Articles | Volume 25, issue 23
https://doi.org/10.5194/acp-25-17501-2025
https://doi.org/10.5194/acp-25-17501-2025
Research article
 | 
03 Dec 2025
Research article |  | 03 Dec 2025

Using geostationary-satellite-derived sub-daily fire radiative power variability versus prescribed diurnal cycles to assess the impact of African fires on tropospheric ozone

Haolin Wang, William Maslanka, Paul I. Palmer, Martin J. Wooster, Haofan Wang, Fei Yao, Liang Feng, Kai Wu, Xiao Lu, and Shaojia Fan

Viewed

Total article views: 910 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
814 71 25 910 51 23 31
  • HTML: 814
  • PDF: 71
  • XML: 25
  • Total: 910
  • Supplement: 51
  • BibTeX: 23
  • EndNote: 31
Views and downloads (calculated since 03 Jul 2025)
Cumulative views and downloads (calculated since 03 Jul 2025)

Viewed (geographical distribution)

Total article views: 910 (including HTML, PDF, and XML) Thereof 910 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 03 Dec 2025
Download
Short summary

We examine the impact of diurnally varying African biomass burning (BB) emissions on tropospheric ozone using GEOS-Chem simulations with a high-resolution satellite-derived emission inventory. Compared to coarser temporal resolutions, incorporating diurnal variations leads to significant changes in surface ozone and atmospheric oxidation capacity. Our findings highlight the importance of accurately representing BB emission timing in chemical transport models to improve ozone predictions.

Share
Altmetrics
Final-revised paper
Preprint