Articles | Volume 25, issue 24
https://doi.org/10.5194/acp-25-18431-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-18431-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of sudden stratospheric warming with elevated stratopause on the hydroxyl in the polar middle atmosphere
Jin Hu
School of Earth and Space Science and Technology, Wuhan University, Wuhan, China
Sheng-Yang Gu
CORRESPONDING AUTHOR
School of Earth and Space Science and Technology, Wuhan University, Wuhan, China
School of Earth and Space Science and Technology, Wuhan University, Wuhan, China
Yuxuan Liu
School of Earth and Space Science and Technology, Wuhan University, Wuhan, China
Yafei Wei
School of Earth and Space Science and Technology, Wuhan University, Wuhan, China
Related authors
No articles found.
Liang Tang, Sheng-Yang Gu, and Xiankang Dou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3121, https://doi.org/10.5194/egusphere-2024-3121, 2024
Preprint withdrawn
Short summary
Short summary
The temperature amplitude and wave periods of each polar planetary wave event were determined using 2-D least-squares fitting. An important result in this work is that the propagation and amplification characteristics of polar planetary waves during austral winter periods are influenced by background zonal winds and atmospheric instability, and that there is significant variability temperature amplitude, wave period, and temporal variations examined for a given zonal wavenumber.
Sheng-Yang Gu, Dong Wang, Liang Tang, and Yafei Wei
EGUsphere, https://doi.org/10.5194/egusphere-2023-910, https://doi.org/10.5194/egusphere-2023-910, 2023
Preprint archived
Short summary
Short summary
Based on SABER observations, the seasonal and interannual variability of the peak emission rate and height of OH airglow is analyzed. The results show that the latitudinal variations of the semi-annual oscillation (SAO) and annual oscillation (AO) of peak emission rates and heights are similar. In addition, we find that the OH airglow emission is modulated by the quasi-biennial oscillation (QBO) in the equatorial region and solar activity.
Liang Tang, Sheng-Yang Gu, Shu-Yue Zhao, and Dong Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-778, https://doi.org/10.5194/acp-2022-778, 2022
Revised manuscript not accepted
Short summary
Short summary
We found that the interannual difference of the W3 and W4 Q2DW is significantly correlated with the Quasi-Biennial Oscillation westerly (QBOW) and easterly (QBOE) phase. In addition, planetary waves gain stronger source activity during the QBOW phase to provide sufficient energy for propagation and amplification. Overall, this study reveals a difference between the dynamics of mid-latitude westward planetary waves in the QBOW and QBOE phases.
Liang Tang, Sheng-Yang Gu, and Xian-Kang Dou
Atmos. Chem. Phys., 21, 17495–17512, https://doi.org/10.5194/acp-21-17495-2021, https://doi.org/10.5194/acp-21-17495-2021, 2021
Short summary
Short summary
Our study explores the variation in the occurrence date, peak amplitude and wave period for eastward waves and the role of instability, background wind structure and the critical layer in eastward wave propagation and amplification.
Cited articles
Andrews, D. G., Leovy, C. B., and Holton, J. R.: Middle atmosphere dynamics, Academic Press, 0-12-058575-8, 1987.
Atmospheric Chemistry Observations and Modeling (ACOM)/National Center for Atmospheric Research/University Corporation for Atmospheric Research, and Climate and Global Dynamics (CGD) Division/National Center for Atmospheric Research/University Corporation for Atmospheric Research: MERRA2 global atmosphere forcing data, Research Data Archive at the National Center for Atmospheric Research [dataset] (Updated irregularly), Computational and Information Systems Laboratory, https://doi.org/10.5065/XVAQ-2X07, 2018.
Azeem, S. M. I., Talaat, E. R., Sivjee, G. G., Liu, H. L., and Roble, R. G.: Observational study of the 4-day wave in the mesosphere preceding the sudden stratospheric warming events during 1995 and 2002, Geophys. Res. Lett., 32, https://doi.org/10.1029/2005gl023393, 2005.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous weather regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001.
Bolaji, O. S., Oyeyemi, E. O., Owolabi, O. P., Yamazaki, Y., Rabiu, A. B., Fujimoto, D. O. A., Amory-Mazaudier, C., Seemala, G. K., Yoshikawa, A., and Onanuga, O. K.: Solar quiet current response in the African sector due to a 2009 sudden stratospheric warming event, J. Geophys. Res.-Space, 121, 8055–8065, https://doi.org/10.1002/2016ja022857, 2016.
Brakebusch, M., Randall, C. E., Kinnison, D. E., Tilmes, S., Santee, M. L., and Manney, G. L.: Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004-2005, J. Geophys. Res.-Atmos., 118, 2673–2688, https://doi.org/10.1002/jgrd.50226, 2013.
Chandran, A., Collins, R. L., and Harvey, V. L.: Stratosphere-mesosphere coupling during stratospheric sudden warming events, Adv. Space Res., 53, 1265–1289, https://doi.org/10.1016/j.asr.2014.02.005, 2014.
Chandran, A., Collins, R. L., Garcia, R. R., Marsh, D. R., Harvey, V. L., Yue, J., and de la Torre, L.: A climatology of elevated stratopause events in the whole atmosphere community climate model, J. Geophys. Res.-Atmos., 118, 1234–1246, https://doi.org/10.1002/jgrd.50123, 2013.
Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks, J. Climate, 20, 449–469, https://doi.org/10.1175/Jcli3996.1, 2007.
Chen, G., Wu, C., Zhang, S. D., Ning, B. Q., Huang, X. Q., Zhong, D. K., Qi, H., Wang, J., and Huang, L.: Midlatitude ionospheric responses to the 2013 SSW under high solar activity, J. Geophys. Res.-Space, 121, 790–803, https://doi.org/10.1002/2015ja021980, 2016.
Coy, L., Eckermann, S. D., Hoppel, K. W., and Sassi, F.: Mesospheric Precursors to the Major Stratospheric Sudden Warming of 2009: Validation and Dynamical Attribution Using a Ground-to-Edge-of-Space Data Assimilation System, J. Adv. Model. Earth Sy., 3, M10002, https://doi.org/10.1029/2011ms000067, 2011.
Damiani, A., Storini, M., Santee, M. L., and Wang, S.: Variability of the nighttime OH layer and mesospheric ozone at high latitudes during northern winter: influence of meteorology, Atmos. Chem. Phys., 10, 10291–10303, https://doi.org/10.5194/acp-10-10291-2010, 2010.
Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2), J. Adv. Model. Earth Sy., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020.
de la Torre, L., Garcia, R., Barriopedro, D., and Chandran, A.: Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model, J. Geophys. Res.-Atmos., 117, D04110, https://doi.org/10.1029/2011JD016840, 2012.
de Wit, R. J., Hibbins, R. E., Espy, P. J., Orsolini, Y. J., Limpasuvan, V., and Kinnison, D. E.: Observations of gravity wave forcing of the mesopause region during the January 2013 major Sudden Stratospheric Warming, Geophys. Res. Lett., 41, 4745–4752, https://doi.org/10.1002/2014gl060501, 2014.
Dyrland, M., Mulligan, F., Hall, C., Sigernes, F., Tsutsumi, M., and Deehr, C.: Response of OH airglow temperatures to neutral air dynamics at 78° N, 16° E during the anomalous 2003-2004 winter, J. Geophys. Res.-Atmos., 115, D07103, https://doi.org/10.1029/2009JD012726, 2010.
Gao, H., Xu, J. Y., and Chen, G. M.: The responses of the nightglow emissions observed by the TIMED/SABER satellite to solar radiation, J. Geophys. Res.-Space, 121, 1627–1642, https://doi.org/10.1002/2015ja021624, 2016.
Gao, H., Xu, J. Y., and Wu, Q. A.: Seasonal and QBO variations in the OH nightglow emission observed by TIMED/SABER, J. Geophys. Res.-Space, 115, A06313, https://doi.org/10.1029/2009ja014641, 2010.
Gao, H., Xu, J. Y., Ward, W., and Smith, A. K.: Temporal evolution of nightglow emission responses to SSW events observed by TIMED/SABER, J. Geophys. Res.-Atmos., 116, D19110, https://doi.org/10.1029/2011jd015936, 2011.
Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., McInerny, J., Liu, H. L., Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J. F., Richter, J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B., Simpson, I. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.: The Whole Atmosphere Community Climate Model Version 6 (WACCM6), J. Geophys. Res.-Atmos., 124, 12380–12403, https://doi.org/10.1029/2019jd030943, 2019.
Gilli, G., Forget, F., Spiga, A., Navarro, T., Millour, E., Montabone, L., Kleinböhl, A., Kass, D. M., McCleese, D. J., and Schofield, J. T.: Impact of Gravity Waves on the Middle Atmosphere of Mars: A Non-Orographic Gravity Wave Parameterization Based on Global Climate Modeling and MCS Observations, J. Geophys. Res.-Planet., 125, https://doi.org/10.1029/2018JE005873, 2020.
Goncharenko, L., Chau, J. L., Condor, P., Cster, A., and Benkevitch, L.: Ionospheric effects of sudden stratospheric warming during moderate-to-high solar activity: Case study of January 2013, Geophys. Res. Lett., 40, 4982–4986, https://doi.org/10.1002/grl.50980, 2013.
Grygalashvyly, M., Pogoreltsev, A. I., Andreyev, A. B., Smyshlyaev, S. P., and Sonnemann, G. R.: Semi-annual variation of excited hydroxyl emission at mid-latitudes, Ann. Geophys., 39, 255–265, https://doi.org/10.5194/angeo-39-255-2021, 2021.
Grygalashvyly, M., Sonnemann, G., Lübken, F. J., Hartogh, P., and Berger, U.: Hydroxyl layer: Mean state and trends at midlatitudes, J. Geophys. Res.-Atmos., 119, 12391–12419, https://doi.org/10.1002/2014JD022094, 2014.
Gu, S. Y., Teng, C. K. M., Li, N., Jia, M. J., Li, G. Z., Xie, H. Y., Ding, Z. H., and Dou, X. K.: Multivariate Analysis on the Ionospheric Responses to Planetary Waves During the 2019 Antarctic SSW Event, J. Geophys. Res.-Space, 126, https://doi.org/10.1029/2020JA028588, 2021.
Harada, Y., Goto, A., Hasegawa, H., Fujikawa, N., Naoe, H., and Hirooka, T.: A Major Stratospheric Sudden Warming Event in January 2009, J. Atmos. Sci., 67, 2052–2069, https://doi.org/10.1175/2009jas3320.1, 2010.
Harada, Y., Sato, K., Kinoshita, T., Yasui, R., Hirooka, T., and Naoe, H.: Diagnostics of a WN2-Type Major Sudden Stratospheric Warming Event in February 2018 Using a New Three-Dimensional Wave Activity Flux, J. Geophys. Res.-Atmos., 124, 6120–6142, https://doi.org/10.1029/2018jd030162, 2019.
Harvey, V. L., Aggarwal, D., Becker, E., Bittner, M., Funke, B., Goncharenko, L., Jia, J., Lieberman, R., Liu, H. L., Maliniemi, V., Marchaudon, A., Nesse, H., Partamies, N., Pedatella, N., Schmidt, C., Shi, G., Stephan, C. C., Stober, G., van Caspel, W., Wüst, S., and Yamazaki, Y.: Signatures of Polar Vortex Weakening in the MLTI: A Review, Surv. Geophys., https://doi.org/10.1007/s10712-025-09899-3, 2025.
Hitchman, M. H., Gille, J. C., Rodgers, C. D., and Brasseur, G.: The Separated Polar Winter Stratopause – A Gravity-Wave Driven Climatological Feature, J. Atmos. Sci., 46, 410–422, https://doi.org/10.1175/1520-0469(1989)046<0410:TSPWSA>2.0.CO;2, 1989.
Holt, L. A., Alexander, M. J., Coy, L., Liu, C., Molod, A., Putman, W., and Pawson, S.: An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation, Q. J. Roy. Meteor. Soc., 143, 2481–2495, https://doi.org/10.1002/qj.3101, 2017.
Jones, M., Drob, D. P., Siskind, D. E., McCormack, J. P., Maute, A., McDonald, S. E., and Dymond, K. F.: Evaluating Different Techniques for Constraining Lower Atmospheric Variability in an Upper Atmosphere General Circulation Model: A Case Study During the 2010 Sudden Stratospheric Warming, J. Adv. Model. Earth Sy., 10, 3076–3102, https://doi.org/10.1029/2018ms001440, 2018.
Karpechko, A. Y., Charlton-Perez, A., Balmaseda, M., Tyrrell, N., and Vitart, F.: Predicting Sudden Stratospheric Warming 2018 and Its Climate Impacts With a Multimodel Ensemble, Geophys. Res. Lett., 45, 13538–13546, https://doi.org/10.1029/2018gl081091, 2018.
Kodera, K., Mukougawa, H., and Itoh, S.: Tropospheric impact of reflected planetary waves from the stratosphere, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008gl034575, 2008.
Kumar, A., Krishna, M. V. S., and Ranjan, A. K.: Effect of 2009 Major SSW Event on the Mesospheric CO2 Cooling, J. Geophys. Res.-Atmos., 129, https://doi.org/10.1029/2024JD041298, 2024.
Kurihara, J., Ogawa, Y., Oyama, S., Nozawa, S., Tsutsumi, M., Hall, C. M., Tomikawa, Y., and Fujii, R.: Links between a stratospheric sudden warming and thermal structures and dynamics in the high-latitude mesosphere, lower thermosphere, and ionosphere, Geophys. Res. Lett., 37, https://doi.org/10.1029/2010gl043643, 2010.
Lee, W., Song, I. S., Kim, J. H., Kim, Y. H., Jeong, S. H., Eswaraiah, S., and Murphy, D. J.: The Observation and SD-WACCM Simulation of Planetary Wave Activity in the Middle Atmosphere During the 2019 Southern Hemispheric Sudden Stratospheric Warming, J. Geophys. Res.-Space, 126, https://doi.org/10.1029/2020JA029094, 2021.
Li, K. F., Cageao, R. P., Karpilovsky, E. M., Mills, F. P., Yung, Y. L., Margolis, J. S., and Sander, S. P.: OH column abundance over Table Mountain Facility, California: AM-PM diurnal asymmetry, Geophys. Res. Lett., 32, L13813, https://doi.org/10.1029/2005gl022521, 2005.
Limpasuvan, V., Alexander, M. J., Orsolini, Y. J., Wu, D. L., Xue, M., Richter, J. H., and Yamashita, C.: Mesoscale simulations of gravity waves during the 2008–2009 major stratospheric sudden warming, J. Geophys. Res.-Atmos., 116, D17104, https://doi.org/10.1029/2010jd015190, 2011.
Limpasuvan, V., Richter, J., Orsolini, Y., Stordal, F., and Kvissel, O.: The roles of planetary and gravity waves during a major stratospheric sudden warming as characterized in WACCM, J. Atmos. Sol.-Terr. Phy., 78–79, 84–98, https://doi.org/10.1016/j.jastp.2011.03.004, 2012.
Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K.: On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause, J. Geophys. Res.-Atmos., 121, 4518–4537, https://doi.org/10.1002/2015jd024401, 2016.
Liu, H. L. and Roble, R. G.: Dynamical coupling of the stratosphere and mesosphere in the 2002 Southern Hemisphere major stratospheric sudden warming, Geophys. Res. Lett., 32, L13804, https://doi.org/10.1029/2005gl022939, 2005.
Liu, H. L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G., Marsh, D. R., Maute, A., McInerney, J. M., and Pedatella, N. M.: Development and validation of the whole atmosphere community climate model with thermosphere and ionosphere extension (WACCM-X 2.0), J. Adv. Model. Earth Sy., 10, 381–402, https://doi.org/10.1002/2017MS001232, 2018.
Liu, X., Xu, J. Y., Yue, J., Vadas, S. L., and Becker, E.: Orographic Primary and Secondary Gravity Waves in the Middle Atmosphere From 16-Year SABER Observations, Geophys. Res. Lett., 46, 4512–4522, https://doi.org/10.1029/2019gl082256, 2019.
Lu, Q., Rao, J., Liang, Z., Guo, D., Luo, J., Liu, S., Wang, C., and Wang, T.: The sudden stratospheric warming in January 2021, Environ. Res. Lett., 16, 084029, https://doi.org/10.1088/1748-9326/ac12f4, 2021.
Lukianova, R., Kozlovsky, A., Shalimov, S., Ulich, T., and Lester, M.: Thermal and dynamical perturbations in the winter polar mesosphere-lower thermosphere region associated with sudden stratospheric warmings under conditions of low solar activity, J. Geophys. Res.-Space, 120, 5226–5240, https://doi.org/10.1002/2015ja021269, 2015.
Ma, Z., Gong, Y., Zhang, S., Zhou, Q., Huang, C., Huang, K., Luo, J., Yu, Y., and Li, G.: Study of a Quasi 4-Day Oscillation During the 2018/2019 SSW Over Mohe, China, J. Geophys. Res.-Space, 125, e2019JA027687, https://doi.org/10.1029/2019JA027687, 2020.
Manney, G. L., Krüger, K., Pawson, S., Minschwaner, K., Schwartz, M. J., Daffer, W. H., Livesey, N. J., Mlynczak, M. G., Remsberg, E. E., Russell, J. M., and Waters, J. W.: The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses, J. Geophys. Res.-Atmos., 113, D11115, https://doi.org/10.1029/2007jd009097, 2008.
Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S., Lee, J. N., Daffer, W. H., Fuller, R. A., and Livesey, N. J.: Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming, Geophys. Res. Lett., 36, L12815, https://doi.org/10.1029/2009gl038586, 2009.
Marsh, D. R., Smith, A. K., Mlynczak, M. G., and Russell, J. M.: SABER observations of the OH Meinel airglow variability near the mesopause, J. Geophys. Res.-Space, 111, https://doi.org/10.1029/2005ja011451, 2006.
Maute, A., Hagan, M. E., Richmond, A. D., and Roble, R. G.: TIME- GCM study of the ionospheric equatorial vertical drift changes during the 2006 stratospheric sudden warming, J. Geophys. Res.-Space, 119, 1287–1305, https://doi.org/10.1002/2013ja019490, 2014.
McInturff, R. M.: Stratospheric warmings: Synoptic, dynamic and general-circulation aspects, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780010687.pdf (last access: 4 December 2025), 1978.
Medvedeva, I. V., Semenov, A. I., Pogoreltsev, A. I., and Tatarnikov, A. V.: Influence of sudden stratospheric warming on the mesosphere/lower thermosphere from the hydroxyl emission observations and numerical simulations, J. Atmos. Sol.-Terr. Phy., 187, 22–32, https://doi.org/10.1016/j.jastp.2019.02.005, 2019.
Minschwaner, K., Manney, G. L., Wang, S. H., and Harwood, R. S.: Hydroxyl in the stratosphere and mesosphere – Part 1: Diurnal variability, Atmos. Chem. Phys., 11, 955–962, https://doi.org/10.5194/acp-11-955-2011, 2011.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.
Okui, H., Sato, K., Koshin, D., and Watanabe, S.: Formation of a Mesospheric Inversion Layer and the Subsequent Elevated Stratopause Associated With the Major Stratospheric Sudden Warming in 2018/19, J. Geophys. Res.-Atmos., 126, https://doi.org/10.1029/2021JD034681, 2021.
Orsolini, Y. J., Zhang, J. R., and Limpasuvan, V.: Abrupt Change in the Lower Thermospheric Mean Meridional Circulation During Sudden Stratospheric Warmings and Its Impact on Trace Species, J. Geophys. Res.-Atmos., 127, https://doi.org/10.1029/2022JD037050, 2022.
Orsolini, Y. J., Urban, J., Murtagh, D. P., Lossow, S., and Limpasuvan, V.: Descent from the polar mesosphere and anomalously high stratopause observed in 8 years of water vapor and temperature satellite observations by the Odin Sub-Millimeter Radiometer, J. Geophys. Res.-Atmos., 115, https://doi.org/10.1029/2009jd013501, 2010.
Pickett, H., Read, W., Lee, K., and Yung, Y.: Observation of night OH in the mesosphere, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL026910, 2006.
Qin, Y. S., Gu, S. Y., Dou, X. K., and Wei, Y. F.: Unexpected Global Structure of Quasi-4-Day Wave With Westward Zonal Wavenumber 2 During the February 2023 Unusual Major Sudden Stratospheric Warming With Elevated Stratopause, Geophys. Res. Lett., 51, https://doi.org/10.1029/2024GL109682, 2024.
Rao, J., Garfinkel, C. I., Chen, H. S., and White, I. P.: The 2019 New Year Stratospheric Sudden Warming and Its Real-Time Predictions in Multiple S2S Models, J. Geophys. Res.-Atmos., 124, 11155–11174, https://doi.org/10.1029/2019jd030826, 2019.
Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a Physically Based Gravity Wave Source Parameterization in a General Circulation Model, J. Atmos. Sci., 67, 136–156, https://doi.org/10.1175/2009jas3112.1, 2010.
Salinas, C. C. J. H., Wu, D. L., Lee, J. N., Chang, L. C., Qian, L., and Liu, H.: Aura/MLS observes and SD-WACCM-X simulates the seasonality, quasi-biennial oscillation and El Niño–Southern Oscillation of the migrating diurnal tide driving upper mesospheric CO primarily through vertical advection, Atmos. Chem. Phys., 23, 1705–1730, https://doi.org/10.5194/acp-23-1705-2023, 2023.
Sassi, F. and Liu, H. L.: Westward traveling planetary wave events in the lower thermosphere during solar minimum conditions simulated by SD-WACCM-X, J. Atmos. Sol.-Terr. Phy., 119, 11–26, https://doi.org/10.1016/j.jastp.2014.06.009, 2014.
Schneider, H., Wendt, V., Banys, D., Hansen, M., Clilverd, M., and Verronen, P. T.: Impact of Sudden Stratospheric Warming and Elevated Stratopause Events on the Very Low Frequency Radio Signal, J. Geophys. Res.-Space, 130, e2024JA033320, https://doi.org/10.1029/2024JA033320, 2025.
Shapiro, A. V., Rozanov, E., Shapiro, A. I., Wang, S., Egorova, T., Schmutz, W., and Peter, Th.: Signature of the 27-day solar rotation cycle in mesospheric OH and H2O observed by the Aura Microwave Limb Sounder, Atmos. Chem. Phys., 12, 3181–3188, https://doi.org/10.5194/acp-12-3181-2012, 2012.
Stray, N. H., Orsolini, Y. J., Espy, P. J., Limpasuvan, V., and Hibbins, R. E.: Observations of planetary waves in the mesosphere-lower thermosphere during stratospheric warming events, Atmos. Chem. Phys., 15, 4997–5005, https://doi.org/10.5194/acp-15-4997-2015, 2015.
Teng, C., Gu, S., Qin, Y., Dou, X., Li, N., and Tang, L.: Unexpected Decrease in TW3 Amplitude During Antarctic Sudden Stratospheric Warming Events as Revealed by SD-WACCM-X, J. Geophys. Res.-Space, 126, e2020JA029050, https://doi.org/10.1029/2020JA029050, 2021.
Tweedy, O., Limpasuvan, V., Orsolini, Y., Smith, A., Garcia, R., Kinnison, D., Randall, C., Kvissel, O., Stordal, F., Harvey, V., and Chandran, A.: Nighttime secondary ozone layer during major stratospheric sudden warmings in specified-dynamics WACCM, J. Geophys. Res.-Atmos., 118, 8346–8358, https://doi.org/10.1002/jgrd.50651, 2013.
Wehrbein, W. M. and Leovy, C. B.: An Accurate Radiative Heating and Cooling Algorithm for Use in a Dynamical Model of the Middle Atmosphere, J. Atmos. Sci., 39, 1532–1544, https://doi.org/10.1175/1520-0469(1982)039<1532:AARHAC>2.0.CO;2, 1982.
Winick, J., Wintersteiner, P., Picard, R., Esplin, D., Mlynczak, M., Russell, J., and Gordley, L.: OH layer characteristics during unusual boreal winters of 2004 and 2006, J. Geophys. Res.-Space, 114, https://doi.org/10.1029/2008JA013688, 2009.
Xu, J., Smith, A., Jiang, G., Gao, H., Wei, Y., Mlynczak, M., and Russell, J.: Strong longitudinal variations in the OH nightglow, Geophys. Res. Lett., 37, L21801, https://doi.org/10.1029/2010GL043972, 2010.
Yamazaki, Y., Sato, K., Koshin, D., and Yasui, R.: Atmospheric semidiurnal solar tide response to sudden stratospheric warmings in the JAGUAR-DAS Whole neutral Atmosphere Reanalysis (JAWARA) during 2004–2023, J. Geophys. Res.-Space, 130, e2024JA033688, https://doi.org/10.1029/2024JA033688, 2025.
Yang, J., Wang, J., Liu, D., Guo, W., and Zhang, Y.: Observation and simulation of neutral air density in the middle atmosphere during the 2021 sudden stratospheric warming event, Atmos. Chem. Phys., 24, 10113–10127, https://doi.org/10.5194/acp-24-10113-2024, 2024.
Yue, X., Schreiner, W., Lei, J., Rocken, C., Hunt, D., Kuo, Y., and Wan, W.: Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event, J. Geophys. Res.-Space, 115, A00G09, https://doi.org/10.1029/2010JA015466, 2010.
Zhang, J., Limpasuvan, V., Orsolini, Y., Espy, P., and Hibbins, R.: Climatological Westward-Propagating Semidiurnal Tides and Their Composite Response to Sudden Stratospheric Warmings in SuperDARN and SD-WACCM-X, J. Geophys. Res.-Atmos., 126, e2020JD032895, https://doi.org/10.1029/2020JD032895, 2021.
Zhang, J. R., Oberheide, J., Pedatella, N. M., and Liu, G. P.: Impact of Arctic and Antarctic Sudden Stratospheric Warmings on Thermospheric Composition, J. Geophys. Res.-Space, 130, e2024JA032562, https://doi.org/10.1029/2024JA032562, 2025.
Short summary
This paper focuses on the response of the polar hydroxyl layer in the mesosphere to Arctic sudden stratospheric warming events with an elevated stratopause, revealing significant phase-dependent variations in hydroxyl distribution driven by gravity wave drag changes. These findings enhance our understanding of vertical and dynamical-photochemical coupling in the middle and upper atmosphere, which also offer valuable implications for the upper atmospheric sounding and modeling.
This paper focuses on the response of the polar hydroxyl layer in the mesosphere to Arctic...
Altmetrics
Final-revised paper
Preprint