watson-Parris, 2021). In weather forecasting, the
aim is to predict a relatively short time horizon over which
any new influences of climate change are typically negligi-
ble. In stark contrast, the science of climate change is in-
terested in how changing boundary conditions – i.e. anthro-
pogenic changes in climate forcings such as carbon dioxide
(CO2) or aerosols – will affect Earth’s climate system on long
timescales. The need to go beyond what has previously been
observed poses specific, hard challenges to the application
of machine learning in climate science. It is the classic dif-
ferentiation that is often coined as “ML models are good at
interpolation (weather forecasting) but not at extrapolation
(climate change response)”. As a result, machine learning
in climate science has also largely focused on interpolation
sub-tasks such as climate model emulation to speed up addi-
tional scenario projections (Mansfield et al., 2020; Watson-
Parris et al., 2022; Kaltenborn et al., 2023; Watt-Meyer et
al., 2023) or faster and better machine learning parameteri-
zations for climate models (Nowack et al., 2018a, 2019; Rasp
et al., 2018; Beucler et al., 2020). In this opinion article, we
highlight a few ideas regarding how machine learning can,
nonetheless, help reduce the substantial modelling uncertain-
ties in climate change projections, addressing a major scien-
tific challenge of this century. Specifically, we will focus on
the example of observational constraint frameworks (Ceppi
and Nowack, 2021; Nowack et al., 2023).

In the remaining sections of the Introduction, we first
briefly review the concept of model uncertainty, as well as
current observational constraint methods, including some of
their limitations. In Sect. 2, we discuss controlling-factor
analyses (CFAs) using linear machine learning methods as an
alternative approach to observational constraints. We high-
light several advantages, exemplified for the cases of con-
straints on global cloud feedback and stratospheric water
vapour feedback. In Sect. 3, we discuss key challenges in
constraining future responses on the basis of present-day
data, particularly non-linearity and confounding. We illus-
trate these using the example of constraining the effec-
tive radiative forcing (ERF) from aerosol–cloud interactions.
In Sect. 4, we highlight potential avenues for future work
and for addressing model uncertainty with machine learning
frameworks more generally. In Sect. 5, we summarize key
ideas for observational constraints and suggest that machine

learning ideas could also help to improve climate model tun-
ing frameworks in the future.

1.1 Model uncertainty

Three sources of climate model projection uncertainty are
commonly distinguished (Hawkins and Sutton, 2009; Deser
et al., 2012; O’Neill et al., 2014):

1. scenario uncertainty, given different anthropogenic
emission scenarios of greenhouse gases and aerosols
(typical scenarios range from strong mitigation of cli-
mate change to unmitigated growth of emissions);

2. internal variability uncertainty due to noise from cli-
mate variability superimposed onto any scenario-driven
trends (for example, any given year might be colder
or warmer than the climate-dependent expected average
value for temperature);

3. model uncertainty arising from varying scientific design
choices for climate models developed by different insti-
tutions (for example, climate models can differ in terms
of which and how specific processes are represented, in-
cluding parameterizations of cloud processes, aerosols,
and convection (Carslaw et al., 2013a, b; Sherwood
et al., 2014, 2020; Kasoar et al., 2016; Bellouin et al.,
2020), or in their representations of the carbon cycle
and atmospheric chemistry (Cox, 2019; Nowack et al.,
2017, 2018a)) – ultimately, the resulting model uncer-
tainty describes the long-term projection uncertainty in,
for example, regional surface temperature or precipita-
tion changes under the same emissions scenario.

Despite decades-long model development efforts, model un-
certainty in key climate impact variables such as tempera-
ture and precipitation, globally and regionally, has remained
stubbornly high (Sherwood et al., 2020; IPCC, 2021). The
apparent lack of net progress might be the result of the com-
petition between (a) improved individual process represen-
tations in climate models and (b) the continuously growing
number of (uncertain) climate processes being considered in
the first place (Cox, 2019; Eyring et al., 2019; Saltelli, 2019).
Whatever the reason may be, empirically, we probably need
to accept large inter-model spread in climate change projec-
tions for the foreseeable future.

In Fig. 1, we illustrate the three uncertainty contributions
for temperature projections for an area in central Europe.
Scenario and model uncertainties clearly start to dominate
over time, whereas at the beginning (around the years 2014–
2030), internal-variability uncertainty renders even very dif-
ferent forcing scenarios difficult to distinguish. In climate
science, scenario and internal-variability uncertainties are of-
ten taken as a given. To characterize scenario uncertainty, it is
common to consider a range of socioeconomic development
pathways, from strong-mitigation scenarios with a target of,
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for example, less than 2 °C global warming to high-forcing
business-as-usual scenarios (O’Neill et al., 2016). Internal-
variability uncertainty, in turn, is usually characterized by
considering multiple ensemble members for the same climate
model and forcing scenario (Sippel et al., 2015; O’Reilly
et al., 2020; Labe and Barnes, 2021; Wills et al., 2022). In this
paper, we focus on methods that tackle model uncertainty.

Clearly, in order to make meaningful climate risk assess-
ments, society and policymakers require better (more certain)
information than the range of raw model ensembles are cur-
rently able to provide (Fig. 1). Here, we will suggest a ma-
chine learning perspective on this challenging yet important
task, contrasting and comparing our view to other concepts
to observationally constrain model uncertainty (e.g. Knutti,
2010; Eyring et al., 2019; Hall et al., 2019; Williamson et al.,
2021). Our viewpoint still shares the fundamental idea that,
from the complexity of many small- and large-scale pro-
cesses involved in the climate system, relatively simple re-
lationships may emerge over time and space. These simple
relationships may then be used to robustly compare climate
model behaviour to observed relationships so as to distin-
guish more realistic models from the rest (Allen and Ingram,
2002; Held, 2014; Huntingford et al., 2023) without having
to constrain each microphysical and macrophysical process
individually.

1.2 Methods to address model uncertainty

As mentioned above, international climate model develop-
ment efforts have not resulted in reduced model uncertainty
over time (e.g. Zelinka et al., 2020). To address this long-
standing issue, a variety of approaches have been suggested
to evaluate climate models and to weight their projections,
particularly through systematic comparisons of the modelled
climate statistics and relationships against those found in
Earth observations. Current methods can be broadly sepa-
rated into two major groups: (a) statistical climate model
evaluation approaches and (b) emergent constraints.

1.2.1 Statistical model evaluation frameworks

There are several widely used frameworks that use a de-
fined set of standard statistical measures to compare model
behaviour to observations. Model projections are, for exam-
ple, weighted by performance measures relating to historical
trends and variability in key variables such as temperature or
precipitation (e.g. Giorgi and Mearns, 2002; Tebaldi et al.,
2004; Reichler and Kim, 2008; Räisänen et al., 2010; Lorenz
et al., 2018; Brunner et al., 2020a, b; Tokarska et al., 2020;
Hegerl et al., 2021; Ribes et al., 2021, 2022; Douville et al.,
2022; Qasmi and Ribes, 2022; Douville, 2023; O’Reilly
et al., 2024), and similar approaches have been suggested
in atmospheric chemistry (Karpechko et al., 2013). In addi-
tion, methods to account for model interdependencies (due to
shared model development backgrounds or components) in

these weighting procedures have been proposed (Bishop and
Abramowitz, 2013; Abramowitz and Bishop, 2015; Sander-
son et al., 2015, 2017; Knutti et al., 2017; Abramowitz et al.,
2019).

A disadvantage of many conventional model evaluation
approaches is that past statistical measures used to compare
models to observations (e.g. standard deviations or climato-
logical means and trends) are not necessarily good indica-
tors if one can rely more on a specific model’s future re-
sponse. Instead, a model that performs worse on certain past
performance measures might actually be more informative
about the true future response. Simple historical performance
scores can be blind to offsetting model biases (Nowack et al.,
2020) and could even be targeted by model tuning (Maurit-
sen et al., 2012; Hourdin et al., 2017), for example, to better
match historical temperature trends. From a machine learn-
ing perspective, this could lead to situations akin to overfit-
ting training data (apparent skill based on historical data used
to tune climate models). The same model might – as a result
– actually be less informative or predictive in new situations
(in this case, under climate change).

Overall, due to the indirect link between historical perfor-
mance measures and future responses in conventional model
evaluation frameworks, it is not clear a priori which of the
evaluation methods to trust most. This point was demon-
strated in the review by Hegerl et al. (2021). Basically, dif-
ferent weighting approaches provide different constraints (in
terms of both median and uncertainty ranges), and it remains
difficult to establish which approach to trust most and to find
ways to make them directly comparable. Another practical
limitation is that standard methods used to constrain climate
change projections are typically based on relatively large-
scale spatial and long-term temporal averaging to find sig-
nificant correlations between historical climate model skill
and future projections. Constraining climate change projec-
tions of extreme events is consequently even more challeng-
ing (Sippel et al., 2017; Lorenz et al., 2018).

1.2.2 Emergent constraints

“The emergent constraint approach uses the climate model
ensemble to identify a relationship between an uncertain as-
pect of the future climate and an observable or variation or
trend in the contemporary climate” (Williamson et al., 2021).
Compared to statistical model evaluation criteria, emer-
gent constraints more directly target relationships between
shorter-term variability within the Earth system (“observ-
ables”, e.g. seasonal-cycle characteristics, observed trends,
and other aspects of internal and interannual variability) and
future climate change, even under strong and century-long
climate forcing scenarios (see also review papers by Hall
et al., 2019; Eyring et al., 2019).

Among the prominent examples are proposed constraints
on changes in snow albedo (Hall and Qu, 2006), the highly
uncertain cloud feedback and equilibrium climate sensitivity
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Figure 1. Surface air temperature climate model projections and observations for a 5°× 5° grid box in central Europe. The region is indicated
in orange in (a). The raw projections, relative to their 1900–1930 average, are shown for 34 Coupled Model Intercomparison Project phase 6
(CMIP6) models in (b). Grey lines show one ensemble member of each model for simulations under historical forcing conditions. The same
ensemble members and CMIP6 models are shown for the years 2014 to 2100 under a high-emission (red) and a strong-mitigation scenario
(blue). SSP stands for Shared Socioeconomic Pathway. Observational data according to the Climatic Research Unit (CRU, version TS4.05,
Harris et al., 2020) are shown in solid black. In (b), internal-variability uncertainty across the 34 simulations makes it difficult to, for example,
answer the question of how much the region is projected to have warmed by the year 2050, even in the absence of model uncertainty. This
uncertainty could be smoothened out by considering the average over multiple ensemble members for each model (not done here). Instead,
we applied a Lowess smoothing to approximately remove internal variability and indicate the remaining ±2σ intervals for each scenario in
(c). This, in turn, highlights more clearly the scenario uncertainty, best exemplified by the differences in the multi-model means provided
as the central solid lines in (c). Finally, the model uncertainty – i.e. the spread in projections for a given scenario after removing internal-
variability uncertainty – makes an evidently large contribution to the projections here. For example, for the high-emission scenario, model
responses range between approximately 3 and 10 K of warming by 2100.

(Sherwood et al., 2014; Klein and Hall, 2015; Tian, 2015;
Brient and Schneider, 2016; Lipat et al., 2017; Cox et al.,
2018; Dessler and Forster, 2018), climate-driven changes in
the hydrological cycle (O’Gorman, 2012; Deangelis et al.,
2015; Li et al., 2017; Chen et al., 2022; Shiogama et al.,
2022; Thackeray et al., 2022) and in the carbon cycle (Cox
et al., 2013; Wenzel et al., 2014; Cox, 2019; Winkler et al.,
2019a, b), wintertime Arctic amplification (Bracegirdle and
Stephenson, 2013; Thackeray and Hall, 2019), marine pri-
mary production (Kwiatkowski et al., 2017), permafrost
(Chadburn et al., 2017), atmospheric circulation (Wenzel
et al., 2016), and mid-latitude daily heat extremes (Donat
et al., 2018).

A central hypothesis of emergent constraint definitions is
that a measure of historical, already observable climate can
consistently be linked to future responses. A classic example
is the correlation between the contemporary seasonal-cycle
amplitude of snow albedo and the long-term snow albedo cli-
mate feedback under climate change (Hall and Qu, 2006). Of
course, the latter is only available from climate model sim-
ulations (i.e. it is “unobserved”) so that the correlation be-

tween the past and future quantity can only quite literally
“emerge” across large climate model ensembles of histor-
ical and future scenario simulations. In comparison, CFAs
described later will also use climate model ensembles to val-
idate a climate-invariance property on which they are based.
However, they do not rest on as strong assumptions as is the
case for emergent constraints and can be evaluated in terms
of their predictive skill on both historical (observations and
climate model simulations) and realizations of future data
(model simulations).

1.3 Limitations of current constraint frameworks

The challenge to constrain future projections on the basis of
observations is a difficult one. Any attempt to establish robust
relationships between the (observable) past and simulated fu-
ture (unobservable) will be hampered by the non-stationary
nature of the climate system. Any information content that
can be gained from observations will, naturally and intu-
itively, diminish as the climate changes. In addition, once
relationships of this kind have been put forward, the vari-
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ous methods discussed in Sect. 1.2 typically lead to different
suggested constraints for median climate change responses
and confidence intervals (e.g. Brunner et al., 2020a; Hegerl
et al., 2021). This raises the next central question: which of
the methods should we trust (most)? By any means, this is
not a small question considering the significant possible im-
pacts associated with future changes in climate.

We identify three broad issues which make progress on
this central question particularly difficult and which we sug-
gest can be addressed by incorporating machine learning
ideas into observational constraint frameworks. Further limi-
tations are discussed in Sect. IV of Williamson et al. (2021).
The three we wish to highlight here are as follows:

1. The indirect nature of the link between the past per-
formance measures and the future response to be con-
strained. While, nowadays, most emergent constraints
are suggested together with a plausible theoretical link
between the observable measure and the future response
(Williamson et al., 2021), the connection is always indi-
rect (Caldwell et al., 2018). In many cases, this might,
indeed, lead to a scientifically robust relationship; how-
ever, this robustness is, in practice, difficult to evaluate
objectively. Clearly, the situation is not very different in
model evaluation methods which, for example, aim to
correlate the historical model-consistent standard devi-
ation in precipitation with its future response. The indi-
rect nature of these links means that one can attempt to
manipulate x (the “observed”) in models to better match
the observational record. If this leads to the desired im-
provement in y (i.e. the simulated response) then that
would be a targeted way to improve climate models.
However, there is clearly no guarantee that apparent im-
provements in modelling historical x will translate into
constrained future responses (Hall et al., 2019).

2. Low dimensionality equals oversimplification? The re-
liance on a few, relatively simple, historical perfor-
mance measures could be argued to have played a key
role in limiting progress to date, even if they have the
advantage of being relatively easy to conceptualize. For
example, it is hard to imagine that very simple mea-
sures can truly reflect the complexity of the climate sys-
tem driving model uncertainty (Caldwell et al., 2018;
Bretherton and Caldwell, 2020; Schlund et al., 2020;
Nowack et al., 2020). A natural focus on the best-
performing of the resulting constraints, even if linked
to plausible physical mechanisms, will likely overfit the
relationships between past model performance and pro-
jected change, returning back to point 1. In addition, the
constantly ongoing quest to find such relationships is
somewhat akin to issues with multiple-hypothesis test-
ing in statistics, which directly leads us to point 3.

3. Risk of data mining correlations. A key concern with re-
gard to identifying relationships such as emergent con-

straints, which seek strong correlations between a past
(uncertain) observable and future (uncertain) responses
across climate model ensembles, lies in the inherent risk
of correlations that arise (largely) by chance. These cor-
relations inevitably appear in large data archives repre-
senting complex systems such as climate models, which
encompass a vast array of climate variables. As a re-
sult, if scientists keep searching for such relationships
long enough, they will eventually find a few. In turn,
for a high-dimensional and highly coupled climate sys-
tem, those relationships will likely be at least partly ex-
plainable on the basis of actual scientific mechanisms
operating in the system, whereas other correlations will
occur entirely by chance. A natural focus on the best-
performing of the resulting constraints, even if linked
to plausible physical mechanisms, will likely overfit the
relationships between past model performance and pro-
jected change, often even falling victim to coinciden-
tal correlations. This “data mining” criticism has been
prominently made in previous publications (e.g. Cald-
well et al., 2014; Sanderson et al., 2021; Williamson
et al., 2021; Breul et al., 2023).

Several emergent constraints were found to weaken or even
vanish when moving from CMIP3 to CMIP5 or from CMIP5
to CMIP6 (Caldwell et al., 2018; Pendergrass, 2020; Schlund
et al., 2020; Williamson et al., 2021; Simpson et al., 2021;
Thackeray et al., 2021), suggesting that the previously iden-
tified relationships were, indeed, likely to be overconfident
or coincidental.

2 Climate-invariant controlling-factor analysis

We suggest machine learning-guided controlling-factor anal-
ysis (CFA) as a promising alternative to establish more robust
relationships tested to hold across climate states and climate
model ensembles. CFAs establish functions that are only
trained on data representative of the observational record but
which are subsequently also tested for future responses, as
can be evaluated across ensembles of future climate model
projections. These functions therefore establish a direct link
between the past and the future. This climate invariance can
be evaluated across sets of climate models or even sets of
CMIP ensembles, addressing limitation (1). The use of ma-
chine learning allows us to learn higher-dimensional, less
simplifying relationships, addressing limitation (2). Finally,
the design of the CFA functions will be motivated by known
physical relationships between target variables to be con-
strained (the predictand) and environmental controlling fac-
tors (the predictors) which – together with the comprehensive
out-of-sample testing – addresses limitation (3). The fact that
the resulting functions can be validated under both past and
future conditions enables an objective validation and uncer-
tainty quantification and reduces the risk of falling victim to
coincidental correlations.
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Low-dimensional CFA frameworks have been popular in
climate science for some time, especially in the context of
constraining uncertainty on cloud feedback mechanisms (e.g.
Klein et al., 2017) but also for understanding stratospheric
water vapour variability (Smalley et al., 2017). Here, we fo-
cus on recent machine learning ideas to improve their per-
formance for specific constraints on climate feedback mech-
anisms. We often found that CFAs are at first interpreted as
a type of emergent constraint. In the following, we instead
highlight key differences between the two frameworks, ar-
guing for a separate treatment. We will illustrate central as-
pects by reviewing two recently published examples of con-
straining highly uncertain changes in Earth’s cloud cover
(Ceppi and Nowack, 2021) and in stratospheric water vapour
(Nowack et al., 2023).

2.1 Framework definition

The central idea behind CFA for observational constraints
is the training of a function f relating multiple large-scale
environmental variables X to a target variable y over time t :

y(t)≈ f (X(t);θ ). (1)

Ultimately, we wish to constrain climate model uncer-
tainty in projected changes in y given already observed re-
lationships between X and y. A first major difference com-
pared to emergent constraints is that the functions are trained
only on historical data (observations or, for consistency, cli-
mate model simulations under historical forcing conditions).
The parameters θ , which characterize the function f , can
later be considered to be measures of the importance of
the controlling-factor relationships found. In this data-driven
framework, f (and, thus, θ ) can be learned individually from
sets of both observational (providing observational functions
fobs,m) and climate model data (providing model-derived
functions fCMIP,k).

The workflow of the CFA framework is illustrated in
Fig. 2. Expert knowledge is pivotal when selecting the fac-
tors X (yellow box) that are thought to “control” y (violet
box). However, in contrast to emergent constraints where
similar arguments apply to select physically plausible con-
straints, the physical mechanisms suggested to link the pre-
dictors to the predictand can be far more granular in CFA.
Distinct thermodynamic and dynamic phenomena driving
variability in the predictand can be distinguished, e.g. linking
cloud occurrence to a combination of large-scale patterns of
sea surface temperatures, relative humidity, and atmospheric-
stability measures (Wilson Kemsley et al., 2024). Returning
to Fig. 2, machine learning (central grey box) is used to de-
rive the strength of the relationships between the factors and
y. The generalization skill of these functions trained on the
historical data is easily validated based on independent test
data. A good first test case is, again, already observed data
or historical simulations (e.g. left-out years not used during

training and cross-validation), especially of extreme histor-
ical events such as the 2015–2016 El Niño event (Wilson
Kemsley et al., 2024; Ceppi et al., 2024). Of course, these
test data are not used during training and cross-validation or
the hyperparameter tuning (see longer discussions on these
issues in Bishop, 2006; Nowack et al., 2021). In Fig. 2, an
example is shown for a hypothetical observational test case
for the year 2012 if data from that year were not used for
training. We re-iterate that separate functions can be learned
and then validated in such a fashion for both observational
data (fobs,m) and simulations conducted with various climate
models (typically, historical simulations run with different
climate models, indexed by k, leading to functions fCMIP,k).

To clarify, emergent constraints in combination with ma-
chine learning frameworks have been suggested as well (e.g.
Williamson et al., 2021). However, CFAs are different in two
ways: firstly, emergent constraint functions learn from emer-
gent behaviour across climate change responses of an entire
model ensemble by correlating variables characterizing the
models’ past behaviour (e.g. a measure of internal variabil-
ity) to the model-consistent future responses in a quantity of
interest (e.g. the equilibrium climate sensitivity). CFAs in-
stead learn from internal variability and use these relation-
ships in a climate-invariant context to constrain the future
response without the latter being involved in the fitting pro-
cess. Secondly, because the sample size for the relationships
learned is no longer limited by the number of models in the
ensemble (as is the case for emergent constraints – typically
in the range of around 10–60 CMIP models), the general set-
ting is more suitable for the application of machine learn-
ing, which strongly depends on the availability of a suffi-
cient number of training samples. The review examples be-
low used monthly mean data. In principle, even much higher
temporal resolutions could be used, e.g. up to daily extremes,
which might open up new routes for constraining changes in
specific extreme weather events (Wilkinson et al., 2023; Shao
et al., 2024).

The next important step is to validate – across a represen-
tative climate model ensemble – that the functions learned
based on historical data also perform well under climate
change scenarios, i.e. if fCMIP,k can also skilfully predict the
model-consistent climate change response (indicated by 1)
if provided with model-consistent changes in the controlling
factors:

1yCMIP,k(t)≈ fCMIP,k(1XCMIP,k(t)). (2)

Note that, for most predictand and controlling-factor vari-
ables, this will pose an extrapolation step in relation to previ-
ously unobserved value ranges. As discussed in the Introduc-
tion, this extrapolation step under, for example, strong CO2
forcing poses particular challenges for non-linear ML tech-
niques that one might want to apply to any given CFA. Sim-
ilarly, it might limit the scope of applying CFA to non-linear
observational constraint problems. We see various pathways
to address these challenges in CFAs, some of which have not
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Figure 2. Example workflow for a CFA with machine learning. First, the regression set-up is defined so that the predictand y can be
modelled well on the basis of a set of controlling factors X. These functions are learned individually for observational datasets and climate
model simulations under historical climate forcing conditions. Out-of-sample predictive skill is evaluated in each case based on held-out
test data, illustrated here for a hypothetical test year, 2012, based on daily data. Next, it is tested if the relationships learned also hold under
climate change scenarios (annually averaged for visualization purposes). This step is only possible for climate models, demonstrated here for
two example SSP projections. The black lines mark the actual climate model responses; the violet lines mark the predictions if the functions
are fed with the model-consistent changes in the controlling factors (which, if approximately climate-invariant relationships were indeed
established, should replicate the actual responses). Imperfections in the machine learning predictions can be measured across an ensemble of
climate models, e.g. from the CMIP ensembles, and can, as such, be incorporated into the overall uncertainty quantification. This is sketched
in the bottom right for a set of 39 CMIP models (red dots), here showing 30-year averages of the predictions vs. true responses for the years
2070–2100. Finally, to obtain an observational constraint on model uncertainty in 1y (cf. inter-model spread along the y axis), the functions
fobs are combined with the 39 different CMIP controlling-factor responses, leading to an observationally constrained distribution for the
predicted responses 1yconstrained. The latter is shown (light-blue distribution) on the x axis in the bottom-right figure. This preliminary
distribution is then combined with the prediction error (evident in the spread around the 1 : 1 line across the 39 CMIP models) to obtain a
final observational constraint, indicated by the wider distribution (black) along the y axis.

yet been explored in the CFA literature. We will discuss these
in Sect. 3.

If the projections are reproduced well across the ensemble
of climate models, this implies that the learned relationships
are approximately climate-invariant, thus opening up a new
link between historically observable relationships and the fu-
ture climate response, at least to the degree that is currently
represented in state-of-the-art climate models. This is excit-
ing because it provides a more direct approach to constrain
model uncertainty than emergent constraints are able to pro-
vide. In the end, one can simply obtain an observational cali-
bration of each model’s response by combining the observed
function(s) fobs,m with each individual model response in the
controlling factors:

1yCMIP, constrained,k,m(t)= fobs,m(1XCMIP,k(t)). (3)

Finally, since the machine learning predictions will not be
perfect, the resulting distribution of observationally con-
strained climate model responses will need to be combined
further with the method-intrinsic prediction error (see Fig. 2

and the explanation in its caption) to obtain a final observa-
tionally constrained distribution for 1y. Note that we also
indexed the function fobs with the index “m” here. The index
indicates that both Ceppi and Nowack (2021) and Nowack
et al. (2023) trained a number of different observational func-
tions to create the observationally constrained distribution
for each model to sample and represent observational uncer-
tainty in the relationships learned as well. For simplicity, we
have dropped this index in Fig. 2.

2.2 Taking a step back

Before we discuss the two specific applications of the
machine-learning-based CFA framework, it is important to
point out two built-in assumptions with regard to the nature
of the resulting observational constraints:

1. By compartmentalizing the prediction of y into two
contributors in the form of parameters θ and control-
ling factors X, the constraint will be based on the ob-
served θobs. However, current versions of CFA do not
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Figure 3. Cloud example for a CFA with machine learning. The workflow broadly follows the logic outlined in Fig. 2. (a) Cloud radiative
effects (CREs) are predicted at a given grid location as a function of a set of controlling factors. Linear machine learning approaches such as
ridge regression are currently recommended due to the need to extrapolate when using the learned relationships for predictions under climate
change scenarios. The functions for each grid point are first evaluated based on monthly mean data of historical simulations and observations
and are then evaluated afterwards for climate models based on monthly predictions under 4×CO2 forcing with model-consistent changes
in the controlling factors. As a sketch, this is illustrated using multi-annual predictions of a single climate model for a grid point in the
tropical Pacific (top right). For comprehensive evaluations of such functions based on historical data, see, for example, the study by Wilson
Kemsley et al. (2024). As the sketch for the 4×CO2 scenario extends over 150 years, the monthly predictions and ground truth were
averaged to annual means for visualization purposes. (b) Example sketch of the regional context (yellow) of many grid points surrounding
a target grid point (purple) for which the CREs are predicted. (c) Example map of CMIP multi-model-mean ridge regression parameters θ
for one of the controlling factors – surface temperature – when predicting shortwave CRE. In (d), the final constraint on the global cloud
feedback is illustrated: using the monthly climate-model-specific predictions under 4×CO2, these are subsequently annually averaged to
calculate cloud feedback parameters from Gregory-type regressions (Gregory et al., 2004; Andrews et al., 2010) of top-of-the-atmosphere
CRE anomalies against global mean surface temperature change. These feedback parameters (which are the linear regression slopes of
these fits) are obtained separately for the ridge regression predictions and the actual 4×CO2 simulations for each model. Afterwards,
we compare the ridge-predicted CRE feedback parameters with those derived from the actual abrupt-4×CO2 climate model simulations
across the entire model ensemble. For the plot shown, we first integrated the contributions to the global shortwave and longwave CRE
feedback parameter contributions across all grid points before combining the longwave and shortwave components into an overall global
cloud feedback parameter. Plots for the components can be found in Ceppi and Nowack (2021) and their Supplement. Across 52 CMIP
models, a strong relationship (r = 0.87) is obtained. Following the combination of functions and controlling-factor responses as outlined
in Fig. 2, four different observationally derived functions resulted in 4× 52= 208 observationally constrained projections, shown as the
uncertainty distribution along the x axis (dashed line). This distribution is combined with the methodological uncertainty to provide a final
observational constraint distribution for the global cloud feedback shown along the y axis (solid line).

address uncertainty in the controlling-factor responses
across the climate model ensemble, which essentially
remains untouched.

2. The CFA observational constraints are therefore con-
ceptually closest to emergent constraints in the sense
that the choice of controlling factors will be crucial
for finding a constraint. However, as already mentioned
above, these choices require a far smaller leap of faith
in linking the predictand response to thermodynamic
and dynamic mechanisms. Still, if the resulting sensi-
tivities θ for the controlling factors are not actually un-
certain, there will be no constraint. For emergent con-
straints, this situation is akin to cases where there would
be no spread along the x axis for the observable quantity
across the models. A key difference is that one first iden-

tifies process-oriented relationships between X and y in
climate model data and observations, representing inter-
nal climate variability (and, possibly, historical trends),
instead of directly targeting quantities that have a large
spread across the model ensemble for both the predic-
tors and the long-term response.

2.3 Application I: cloud-controlling-factor analysis

Changes in cloud properties (amount, optical depth, altitude)
are the leading uncertainty factor in global warming projec-
tions under increasing atmospheric CO2 (Ceppi et al., 2017;
Sherwood et al., 2020; Zelinka et al., 2020). A driving force
behind this uncertainty is the still relatively coarse spatial res-
olution of global models, meaning that processes involved
in cloud formation have to be parameterized instead of be-
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ing explicitly resolved. Improvements to parameterizations
relying on machine learning ideas have been suggested else-
where (e.g. Schneider et al., 2017) and will not be discussed
further here. Instead, as a first example, we will focus on
CFA as an alternative viewpoint to constrain uncertainty in
global cloud feedback mechanisms. As such, CFA attempts
to find constraining relationships at larger spatial scales, sim-
ilarly to – but, as outlined above, in important points dif-
ferently to – emergent constraints. CFAs have already been
used extensively to constrain uncertainty related to specific
cloud feedback types, though this has primarily been done
with low-dimensional multiple linear regression approaches
including < 10 controlling factors. A few CFA studies used
non-linear machine learning methods as well, but to under-
stand historical cloud variations rather than to derive ob-
servational constraints on future projections (e.g. Andersen
et al., 2017, 2022; Fuchs et al., 2018).

Previous observational constraint studies with lower-
dimensional multiple linear regression, mostly focused on
regionally confined major low-cloud decks (e.g. Qu et al.,
2015; Zhou et al., 2015; Myers and Norris, 2016; McCoy
et al., 2017; Scott et al., 2020; Cesana and Genio, 2021; My-
ers et al., 2021) because changes in their cumulative short-
wave reflectivity contribute a large fraction to the overall un-
certainty in global cloud feedback (Sherwood et al., 2020).
Building on this work, Ceppi and Nowack (2021) developed
a statistical learning analysis using ridge regression (Hoerl
and Kennard, 1970) as a linear form of machine learning.
This new approach to CFA allowed them to improve on
previous CFA constraints and to expand the scope beyond
the low-cloud decks to the global scale for both shortwave
(clouds are reflective, thus cooling climate) and longwave
(clouds can trap terrestrial radiation, thus warming climate)
cloud radiative effects. Here, we will briefly review these re-
sults as an example of how CFA can be developed to con-
strain model uncertainty more effectively by including ma-
chine learning ideas. A sketch of the framework is shown in
Fig. 3.

As in previous lower-dimensional CFA for clouds, Ceppi
and Nowack (2021) focused on a relatively short, well-
observed period during the satellite era. In their set-up, this
translates into a regression approach in which cloud-radiative
anomalies at grid point r , dC(r, t), are approximated as a lin-
ear function of anomalies in a set ofM meteorological cloud-
controlling factors dXi(r, t):

dC(r, t)≈
M∑
i=1

∂C(r, t)
∂Xi(r, t)

·dXi(r, t)=
M∑
i=1

θ i(r)·dXi(r, t), (4)

where the parameters θ i(r) represent the learned sensitivities
of C(r, t) to the controlling factors. Here, C(r, t) could, in
principle, be different types of measures to characterize cloud
contributions to shorter-term variations (here, monthly) and
long-term changes (including the climate change response)
in Earth’s energy budget. Ceppi and Nowack (2021) sepa-

rated shortwave from longwave cloud radiative effects, and
further common decompositions include high-cloud and low-
cloud contributions, as well as changes in cloud fractions,
cloud top pressure, and cloud optical depth (Wilson Kemsley
et al., 2024; Ceppi et al., 2024). As a key difference in re-
lation to previous studies, which focused on grid-point-wise
relationships, e.g. between surface temperature at point r and
C(r, t), Ceppi and Nowack (2021) regressed cloud radiative
anomalies at grid point r as a function of the controlling fac-
tors within a 105°× 55° (long× lat) gridded domain centred
on r (Fig. 3b, c), rendering the regression high-dimensional.
The contribution of each controlling factor to dC(r, t) is then
obtained by the scalar product of the spatial vectors θ i(r)
and dXi(r, t).

An important choice is the set of controlling factors.
Heuristics that motivate various predictors for low-cloud
decks can be found in Klein et al. (2017), and those for
high clouds can be found in Wilson Kemsley et al. (2024).
In Ceppi and Nowack (2021), the authors used five differ-
ent patterns of cloud-controlling factors, which were used to
train the predictions on historical data. However, for an effec-
tive constraint on the cloud feedback under abrupt-4×CO2
forcing across CMIP5 and CMIP6 models, they only con-
sidered two factors that drive the main part of the climate
change response (rather than variability), at least when av-
eraged globally. These were patterns of surface temperature
(the most important factor) and of the estimated inversion
strength (EIS, an important modulating factor, though a dif-
ferent stability measure was used over land). Overall, the
study demonstrated that the use of machine learning ideas
opens the door to consider a larger spatial context, which
improves the CFA function in terms of its predictions and,
eventually, also improves the overall observational constraint
(Fig. 3d). This further allowed for the extension of CFA
frameworks of cloud feedback mechanisms from specific
low-cloud analyses to the global scale and to new cloud types
(in particular, high clouds; see Wilson Kemsley et al., 2024).

2.4 Application II: an observational constraint on the
stratospheric-water-vapour feedback

The linearity assumption appears to work well to the first
order for global cloud feedback, but this is not guaran-
teed for many other uncertain Earth system feedbacks. A
first counter-example can be found in Nowack et al. (2023),
who adapted the framework presented in Ceppi and Nowack
(2021) to constrain uncertainty in changes in specific humid-
ity across the stratosphere. This stratospheric-water-vapour
feedback is, indeed, highly uncertain in CMIP models, with
model responses ranging from virtually no response to more
than a tripling of concentrations relative to present-day val-
ues in 4×CO2 simulations. This, in turn, makes significant
contributions to uncertainties in projections of global warm-
ing (Stuber et al., 2005; Joshi et al., 2010; Dietmüller et al.,
2014; Nowack et al., 2015, 2018b; Keeble et al., 2021),
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the tropospheric-circulation response (Joshi et al., 2006;
Charlesworth et al., 2023), and the recovery of the ozone
layer (Dvortsov and Solomon, 2001; Stenke and Grewe,
2005).

To address this uncertainty, Nowack et al. (2023) defined
a CFA using ridge regression (Hoerl and Kennard, 1970), in
which they predicted monthly mean water vapour concen-
trations in the tropical lower stratosphere (qstrat) as a func-
tion of temperature variations in the upper troposphere and
lower stratosphere (UTLS). Their analysis was directly mo-
tivated by the strong mechanistic link between tropical UTLS
temperature and water vapour entry rates; see, for example,
Fueglistaler et al. (2005, 2009). Their final controlling-factor
function was defined as follows:

log
(
qstrat(t)

)
= f (θ ,T; t, τmax)

=

lat∑
i

long∑
j

p∑
k

τmax∑
τ

θijk,τdTijk (t − τ )+ θ0, (5)

which takes into standard-scaled account temperature
anomalies dT across a whole longitude–latitude–altitude
cube of the tropical to mid-latitude UTLS region over τmax
monthly time lags. Using this function, both internal vari-
ability in qstrat (for observations and CMIP models) and the
long-term climate change response (CMIP models) could be
predicted well.

However, under abrupt-4×CO2 forcing, the function no-
tably only held true after log-transforming the predictand be-
fore training, which apparently led to a quasi-linearization
of the relationships to be learned (Fig. 4). The need for
such a transformation is not unexpected due to the known
approximately exponential relationship between temperature
and saturation water vapour concentrations and simply un-
derlines that similar CFAs could be designed for many other
uncertain Earth system feedbacks, even if non-linear, if ap-
propriate physics-informed transformations can be applied.

3 Challenges

3.1 Dealing with non-linearities

As already implied by the stratospheric-water-vapour ex-
ample, not all relationships we wish to constrain will be
linear. For example, while not typically considered in the
emergent constraint literature, the aerosol effective radiative
forcing (ERF) is defined with reference to an un-observed
pre-industrial atmospheric state and so faces many of the
same challenges described above (see also Fig. 5). Since the
relationships between aerosol emissions and cloud proper-
ties and between cloud properties and radiative forcing are
known to be non-linear (Carslaw et al., 2013a), extrapolating
from observed to unobserved climate states, while necessary,
is fraught with danger.

Besides the obvious risk that, if we naively attempted to
fit non-linear functions to such relationships, we could eas-

Figure 4. Constraint on stratospheric-water-vapour projections
requiring a non-linear transformation. (a) Linear ridge regres-
sion without transformation of the predictand. (b) After log-
transforming the predictand before training on historical data. With-
out the log-transformation, the predictions for large changes in-
creasingly underestimate the actual responses in the correspond-
ing abrupt-4×CO2 simulations, and the scatter in the predictions
also increases (lowering r). With the transformation, the predicted
water vapour responses agree well with the actual simulated re-
sponses (provided in parts per million volume (ppmv), normalized
by model-consistent global mean surface temperature change to
convert the change into a feedback). The final observational con-
straint is calculated similarly to the cloud example; for further de-
tails, see Nowack et al. (2023). The dashed red lines mark the pre-
diction intervals, whereas the solid red lines show linear regressions
fitted to the data (Wilks, 2006).

ily over-fit our data, Fig. 5 shows the opposite risk in that
assuming the non-linearities to be small based on the ob-
served data (inset) could lead us to under-fitting the response
over larger ranges. If at all possible, we should look to col-
lect observations in these outlying regions, perhaps looking
at particularly clean atmospheric conditions in the case of
aerosol (Carslaw et al., 2013a; Gryspeerdt et al., 2023).

Looking beyond emergent constraints and towards the
CFA framework discussed in Sect. 2, we further highlight
four strategies to address the extrapolation challenge in non-
linear contexts. In our opinion, these strategies have not yet
been exploited sufficiently in the existing literature and could
be promising pathways for future work:

– Linearizations and quasi-linearizations. In the
stratospheric-water-vapour example, we demon-
strated how linearizing relationships can help tackle
non-linear observational-constraint challenges. In
particular, prior physical knowledge – such as the
approximately exponential relationship between
temperature and specific humidity – can be used to
transform the regression problem towards a more linear
behaviour, thus facilitating extrapolation.

– Climate-invariant data transformations. Another
promising route could be to pursue ideas similar to
variable transformations recently suggested for climate
model parameterizations (Beucler et al., 2024). In
essence, variables that require extrapolation in warmer
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climates could be transformed into substitute variables
whose distribution ranges are approximately climate-
invariant, for example, because they cannot (or hardly
ever) cross certain physical thresholds (e.g. relative
humidity which can vary only between 0 % and –
mostly – 100 %). Such ideas are not discussed in detail
here; we rather refer the reader to Beucler et al. (2024).

– Moving non-linear contributions to the controlling-
factor responses. CFAs aim to observationally constrain
the parameters θ that characterize the dependence of the
predictand on the controlling factors. The controlling-
factor responses, however, are not constrained and can,
of course, behave non-linearly. In a linear CFA frame-
work, this description would be comparable to a lin-
ear function that depends on polynomial or logarithmic
terms; one can still constrain the linear model parame-
ters in that case. This idea is not distinct from the point
on quasi-linearizations but helps to underline the dif-
ference in approaches with regard to whether the pre-
dictand or the predictor(s) are transformed to obtain an
approximately linear model.

– Non-linear methods incorporating prior physical
knowledge to constrain the solution space. In Sect. 4,
we will discuss ideas on how non-linear machine learn-
ing methods could indeed be applied to CFA frame-
works. For example, this concerns Gaussian processes
with appropriate choices of priors or with the combi-
nation of linear and non-linear kernels to model both
linear and non-linear variations in the predictand simul-
taneously. In addition, physics-informed machine learn-
ing approaches (Karniadakis et al., 2021) could help to
define saturation regimes in machine learning functions,
particularly through, but not limited to, modifications to
their cost functions.

3.2 Confounding

Confounding occurs when an extraneous variable influences
both the dependent variable and an independent variable,
leading to a spurious association. This is particularly chal-
lenging in climate science, where numerous interacting pro-
cesses can lead to complex relationships between variables.
For instance, in the context of Fig. 5, the apparent influ-
ence of an observed variable on an unobserved variable
may actually be mediated or obscured by another uncon-
trolled variable, such as temperature. This confounding can
severely compromise the identification and validation of
emergent constraints or controlling-factor relationships. Ma-
chine learning methods, though powerful in detecting pat-
terns, are not inherently equipped to distinguish causal rela-
tionships from mere correlations unless specifically designed
to do so. A possibility to address this challenge through
causal discovery methods will be discussed in Sect. 4.2.

Figure 5. A schematic diagram of a typical emergent constraint
showing the relationship between an unobserved quantity (Y ; say
effective radiative forcing (ERF)) and an observed quantity (X).
This holds well over a limited region of X (inset). This relationship
may fail to hold outside the observed region though, particularly if
the response is (or becomes) non-linear. This relationship can also
breakdown if a (possibly) unobserved variable Z affects bothX and
Y , causing a confounding that changes the relationship in, for ex-
ample, a warmer world (or the past).

3.3 Blind spots in climate model ensembles

Clearly, any observational constraint approach that requires
climate models to validate the mathematical model used to
constrain the future response is potentially affected by blind
spots in the ensemble. For example, blind spots could be
potentially missing physical mechanisms across all models
as implied in, for example, Kang et al. (2023) for South-
ern Hemisphere sea surface temperature changes. This lim-
itation, however, applies in similar ways to all types of ap-
proaches discussed here, including classic statistical climate
model evaluation, emergent constraints, and CFA. For CFA,
this affects the evaluation of the climate-invariance property
of the relationships found if they are to be evaluated well be-
yond historical climate forcing levels.

Still, a well-chosen set of proxy variables as predictors for
CFA can, to some extent, help to buffer against such effects.
In the stratospheric-water-vapour example, the authors fo-
cused on the CO2-driven climate feedback. As it stands, such
an approach brackets out other potential mechanisms for fu-
ture changes in stratospheric water vapour through chemi-
cal mechanisms related to methane (Nowack et al., 2023)
or to changes in the background stratospheric aerosol load-
ing (Kroll and Schmidt, 2024; Marshall et al., 2024). How-
ever, the monthly mean temperature variations around the
tropopause will naturally integrate multiple mechanisms con-
tributing to water vapour variability, some of which the au-
thors did not explicitly think of during their framework de-
sign. Notably, the same variations will never truly reflect the
most intuitive mechanism of the immediate dehydration of
air parcels during their ascent from the troposphere into the
stratosphere. The latter would require a Lagrangian perspec-
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tive and much higher temporal and spatial resolutions in the
data the CFA is applied to. At the same time, other processes
potentially contributing to water vapour variations, such as
convective overshooting, radiation–circulation interactions,
or cirrus clouds (Dessler et al., 2016; Ming et al., 2016), will
likely already have an effect in the present day and would
thus be part of the observationally derived parameters in the
constraint functions (i.e. lowering or increasing the observa-
tionally derived sensitivities).

Having said that, what always remains uncertain in CFA is
whether the distribution of controlling-factor changes in the
ensemble of climate models truly encapsulates their future
true response to CO2 forcing. If not, constraining functions
learned from past data might provide a different constraint
on the future feedback if combined with a set of controlling-
factor responses hypothesized to better represent suggested
blind-spot mechanisms. In any case, such tests could be valu-
able to explore the implications of potential climate model
blind spots for the robustness of observational constraints.
Specific simulations with a supposedly more mechanistically
complete model or simulations subject to larger ranges of
values for uncertain climate model parameters (see also per-
turbed physics simulations discussed in Sect. 4.3) could be
useful starting points in this regard. Tests along these lines
could provide valuable insights with respect to the sensitivity
of CFA observational constraints to varying the assumptions
inherent in state-of-the-art climate models.

4 Opportunities

In Sect. 3, we highlighted several challenges in the appli-
cation of machine learning to observational constraints on
state-of-the-art climate model ensembles. With careful con-
sideration of these challenges, however, machine learning
has the potential to be a powerful tool to learn more sophisti-
cated, objective (emergent) constraints that can be validated
through cross-validation and perfect model tests. On top of
the machine-learning-augmented CFA outlined in Sect. 2,
here, we highlight a few more ways in which machine learn-
ing can be used to find and improve the robustness of obser-
vational constraints.

4.1 Physical priors

In many cases, we already have a reasonable approxima-
tion of the functional form of a physical response but would
like to capture uncertain elements, such as free parame-
ters or closures, in a consistent and transparent way. In
the stratospheric-water-vapour example above, this was the
known non-linear relationship between temperature and sat-
uration water vapour. In Bayesian terms, we already have an
informative prior. As such, using a Bayesian approach can be
a powerful way of encoding this information and updating it
with observations to provide predictions with well-calibrated
uncertainties.

Figure 6. Example of using a Bayesian model with a physical
prior to enable accurate and well-calibrated extrapolation of climate
projections. Both the FaIR model and the FaiRGP model (which
encodes the FaIR response in the covariance function) accurately
reproduce the NorESM2 warming under SSP2-4.5 despite having
only seen historical temperatures. The plain GP has a no physical
regularization and quickly reverts to its mean function.

One recent example of this utilizes the functional form of
a simple energy balance model (FaIR, in this case; Leach
et al., 2021) as a prior for a Gaussian process (GP) emula-
tion of the temperature response to a given forcing (Bouabid
et al., 2023). By constructing the statistical (machine learn-
ing) model to respect the physical form of the response,
it is able to better predict future warming. Importantly, for
this discussion, this approach performs significantly better
than an unconstrained GP when making out-of-sample pre-
dictions (extrapolating). For example, by training both GPs
only on outputs from a global climate model (GCM) repre-
senting the historical period, the physical GP is able to ac-
curately predict future warming under SSP2-4.5, while the
plain GP quickly reverts to its mean function. This behaviour
is not confined to GPs; any highly parameterized regression
technique (such as a neural network) would produce spuri-
ous results without the strong regularization that the phys-
ical form provides. Similarly, physical constraints imposed
on machine learning cost functions, as is the case in physics-
informed machine learning (Chen et al., 2021; Karniadakis
et al., 2021; Kashinath et al., 2021), could be powerful tools
to be used in this context.

4.2 Discovering controlling factors

Causal discovery and inference techniques allow us to ro-
bustly detect potential constraints and to address the chal-
lenge of confounding variables, respectively (Runge et al.,
2019; Camps-Valls et al., 2023). Methods such as causal dis-
covery or the use of instrumental variables could help in dis-
tinguishing true climate signals from confounding noise. Fur-
thermore, enhancing the datasets with more comprehensive
metadata that capture potential confounders and applying
robust statistical techniques to explicitly model these con-
founders can aid in mitigating their effects. Such approaches
would strengthen the reliability of machine-learning-driven
analyses, ensuring that the emergent constraints or CFAs
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reflect more accurate and physically plausible relationships
that hold under various climate change scenarios. An in-
teresting analogy is that with CFA from Sect. 2; signifi-
cant confounding, which might change the detected histor-
ical relationships under climate change, should also lead to
a corresponding decrease in the predictive skill of the cli-
mate change response under, for example, 4×CO2 forcing.
As such, poorly performing CFA extrapolations might be a
good indicator of poorly designed causal (proxy) relation-
ships among the controlling factors and the predictand.

4.3 Perturbed parameter ensembles

Perturbed physics ensembles (PPEs) (Murphy et al., 2004;
Mulholland et al., 2017) present a significant opportunity
in the realm of CFA by allowing researchers to systemati-
cally explore the sensitivity of climate models to changes in
physical parameterizations. By adjusting various parameters
within a climate model, PPEs generate a range of plausible
climate outcomes, which can then be analysed to understand
how specific processes impact model outputs. This system-
atic variation of parameters helps isolate the influence of in-
dividual factors, thereby providing deeper insights into the
workings of climate models than is possible by simply com-
paring a small ensemble of qualitatively different models.

The utility of PPEs extends beyond the internal processes
of models to potentially enhance our understanding of real-
world observations. By identifying which parameters and
model configurations yield the best alignment with observed
climate data, researchers can infer which physical processes
might be driving observed changes in the climate system.
This transfer of learning from models to learning from obser-
vations is crucial for improving the robustness and credibil-
ity of climate projections. Moreover, the knowledge gained
through PPEs can guide the development of more refined ma-
chine learning algorithms that are capable of incorporating
complex, non-linear interactions discovered in observations.
Thus, combined with the causal discovery approaches out-
lined above, PPEs not only enrich our understanding of cli-
mate models but can also serve as a resource for informing
robust (physical) CFAs.

5 Conclusions

While all climate change studies with machine learning nec-
essarily face the challenge of extrapolation in the presence of
(potential) non-linearity, there are clearly opportunities and
methods to make the power of machine learning accessible to
the scientific challenge. Here, we took the perspective of how
machine learning can help us provide better observational
constraints on the still substantial uncertainties in climate
model projections. In particular, we highlighted controlling-
factor analyses (CFAs) combined with machine learning as
a promising route to pursue and contrasted this approach to
emergent constraints. On the one hand, emergent constraints

share common ground with CFAs in that they still require
expert knowledge in the choice of predictors and in that they
require a leap of faith in the whole ensemble of state-of-the-
art climate models. On the other hand, CFAs learn functions
that a provide a more direct link between the past and fu-
ture response, reduce oversimplification through the learn-
ing of more complex functional relationships, and allow for
a more comprehensive out-of-sample validation of the pre-
dictive skill regarding both past (climate models and obser-
vations) and future data (models only). As such, CFAs are
arguably also less prone to the risk of data-mining correla-
tions that are justified a posteriori on the basis of physical
plausibility arguments.

Ultimately, CFAs might also help to validate proposed
emergent constraints in the future. In essence, for this to hap-
pen, one would have to set up an effective CFA targeting
the same uncertain predictand. Existing emergent constraints
could, thus, in many ways, be considered to be useful start-
ing points for this new field in the spirit of working towards
“multiple lines of evidence”. We further provided a wider
perspective on the challenges of using machine learning for
observational and, specifically, emergent constraints, such as
non-linearity and confounding. Key opportunities to address
these challenges can be found in physics-informed data trans-
formations, physics-informed machine learning, causal al-
gorithms, perturbed physics ensembles, and the imposition
of physical knowledge through physical priors in Bayesian
methods.

While we refrain from over-explaining our intentionally
philosophical paper title, it is clear that emergent constraints
tend to be low-dimensional and somewhat simplistic. Conse-
quently, they will necessarily be various degrees of “wrong”,
as are all models of the truly complex real world. As such,
they have commonalities with the climate models they are
derived from. Nonetheless, emergent constraints, along with
other statistical evaluation methods, are essential because
raw model ensembles alone would only offer limited insight
when it comes to Earth’s uncertain future. Emergent con-
straints have effectively motivated research into poorly un-
derstood climate processes, contributing to scientific under-
standing and inspiring further model development. They will
remain valuable tools for the climate science community for
the foreseeable future. In this paper, we propose that CFAs –
a conceptually related yet distinct approach – could play an
important role not only in validating and complementing but
also even in moving beyond the current evidence provided
by emergent constraints.

Finally, we underline an analogy between the develop-
ment of machine learning and climate models. This anal-
ogy, in turn, could motivate adjustments to frameworks for
climate model development and evaluation cycles. Specif-
ically, in the context of training machine learning models,
the process bears some similarities to the tuning of climate
models in relation to historical observations (e.g. Mauritsen
et al., 2012; Hourdin et al., 2017). As a result, one might
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argue that model intercomparisons, weightings, and evalua-
tions against those same data are far less meaningful, simi-
larly to how one should not evaluate machine learning mod-
els against their training data (a good fit could simply – as
in most cases – imply overfitting rather than good, generaliz-
able predictive skill). Of course, there are intrinsically regu-
larizing features in the form of physical laws in any physics-
based modelling system, which will somewhat mitigate such
effects as compared to fitting a neural network without phys-
ical constraints. Still, we see scope for defining dedicated
historical test datasets as part of future model intercompari-
son exercises. These test datasets should not be included dur-
ing climate model tuning. For example, one could agree that
all model tuning should stop by the year 2005 (typically the
last year of historical simulations for CMIP5), which would
leave around 2 decades for objective model evaluation of re-
cent trends and variability. Through continued scientific ex-
changes of ideas of this kind, there will be many different
ways for the disciplines of machine learning and climate sci-
ence to learn from one another.
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