Articles | Volume 25, issue 21
https://doi.org/10.5194/acp-25-15527-2025
https://doi.org/10.5194/acp-25-15527-2025
Research article
 | 
13 Nov 2025
Research article |  | 13 Nov 2025

Quantifying CO emissions from boreal wildfires by assimilating TROPOMI and TCCON observations

Sina Voshtani, Dylan B. A. Jones, Debra Wunch, Drew C. Pendergrass, Paul O. Wennberg, David F. Pollard, Isamu Morino, Hirofumi Ohyama, Nicholas M. Deutscher, Frank Hase, Ralf Sussmann, Damien Weidmann, Rigel Kivi, Omaira García, Yao Té, Jack Chen, Kerry Anderson, Robin Stevens, Shobha Kondragunta, Aihua Zhu, Douglas Worthy, Senen Racki, Kathryn McKain, Maria V. Makarova, Nicholas Jones, Emmanuel Mahieu, Andrea Cadena-Caicedo, Paolo Cristofanelli, Casper Labuschagne, Elena Kozlova, Thomas Seitz, Martin Steinbacher, Reza Mahdi, and Isao Murata

Viewed

Total article views: 1,224 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,122 70 32 1,224 44 22 41
  • HTML: 1,122
  • PDF: 70
  • XML: 32
  • Total: 1,224
  • Supplement: 44
  • BibTeX: 22
  • EndNote: 41
Views and downloads (calculated since 13 Mar 2025)
Cumulative views and downloads (calculated since 13 Mar 2025)

Viewed (geographical distribution)

Total article views: 1,224 (including HTML, PDF, and XML) Thereof 1,224 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 13 Nov 2025
Download
Short summary
We assess the complementarity of the greater temporal coverage provided by ground-based remote sensing data with the spatial coverage of satellite observations when these data are used together to quantify CO emissions from extreme wildfires in 2023. Our results reveal that the commonly used biomass burning emission inventories significantly underestimate the fire emissions and emphasize the importance of the ground-based remote sensing data in reducing uncertainties in the estimated emissions.
Share
Altmetrics
Final-revised paper
Preprint