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Abstract. We perform a global inverse modelling analysis to quantify biomass burning emissions of carbon
monoxide (CO) from the extreme wildfires in Canada between May and September 2023. Using the GEOS-Chem
model, we assimilated observations at 3 d temporal and 2°× 2.5° horizontal resolution from the Tropospheric
Monitoring Instrument (TROPOMI) separately and then jointly with Total Carbon Column Observing Network
(TCCON) measurements. We also evaluated prior emissions from the Quick Fire Emissions Dataset (QFED),
Blended Global Biomass Burning Emissions Product eXtended (GBBEPx), Global Fire Assimilation System
(GFAS), and Canadian Forest Fire Emissions Prediction System (CFFEPS). The assimilation of TROPOMI-
only measurements estimated posterior North America emissions for QFED, GBBEPx, GFAS, and CFFEPS of
110.4± 20, 112.8± 20, 127.2± 17, and 125.6± 18 Tg CO compared to prior estimates of 37.1, 42.7, 91.0, and
90.2 Tg CO, respectively. The joint assimilation of TROPOMI+TCCON reduced the posterior 1σ uncertainty on
the North American emission estimates by up to about 30 %, while showing only a modest impact (<5 %) on the
mean estimate of the inferred emissions. An evaluation against independent measurements reveals that adding
TCCON data increases the correlations and slightly lowers the biases and standard deviations. Additionally,
including an experimental TCCON product at East Trout Lake with higher surface sensitivity, we find better
agreement of the assimilation results with nearby in situ tall tower and aircraft measurements. This highlights the
potential importance of vertical sensitivity in these experimental data for constraining local surface emissions.
Our results demonstrate the complementarity of the greater temporal coverage provided by TCCON with the
spatial coverage of TROPOMI when these data are jointly assimilated.

1 Introduction

Biomass burning (BB) from wildfires is a major source of
carbon emissions released into the atmosphere with large cli-
mate and air quality impacts, exerting a significant influence
on human health, ecosystems, and the environment (Cascio,
2018; Chen et al., 2017; O’Neill et al., 2021; Wu et al., 2022).
Over the past few years, wildfires have become more fre-
quent and destructive in different regions of the world (Jega-
sothy et al., 2023; Mataveli et al., 2024; You and Xu, 2023).
More specifically, in Canada in 2023, the total area burned by
wildfires surpassed the previous record in 1989 (75 596 km2)
by nearly a factor of 2.5 while the amount of emitted car-
bon also dramatically increased by more than 11 times com-
pared to the 1998–2022 average (Jain et al., 2024; Jones
et al., 2024; Kolden et al., 2024). Therefore, reactive trace
gases (e.g., CO) and greenhouse gases (GHGs) (e.g., CH4
and CO2) had an unprecedent increase during the 2023 wild-
fire emissions (Byrne et al., 2024). In addition to perturbing
the carbon budget, these emissions also have implications for
air quality. However, obtaining reliable estimates of wildfire
emissions is a challenging task due to several factors, such as
the episodic and localized nature of these emissions (Sokolik

et al., 2019; Zhao et al., 2025). Here, we focus on estimat-
ing emissions from carbon monoxide (CO) from wildfires
during the summer 2023. With a lifetime of up to several
months (Holloway et al., 2000), which is sufficiently long to
track long-range transport on intercontinental scales, CO is
an ideal tracer of combustion. CO plays an important role in
both air quality and climate as it is a precursor of ozone (O3)
and the dominant sink of the hydroxyl radical (OH), which
is the main atmospheric oxidant (Aschi and Largo, 2003;
Fowler et al., 2008). Observations of CO have provided in-
formation on combustion sources on a range of scales, from
urban to regional and global scales (Borsdorff et al., 2020;
Cristofanelli et al., 2024; Pommier et al., 2013; Schneising
et al., 2020; Tang et al., 2019).

CO emissions from wildfires can be estimated either from
bottom-up or top-down approaches. In the bottom-up ap-
proach, emissions are represented as the product of an emis-
sion factor, which is the amount of trace gas emitted per
unit of fuel consumed, and the amount of dry matter burned.
Bottom-up inventories use either observations of burned area
to determine the mass of dry matter burned (Liu et al., 2024;
van der Werf et al., 2017; Wiedinmyer et al., 2023) or esti-
mates of fire radiative power (FRP) to quantify the rate of
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fuel consumption (Filizzola et al., 2023; Kaiser et al., 2012).
There are typically large uncertainties in these inventories
(Andreae, 2019; Hundal et al., 2024) arising from discrep-
ancies in the emission factors and the estimated mass of dry
matter burned, resulting in significant differences in emission
estimates (Chen et al., 2022; Nguyen et al., 2023; Saikawa et
al., 2017; Zhang et al., 2023). The top-down approach makes
use of CO observations to optimize emissions through an in-
verse modelling method, but this approach depends on the
use of an atmospheric chemistry-transport model and a pri-
ori emission estimates, which are typically obtained from a
bottom-up inventory.

Over the past two decades, global CO observations have
been provided by several satellite sensors, including the Mea-
surements of Pollution in the Troposphere (MOPITT) instru-
ment (Deeter et al., 2003; Edwards et al., 2006), the Infrared
Atmospheric Sounding Interferometer (IASI) (Pope et al.,
2021; Turquety et al., 2004), and the Tropospheric Emis-
sion Spectrometer (TES) (Lopez et al., 2008), and these data
have been used in numerous inverse modelling studies to
quantify CO emissions (e.g., Kasibhatla et al., 2002; Arel-
lano et al., 2006; Warner et al., 2007; Jones et al., 2009a;
Kopacz et al., 2010; Miyazaki et al., 2012; Miyazaki, Es-
kes, and Sudo 2015; Jiang et al., 2017; Zheng et al., 2019).
However, large discrepancies between the inversion results
have been reported, which may arise from differences be-
tween spatiotemporal coverage of the observations, the ver-
tical sensitivity of the measurements, and observation biases
(Deeter et al., 2015; Jiang et al., 2017; Jones et al., 2009a;
Miyazaki et al., 2015; Warner et al., 2010). Nonetheless, a
few recent studies attempted to address some of the chal-
lenges by reducing potential biases in the model (Gaubert et
al., 2023; Miyazaki et al., 2020) or by improving the quality
of the assimilated data (Tang et al., 2024). The Tropospheric
Monitoring Instrument (TROPOMI) (Borsdorff et al., 2018),
launched in 2017, has provided CO retrievals with improved
accuracy, higher spatial resolution, and significantly greater
observational coverage (Landgraf et al., 2016; Schneising et
al., 2020). In particular, it offers higher sensitivity to near-
surface CO compared to earlier thermal infrared measure-
ments from instruments such as IASI and TES. These factors
make it well-suited for inverse modelling of CO emissions, as
demonstrated in many recent studies (Borsdorff et al., 2023;
Byrne et al., 2024; Goudar et al., 2023; Griffin et al., 2024;
Inness et al., 2022; Shahrokhi et al., 2023; Stockwell et al.,
2022; Wan et al., 2023).

Measurements from surface in situ networks and aircraft
campaigns have been used for CO trend determination (Pa-
tel et al., 2024) and CO inversion studies in the past (Palmer
et al., 2003; Yumimoto and Uno, 2006; Koohkan and Boc-
quet, 2012; Tang et al., 2013; Feng et al., 2020). However,
mainly due to limited spatiotemporal coverage and/or verti-
cal distribution, they are typically incapable of sufficiently
constraining emission estimates on fine spatial scales; there-
fore, model errors such as those from vertical transport, the

OH field, and the a priori emissions, can significantly impact
the inferred emission estimates (Hooghiemstra et al., 2011).
Only a few studies have attempted to use both satellite and
surface observations together to exploit the complementarity
of these observations to reduce the influence of errors, such
as those that arise from the sensitivity to the vertical distri-
bution of CO (Tang et al., 2022) and long-range transport
(Kim et al., 2024). However, most of these studies focused
on inversions over a limited area, where sufficient surface
CO observations are available. There are also ground-based
total column measurements from networks such as the To-
tal Carbon Column Observing Network (TCCON, Wunch
et al., 2011), which was designed in part to validate satel-
lite observations (Borsdorff et al., 2019; Bukosa et al., 2023;
Hedelius et al., 2021; Sha et al., 2021; Tang et al., 2024). TC-
CON provides time-resolved and accurate column-averaged
dry-air mole fractions of CO (XCO) under sunny skies. Al-
though TCCON observations are spatially sparse, they are
of high temporal density and therefore could provide valu-
able information in constraining episodic CO emissions from
wildfires. However, a standard method of integrating TC-
CON measurements with satellite data in a data assimilation
or inversion system is still lacking, as most current studies
assimilate satellite data, while reserving the TCCON data to
evaluate the performance of the assimilation.

In this study, we quantify biomass burning CO emis-
sions between May and September 2023 using the CHem-
istry and Emissions REanalysis Interface with Observations
(CHEEREIO) assimilation toolkit (Pendergrass et al., 2023),
which employs the GEOS-Chem model and an ensemble
Kalman filter (EnKF) scheme. We conduct a global analy-
sis, but our focus is on quantifying boreal emissions asso-
ciated with the 2023 fires in Canada. We jointly assimilate
TCCON and TROPOMI data and conduct a comparison with
a TROPOMI-only assimilation to assess the added value of
TCCON observations in the assimilation and to determine
the additional constraints that TCCON data provide for opti-
mizing CO emissions from localized and episodic wildfires.
We include two distinct types of TCCON data with differ-
ent vertical sensitivities in our inversion, while using inde-
pendent total column and in situ surface and aircraft vertical
profile observations to characterize the success of our analy-
sis. Additionally, we evaluate the following three global and
one regional biomass burning inventories in the context of
the assimilation: the Quick Fire Emissions Dataset (QFED)
(Koster et al., 2015), the Blended Global Biomass Burn-
ing Emissions Product eXtended (GBBEPx) (Zhang et al.,
2012, 2019), the Global Fire Assimilation System (GFAS)
product (Kaiser et al., 2012; Di Giuseppe et al., 2021), and
the Canadian Forest Fire Emissions Prediction System (CF-
FEPS) (Chen et al., 2019).

We begin in Sect. 2 with a description of the observations
and model configurations, including the a priori emissions
used in the inversion. Section 3 presents the inversion meth-
ods, the main assumptions, and sensitivity experiments using
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simulated observations to tune the inversion performance.
Section 4 provides the main results and discussion, and fi-
nally, the study concludes with a few summary points and a
suggestion for future works.

2 Observations and model

This section describes the observational datasets and mod-
elling framework and inputs used in this study. We first de-
scribe in Sect. 2.1–2.2 the two types of observations that are
assimilated in the inversion framework: (i) TROPOMI satel-
lite CO products and (ii) TCCON ground-based CO mea-
surements. Then, in Sect. 2.3, we present several indepen-
dent datasets (not assimilated) used for evaluation, includ-
ing the Network for the Detection of Atmospheric Compo-
sition (NDACC, De Mazière et al., 2018) ground-based total
column observations, in situ surface CO measurements from
the World Data Centre for Greenhouse Gases (WDCGG) net-
work and from Environment and Climate Change Canada’s
(ECCC) tall tower at East Trout Lake (ETL), and vertical
profiles from in situ aircraft measurements. The assimilated
TCCON data are also used for comparisons between differ-
ent experiments, although they are no longer independent in-
formation for the joint inversion. Finally, Sect. 2.4 provides
a description of the GEOS-Chem model and emissions in-
ventories that are used as the a priori estimate in our inver-
sion setup. The priors include three global inventories, in-
cluding QFED, GBBEPx, and GFAS, and one regional in-
ventory, CFFEPS, for North America.

2.1 TROPOMI

The TROPOMI instrument is on board the Copernicus Sen-
tinel 5 Precursor (S5P) satellite, which was launched in Oc-
tober 2017. Total column abundances of carbon monoxide
(XCO) are retrieved from spectra measured in the short-
wave infrared (SWIR) band at 2305–2385 nm, with daily
global coverage, a local overpass solar time of 13:30 UTC,
and high spatial resolution of 5.5× 7 km2 (Veefkind et al.,
2012). We use the operational XCO product publicly avail-
able from the European Space Agency (ESA) Sentinel-5P
data products at https://doi.org/10.5270/S5P-bj3nry0 (Coper-
nicus Sentinel-5P, 2021) (Landgraf et al., 2019), with a re-
ported bias of better than 15 ppb in comparison with TC-
CON GGG2014 data product (Sha et al., 2021). The XCO
data are published together with the total column averaging
kernels to account for the sensitivity of the retrieved total
column to the true atmosphere, thus, they can be used along
with a priori vertical profiles to obtain model-equivalent total
CO columns representing the observed data (Apituley et al.,
2022). The TROPOMI retrieval algorithm provides clear-sky
and cloudy observations over land and ocean (Borsdorff et
al., 2019), however, we only use measurements with a qual-
ity flag equal to and greater than 0.7 to ensure high-quality
data obtained under cloud-free or low cloud conditions. As

shown in the Fig. 1a, we exclude TROPOMI observations
poleward of 60°, primarily to avoid biases due to low sur-
face albedo in the SWIR from snow cover (Hasekamp et al.,
2022; Lorente et al., 2021) and biases due to the stratosphere
in the chemical transport model (CTM) affecting the inver-
sion performance (Turner et al., 2015). Since the horizon-
tal resolution of the TROPOMI data is substantially higher
than the GEOS-Chem model resolution used in this study
(2°× 2.5°), the observations are not spatially representative
for the model grid cells, resulting in a large representative-
ness error in the assimilation process. To overcome this, we
aggregate the observations into so-called super-observations
before using them in the assimilation. In fact, for the duration
of the study between May and September 2023, we compute
the error-weighted median average of measurements within
each grid cell, where each measurement is weighted by the
inverse of its reported error standard deviation (Eskes et al.,
2003; Miyazaki et al., 2012). To account for error reduc-
tion because of averaging, we follow a similar method as
Pendergrass et al. (2023) to compute the associated super-
observation errors. This includes average of individual mea-
surement errors and assumptions on error correlations and
transport errors. The relative weight of the super-observation
error to the prior error is then estimated through parameter
tuning in the inversion system to ensure robustness to possi-
ble error misspecification (see Sect. 3 and Appendices A and
B). Finally, a total of 1 744 682 number of observations are
processed.

Several previous studies evaluated TROPOMI XCO ob-
servations and found reasonable agreement with satellite and
ground-based measurements. For example, Sha et al. (2021)
reported a bias of 2.45± 3.38 % against the unscaled TC-
CON and a bias of 6.50± 3.45 % against NDACC, which
remains within the range of TROPOMI’s precision and ac-
curacy. In addition, the TROPOMI validation report (https:
//mpc-vdaf.tropomi.eu/, last access: 28 June 2024; Lambert
et al., 2024) shows that operational TROPOMI XCO data
are in good agreement with collocated measurements from
NDACC, TCCON, and the Collaborative Carbon Column
Observing Network (COCCON; Alberti et al., 2022; Frey et
al., 2019) monitoring networks.

2.2 TCCON

TCCON (https://www.tccon.caltech.edu/, last access: 22
February 2025) is a ground-based network of solar-viewing
Fourier transform spectrometers (FTS) that collect atmo-
spheric transmission spectra every 2–3 min. The spectra
range covers the near and short-wave infrared region, and
measurements collected under clear-sky conditions are used
to retrieve column-averaged dry-air mole fractions of trace
gases, including carbon monoxide (i.e., XCO) (Wunch et al.,
2011). We use data from 15 sites around the world, shown
in Fig. 1 and listed in Table 1, derived from the standard
GGG2020 retrieval software (Laughner et al., 2024). The dif-
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Figure 1. (a) Number of quality-controlled and aggregated TROPOMI and TCCON observations (XCO) used in the global inversion as
described in Sect. 2.1 and 2.2. (b) Variability of the number of non-aggregated TROPOMI (blue) and TCCON (red) observations at the East
Trout Lake (ETL) TCCON station from April–September 2023. (c) Time series (MM-DD) of XCO column retrievals from standard TCCON
GGG2020 data (blue) and XCO measurements from the InSb detector (orange) at ETL between May–September 2023. (d) Column averaging
kernels for standard TCCON GGG2020 XCO (blue) and for XCO measurements derived from an alternative CO absorption window on the
ETL InSb detector (orange) between May–September 2023.

ference between the GGG2020 and GGG2014 XCO retrieval
data is 6.3 ppb, with GGG2020 larger than GGG2014. This is
because TCCON XCO data are no longer scaled to the WMO
trace gas scale (Wunch et al., 2025). The accuracy and preci-
sion of the standard TCCON XCO product is reported to be
around 8 ppb. These data are publicly available and can be
accessed via https://tccondata.org/ (last access: 1 June 2024).
In addition to the standard XCO retrievals, which use spec-
tra measured using an InGaAs detector and a CO window
centred at 4290 cm−1, we use retrievals of XCO available
from spectra collected at the East Trout Lake TCCON station
from an additional InSb detector. The spectral range of the
InSb detector includes two mid-infrared windows (centred at
2111 and 2160 cm−1) that contain strong CO absorption fea-
tures that result in an XCO retrieval with markedly different
averaging kernels (orange) from the standard XCO retrieval
(blue), as shown in Fig. 1c–d. These mid-infrared spectral
windows were used in a previous study together with the
standard TCCON CO window to extract vertical information
from the TCCON measurements (Parker et al., 2023). The
XCO retrievals from the InSb spectra have higher sensitiv-

ity to the surface and lower sensitivity to the higher altitudes
than the standard XCO retrievals. The impact of including
these mid-infrared XCO retrievals on the inversion perfor-
mance to constrain CO emissions is discussed in Sect. 4.2.2.

We filter all TCCON datasets to include only data with
a quality flag= 0 (i.e., the highest quality data). To prepare
for the assimilation, first, all the measurements are aggre-
gated in time, based on the model output hourly timestep,
weighted by the measurement reported errors. This produced
213 784 quality-controlled data points that were then mapped
on the GEOS-Chem grid resolution, providing 19 733 me-
dian hourly averaged observations for the period of May–
September 2023 in this study.

2.3 NDACC and in situ surface and aircraft data

This study employs two independent ground-based data
sources for validation purpose. We utilize measurements
from NDACC, a global network of ground-based stations
equipped with Fourier transform infrared (FTIR) spectrom-
eters that provide long-term total column measurements of

https://doi.org/10.5194/acp-25-15527-2025 Atmos. Chem. Phys., 25, 15527–15565, 2025
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Table 1. List of ground network, surface in situ, aircraft, and tall tower measurements used in this study between May and September 2023.

Measurement Site (ID) Latitude Longitude Altitude (km a.s.l.) Reference

TCCON Sodankylä, Finland 67.4° N 26.6° E 0.188 Kivi et al. (2022)

TCCON Karlsruhe, Germany 49.1° N 8.4° E 0.116 Hase et al. (2023)

TCCON Garmisch, Germany 47.4° N 11.1° E 0.740 Sussmann and Rettinger
(2023)

TCCON Paris, France 48.8° N 2.4° E 0.060 Té et al. (2022)

TCCON Harwell, UK 51.6° N 1.3° W 0.142 Weidmann et al. (2023)

TCCON Izana, Tenerife, Spain 28.3° N 16.5° W 2.370 García et al. (2022)

TCCON East Trout Lake, Canada 54.3° N 104.9° W 0.502 Wunch et al. (2022)

TCCON Lamont, USA 36.6° N 97.5° W 0.320 Wennberg et al. (2022b)

TCCON Park Falls, USA 45.9° N 90.3° W 0.440 Wennberg et al. (2022c)

TCCON Caltech, USA 34.1° N 118.1° W 0.230 Wennberg et al. (2022a)

TCCON Edwards, USA 34.0° N 117.8° W 0.700 Iraci et al. (2022)

TCCON Rikubetsu, Japan 43.5° N 143.8° E 0.380 Morino et al. (2022a)

TCCON Tsukuba, Japan 36.1° N 140.1° E 0.030 Morino et al. (2022b)

TCCON Wollongong, Australia 34.4° S 150.9° E 0.300 Deutscher et al. (2023)

TCCON Lauder, New Zealand 45.0° S 169.7° E 0.370 Pollard et al. (2022)

NDACC Tsukuba, Japan 36.1° N 140.1° E 0.030 Morino et al. (2022b)

NDACC Wollongong, Australia 34.4° S 150.9° E 0.300 Jones et al. (2009b)

NDACC Lauder, New Zealand 45.0° S 169.7° E 0.370 Bègue et al. (2024)

NDACC Arrival Heights, Antarctica 77.8° S 66.67° E 0.184 Smale et al. (2021)

NDACC St. Petersburg, Russia 59.9° N 29.8° E 0.020 Makarova et al. (2024)

NDACC Jungfraujoch, Switzerland 46.5° N 7.9° E 3.580 Zander et al. (2008)

NDACC Altzomoni, Mexico 19.1° N 98.6° W 3.985 Grutter et al. (2008)

In Situ Bukit Kototabang (BKT), Indonesia 0.2° S 100.3° E 0.864 Eko Cahyono et al. (2022),
PI: Reza Mahdi, BMKG

In Situ Minamitorishima (MNM), Japan 24° N 153.9° E 0.007 Takatsuji (2024a)

In Situ Ryori (RYO), Japan 39.3° N 141.8° E 0.260 Takatsuji (2024b)

In Situ Yonagunijima (YON), Japan 24.4° N 123° E 0.030 Takatsuji (2024c)

In Situ Capo Granitola (CGR), Italy 37.6° N 126° E 0.005 Cristofanelli et al. (2017)

In Situ Cape Point (CPT), South Africa 34.3° S 18.5° E 0.230 Labuschagne et al. (2018)

In Situ Cape Verde Atmospheric Observatory
(CVO), Cabo Verde

16.9° N 24.9° W 0.010 Kozlova et al. (2021)

In Situ Jungfraujoch (JFJ), Switzerland 46.5° N 7.9° E 3.580 Hueglin et al. (2024), PI:
Martin Steinbacher, Empa

In Situ Mt. Kenya (MKN), Kenya 0.06° S 37.3° E 3.678 Kirago et al. (2023), PI:
David Njiru (KMD)

Tall tower East Trout Lake, Canada 54.3° N 104.9° W 0.502∗ Chen et al. (2014), PI: Dou-
glas Worthy, ECCC

Aircraft East Trout Lake, Canada 54.3° N 104.9° W – McKain et al. (2024)
∗ This is the surface altitude, and the measurement intake are at four levels (95, 55, 33, 22 m) installed on a 105 m SaskTel communication tower.
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XCO (De Mazière et al., 2018). NDACC XCO measure-
ments, similar to those from TCCON (i.e., same spectral
domain as the InSb TCCON data), are of high-quality and
well-suited for validating models, satellite observations, and
assimilation system performance (Kerzenmacher et al., 2012;
Lutsch et al., 2020; Sha et al., 2021). In this study, we include
mid-infrared NDACC total column data from seven stations
covering the study period (see Table 1). The data are publicly
available at http://www.ndacc.org (last access: 30 July 2024).

Additionally, continuous and discrete surface in situ CO
measurements obtained from WDCGG serve as a second
independent dataset to evaluate surface CO concentrations
obtained from our experiments. In situ measurements com-
piled by the WDCGG have been widely used in previous
inverse modelling studies for validating results and testing
model performance (Chevallier et al., 2011; Jiang et al.,
2017; Miyazaki et al., 2020; Tanimoto et al., 2008). We
use the archived data from nine sites over the study pe-
riod, which are publicly available and accessed from https:
//gaw.kishou.go.jp/ (last access: 1 July 2024). We also use in
situ tall tower measurements from the ETL site provided by
ECCC (Chen et al., 2014) to assess the impact of using the
XCO retrievals from the InSb spectra on the inversion results.
The evaluation results are presented in Sect. 4.2.2.

We use in situ aircraft CO measurements from the National
Oceanic and Atmospheric Administration (NOAA) air sam-
pling network (McKain et al., 2024) taken as another inde-
pendent source to evaluate our inversion results. The data
product is freely available to public via https://gml.noaa.
gov/ccgg/aircraft/ (last access: 22 February 2025). The air-
craft program aims to capture temporal variability (i.e., sea-
sonal and interannual changes) of the greenhouse gases in
the lower atmosphere. Dry air mole fractions of CO are mea-
sured using flask air samples at different fixed altitude lev-
els. It provides measurements at different sites across the
United States and Canada and at different altitudes, descend-
ing from a maximum of 8000 m to the lowest sampling level
at ∼ 750 m (a.s.l.). These data have been commonly used in
previous studies to explore the large-scale changes in hori-
zontal and vertical distribution of CO and greenhouse gases
(Sweeney et al., 2015), to serve as benchmark for validat-
ing forward and inverse modelling analysis (Stephens et al.,
2007; Yang et al., 2007), and to calibrate remote sensing
retrievals (Wunch et al., 2010). Focusing on the impact of
the experimental TCCON InSb data used in the inversion
to constrain surface CO emissions, we use aircraft profiles
at ETL during multiple time events (details are discussed in
Sect. 4.2.2). Table 1 shows the list and geographical informa-
tion of all observations used for evaluation.

2.4 GEOS-Chem and prior estimates

The GEOS-Chem model (http://www.geos-chem.org, last
access: 1 July 2024) is a global 3D CTM that uses assimi-
lated meteorological observations as input from the NASA

Global Modelling and Assimilation Office (GMAO). We use
version 14.1.1 of the GEOS-Chem CTM driven by meteoro-
logical input from the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2; Gelaro et
al., 2017). The meteorological fields have a native resolution
of 0.25°× 0.3125° with 72 vertical levels from the surface to
0.01 hPa, which is degraded to 2°× 2.5° horizontal grid and
47 vertical levels (Bey et al., 2001). For the purpose of global
CO assimilation in this study, the linear CO-only simulation
of GEOS-Chem, also known as “tagged CO”, is used with
prescribed monthly mean OH fields from a 10-year archived
full chemistry simulation based on version 14 of the model.
The tagged CO simulation reduces the computation cost rel-
ative to the full-chemistry and has been widely applied in
different studies in the past (Heald et al., 2004; Jiang et al.,
2017; Jones et al., 2009a; Kopacz et al., 2010; Lutsch et al.,
2020; Tang et al., 2023; Wunch et al., 2019). Version 14.1.1
of the tagged CO simulation incorporated the improved sec-
ondary CO production scheme for the tagged CO simula-
tion, which reduces the differences between full chemistry
and tagged CO simulations, especially in regions strongly
influenced by biogenic emissions and chemistry (Fisher et
al., 2017). The biogenic source of CO in the full chem-
istry simulation is based on the oxidation of volatile organic
compounds (VOCs) produced by the Model of Emissions of
Gases and Aerosols from Nature (MEGAN version 2.1) in-
ventory (Guenther et al., 2012).

For the results presented here, we specify fossil fuel emis-
sions of CO from the Community Emissions Data System
(CEDS) inventory (Hoesly et al., 2018). Biomass burning
(BB) emissions are based on the four different BB invento-
ries described below. These BB emissions have been used in
various studies (Griffin et al., 2020; Jin et al., 2024; Li et al.,
2020; Zhang et al., 2022), and are used as our prior emissions
in the inversion analyses conducted here.

2.4.1 QFED

The Quick Fire Emissions Dataset version 2.5r1 (QFED
v2.5r1) (Koster et al., 2015), is a global product of biomass
burning emissions which was developed for the NASA
GEOS model. It applies the fire radiative power (FRP)
method with a cloud correction technique (Koster et al.,
2015), where the location of fires and FRP are derived from
the polar orbiting Moderate Resolution Imaging Spectrora-
diometer (MODIS) instrument onboard the NASA’s Terra
and Aqua satellites. QFED provides daily emissions with a
horizontal spatial resolution of 0.1°× 0.1°, and GEOS-Chem
applies a climatological profile based on WRAP (Western
Regional Air Partnership) method (WRAP, 2005) to dis-
tribute the emissions over the diurnal cycle. In the QFED
implementation in GEOS-Chem, the setup of the plume in-
jection height follows Fischer et al. (2014) and Travis et
al. (2016), where the 65 % of the biomass burning emis-
sions are allocated to the planetary boundary layer (PBL)
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and the remaining 35 % belongs to the free troposphere.
The QFED data can be accessed from http://geoschemdata.
wustl.edu/ExtData/HEMCO/QFED/v2023-05/ (last access:
1 July 2024).

2.4.2 GBBEPx

The Blended Global Biomass Burning Emissions Product
eXtended (GBBEPx v4, Zhang et al., 2012, 2019), developed
by NOAA National Environmental Satellite, Data, and In-
formation Service (NESDIS), produces daily global biomass
burning emissions. GBBEPx blends information from QFED
and fire emissions estimated from the Visible Infrared Imag-
ing Radiometer Suite (VIIRS) instrument onboard Suomi
National Polar-orbiting Partnership (SNPP) and Joint Polar
Satellite System (JPSS). VIIRS fire emissions are obtained
using FRP derived from VIIRS data in an approach that is
similar to the use of MODIS FRP data in QFED (Csiszar
et al., 2016), but with a different fire detection scheme
(Zhang et al., 2019). The blended GBBEPx emissions are
produced daily at a resolution of 0.25°× 0.3125°, and the
same profile is applied to distribute the emissions over the
diurnal cycle as is used for QFED. The implementation of
GBBEPx in GEOS-Chem assumes the same plume injec-
tion height scheme as for QFED. The GBBEPx v4 data can
be accessed from https://www.ospo.noaa.gov/pub/Blended/
GBBEPx/ (last access: 1 July 2024).

2.4.3 GFAS

The Global Fire Assimilation System (GFAS v1.2, Kaiser et
al., 2012; Di Giuseppe et al., 2021), utilized by the Coper-
nicus Atmosphere Monitoring Service (CAMS), provides
daily estimate of biomass burning emissions by assimilat-
ing FRP observations from MODIS instruments on the Terra
and Aqua satellites. GFAS estimates emissions by conver-
sion of FRP to the dry matter burned and the use of biome-
specific emission factors. GFAS utilizes the vegetation type
prescribed by the Global Fire Emissions Database (GFED).
The daily data are globally available at a resolution of
0.1°× 0.1° from 2003 to the present time, which can be ac-
cessed from https://ads.atmosphere.copernicus.eu/datasets/
cams-global-fire-emissions-gfas?tab=overview, (last access:
11 June 2024). In the GEOS-Chem simulations, we use the
same diurnal cycle as used in QFED and GBBEPx. Addi-
tionally, GFAS provides information about the daily injection
height (i.e., mean altitude of maximum injection (MAMI)) of
the emissions. In GEOS-Chem, it is assumed that the emis-
sions are injected uniformly from the surface to the MAMI.

2.4.4 CFFEPS

The Canadian Forest Fire Emissions Prediction System (CF-
FEPS v4.0, Chen et al., 2019) produces biomass burning
emissions for North America using information from the

Canadian Forest Service (CFS), Canadian Wildland Fire In-
formation System (CWFIS), and meteorological inputs from
ECCC’s Global Environmental Multiscale (GEM) model.
The product provides hourly fire emissions and smoke plume
injection height at individual hotspot locations. In imple-
menting the CFFEPS emissions in GEOS-Chem, the emis-
sions were aggregated to the GEOS-Chem grid resolution
with a weighted average plume height based on the CO2
emission level. The CO2 emission level was used in deter-
mining the injection height for all species in CFFEPS, even
though here we focus only on the CO emissions. The plume
injection height estimates from the FireWork plume rise
model (Anderson et al., 2011; Chen et al., 2019) on which
CFFEPS is based, have been validated against satellite-
driven (e.g., TROPOMI) aerosol plume heights (Griffin et al.,
2020).

3 Inversion methodology

The inversion framework utilizes the CHEEREIO assimila-
tion toolkit (Pendergrass et al., 2023), which employs a local-
ized ensemble transform Kalman filter (LETKF). A detailed
description of the LETKF algorithm used is provided in Hunt
et al. (2007). We use CHEEREIO to derive optimized esti-
mates of globally gridded emissions of CO between May and
September 2023 at a spatial resolution of 2°× 2.5° and a tem-
poral resolution of three days by assimilation of TROPOMI
satellite and TCCON observations. The solution state vector
of emissions, xa, is given by

xa = xb+ γXbP̃a
(

Yb
)T

R−1
(
yo
−H

(
xb
))
, (1)

where the overbar represents the ensemble mean, xb is the
background state vector, yo is the observation vector,H

(
xb)

is the model simulation of the observations with observation
operator H , R is the observation error covariance matrix, P̃a

is the analysis error covariance matrix where tilde represents
the ensemble space, Xb is the background perturbation ma-
trix, Yb is the observation perturbation matrix (see the de-
tailed description of LETKF variables in Hunt et al., 2007).
γ is a regularization factor used to prevent overfitting or un-
derfitting to observations by balancing the relative influence
of the a priori estimate and the measurements in the inver-
sion. It serves as a pragmatic correction for uncertainties that
are hard to quantify, such as unaccounted observation error
correlations (Hakami et al., 2005; Lu et al., 2022; Voshtani et
al., 2023).

To simulate the observations, we have developed an obser-
vation operator for each measurement type. The observation
operator maps the model emission fields (i.e., state space)
into the observation space as follow:

H
(
xb
)
= hv

[
ca priori

+A
(

M
(
xb
)
− ca priori

)]
, (2)

where A denotes the column averaging kernel of the re-
trieval, capturing the vertical sensitivity of the retrieval pro-
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files relative to the real atmosphere, ca priori is the a priori
profile provided by measurement data, M

(
xb) represents a

forward operator that operates on the emissions state vector
and produces CO profiles that are spatially and temporally
interpolated at the locations and times of the measurements,
and hv describes the vertical summation operator based on
pressure weighting for computing model-equivalent column
retrievals. To obtain a posteriori estimate of CO emissions,
we begin by initializing the ensemble scaling factors using
a multiplicative random perturbation to the prior estimates
from all emission sources at the grid scale (i.e., spatially
varying perturbations), sampled from a multivariate lognor-
mal distribution (see the detailed description of ensemble
generation in Pendergrass et al., 2023, Sect. 3.2). We as-
sume lognormal errors on the prior emissions to ensure the
positivity of the solution (i.e., prevent unrealistic negative
scaling factors) and to better capture the skewed tails of the
emissions distribution (Maasakkers et al., 2019; Plant et al.,
2022). In the next step, CHEEREIO first runs GEOS-Chem
for each ensemble member over the assimilation window and
then applies Eq. (2) to those ensembles in the LETKF pro-
cess. This process further scales the emissions based on the
observation increments (i.e., yo

−H
(
xb)), and the observa-

tion and the prior error covariances (Eq. 1). Note that during
the construction of error covariances, a logarithmic transform
of the scaling factor distributions to a normal distribution is
required to satisfy the assumptions of LETKF (Hunt et al.,
2007), which can be transformed back to the lognormal dis-
tribution after the LETKF process. Finally, gridded total CO
emissions from all sources, including biomass burning (BB),
fossil fuel, and biogenic emissions, are updated through the
inversion process. Note that the analysis here will focus on
regions where BB plays a dominant role in the attribution
of CO emissions between May and September 2023, and
where BB emissions are spatially distinct from fossil fuel
emissions. As a result, misattribution of CO emissions to BB
from other sources will be minor and likely falls within the
uncertainty bounds of the a posteriori estimates.

To obtain an efficient performance of the inversion using
TCCON data, it is important to tune the assimilation param-
eters with the available configuration in CHEEREIO. This
was accomplished through a series of observing system sim-
ulation experiments (OSSEs), which are described in Appen-
dices A and B. We use 24 ensemble members following pre-
vious inversion studies with the same approach (Liu et al.,
2019; Pendergrass et al., 2023). Our sensitivity test with a
larger ensemble size of 36 produced nearly identical poste-
rior error estimates, with negligible improvements; thus, for
saving on the computational cost of the analysis, we used the
smaller ensemble size.

Before starting the inversion, we first conducted a 1-year
model spin-up in 2022 (January–December) for all experi-
ments to minimize the impact of the initial conditions on the
analysis. Then, an ensemble spin-up without assimilating ob-
servations is performed, where emissions are randomly per-

turbed at each grid point based on a lognormal distribution to
create an ensemble spread. We assume a lognormal standard
deviation of σ = 0.2, centered around 1, that provides en-
semble member scaling factors between 0.55 and 1.82 with
99 % confidence. This perturbation level is sufficient to gen-
erate meaningful ensemble spread while avoiding unrealis-
tically high or low values for constructing the prior error
covariance. The scaling factors are assumed to be spatially
correlated using an exponential decay function with a corre-
lation distance of 500 km, while no explicit temporal corre-
lations are imposed. We use a spin-up of about three months,
comparable to the CO lifetime during summer, not only to
provide a reasonable spread in the ensemble members but
also to ensure the concentrations will reflect the perturbations
in emissions. At the start of the assimilation, we adjusted the
ensemble members by a global multiplicative factor, mak-
ing the ensemble mean equivalent to the TROPOMI and TC-
CON observations. This maintains a globally unbiased field
of concentrations relative to the observations. Because the
LETKF is sequential, it takes some time for the observations
to provide sufficient information to update the emissions. To
account for this lag, we use a one-month burn-in period in
CHEEREIO (Pendergrass et al., 2023), for which the inver-
sion output is discarded in postprocessing.

The performance of the inversion can be also enhanced us-
ing different LETKF parameters, such as localization and in-
flation parameters (Bisht et al., 2023; Miyazaki et al., 2012,
2020). For the TROPOMI and TCCON data, we use regu-
larization factors, γTROPOMI = 0.2 and γTCCON = 5, respec-
tively, estimated separately for each observation type through
the OSSE experiments (see Appendix B). These factors scale
the observation error covariances to balance the weight given
to the measurements relative to the prior weight in the inver-
sion. For the high spatial density of satellite observations, a
factor of γ < 1 is required to prevent overfitting, while for
sparse measurements like TCCON, a factor of γ > 1 is typi-
cally suitable to prevent underfitting of the observations. We
also use an inflation factor (1= 0.08) to compensate for a
rapid reduction of the ensemble spread, which may other-
wise prevent the inversion from being updated by subsequent
observations. We set a localization radius of 500 km fol-
lowing previous CO inversion studies (Gaubert et al., 2023;
Miyazaki et al., 2015) to avoid the impact of distant observa-
tions, which may be affected by sampling errors and spurious
correlations (see Fig. S1). We generate super-observations
for both TROPOMI and TCCON by aggregating measure-
ments to the model time and grid. This aggregation helps
mitigate spatiotemporal representativity errors and facilitates
LETKF computations. The associated super-observation er-
rors are calculated as described in Sect. 2.1. We further apply
an inflation factor to the observation errors, while initially
assuming an observation error correlation of 0.28, following
previous studies (Chen et al., 2023; Pendergrass et al., 2023).
We do not explicitly account for model transport errors in
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Table 2. Assimilation experiments with the choice of emission in-
ventories and assimilated observations used in the global inversion
between May–September 2023.

Experiment Biomass burning Assimilated
emission inventory observationsb

1 QFED –
2 QFED TROPOMI
3 QFED TROPOMI+TCCON
4 GBBEPx –
5 GBBEPx TROPOMI
6 GBBEPx TROPOMI+TCCON
7 GFAS –
8 GFAS TROPOMI
9 GFAS TROPOMI+TCCON
10 CFFEPSa –
11 CFFEPS TROPOMI
12 CFFEPS TROPOMI+TCCON

a The inversions based on CFFEPS emission inventory in North America uses
GFAS global emissions for the regions outside of North America. b No
observations are assimilated (–), corresponding to the model a priori or control
run with a particular biomass burning emission inventory.

calculating the super-observations, but the influence of these
errors will be captured by the error inflation in the inversion.

We conducted a series of assimilation experiments, which
are listed in Table 2, to assess the impact of the use of TC-
CON and TROPOMI data and the choice of a priori emis-
sion inventories on the inferred CO emissions. Each experi-
ment pairs a specific emission inventory – QFED, GBBEPx,
GFAS, or CFFEPS – with either only TROPOMI observa-
tions or both TROPOMI and TCCON data in the assimilation
process. Although the emissions are optimized at the grid
box scale, we aggregate emissions for the following five re-
gions (shown in Fig. 2), where there are typically significant
fire emissions between May and September: North Amer-
ica (NA), Siberia (SI), South America (SA), Africa (AF),
and South Asia and Australia (SA&A). Any emission from
outside of these five regions are captured in the Rest of the
World (ROW) category. The emissions from the five regions
account for 90 %–95 % of biomass burning emissions glob-
ally.

4 Results and discussions

This section presents our main results by first assessing the
CO emissions on a global scale (Sect. 4.1) and then focusing
on North American emissions (Sect. 4.2), where the most ex-
treme fire events took place during the study period in sum-
mer 2023. A series of experiments are conducted as listed in
Table 2 for both global and regional analysis. For the global
analysis (Sect. 4.1.1–4.1.3), we use three biomass burning
emission inventories (QFED, GBBEPx, GFAS) as priors,
and compare how assimilating TROPOMI satellite observa-
tions alone or jointly with TCCON ground-based measure-

ments affects our emissions estimates. A method to measure
and compare error variance and information content is pre-
sented. For evaluation, two types of independent data, includ-
ing NDACC total column and surface WDCGG measure-
ments, in addition to the same TCCON observations (non-
independent) are used. Focusing on North America analysis
(Sect. 4.2.1–4.2.2), we include an additional regional prior
emissions inventory from CFFEPS (Chen et al., 2019) pro-
vided by ECCC and additional experimental InSb XCO data
from TCCON at ETL in our analysis. First, our analysis ex-
plores the spatiotemporal variability of a posteriori and a pri-
ori CO fields during extreme fire episodes. Then, as a case
study at ETL, we assess the impact of assimilating addi-
tional information from experimental TCCON data at ETL,
with unique retrieval characteristics, on local emissions con-
straints. The evaluations are performed using independent
aircraft and tall tower measurements. The discussion pre-
sented in these two sections allows us to highlight both the
broad and local impacts of our approach and the specific im-
provements achieved in areas most affected by fires.

4.1 Global analysis

4.1.1 Comparison between prior and posterior
emissions

Table 3 shows the total regional BB CO emissions from the a
priori bottom-up inventories and the a posteriori emission es-
timates (i.e., ensemble mean) obtained from the TROPOMI-
only assimilation and the joint TROPOMI and TCCON (i.e.,
TROPOMI+TCCON) assimilation. The standard deviations
shown in this table are posterior ensemble spread based on
the LETKF assimilation, which is referred to as posterior un-
certainty throughout the discussion in this study. The vec-
tor of posterior uncertainties has the same size as the state
vector, computed for each grid cell after each assimilation
window. Accordingly, the posterior uncertainty in an inver-
sion region (i.e., regional or global scale) is the ensemble
standard deviation of the total emissions. The total emis-
sions per ensemble is obtained by summing the emissions
across all grid cells in that region. For the inversion period
between May and September 2023, there is a large discrep-
ancy in the a priori emissions between the three global in-
ventories, with GFAS producing the highest global emis-
sions of 230.3 Tg CO, which is a factor of 1.3 times GBBEPx
(182.6 Tg CO) and 1.4 times QFED (164.5 Tg CO) emis-
sions. These differences are more substantial in the regions
of North America (NA) and Siberia (SI), where the boreal
wildfires play an important role. In NA, the GFAS emissions
are greater than the emissions from GBBEPx and QFED by
a factor of 2.1 and 2.5, respectively. In SI, GFAS is a factor
of 3.1 and 2.1 greater than GBBEPx and QFED, respectively.
Although all GFAS, GBBEPx, and QFED are based on esti-
mates of FRP derived from satellite products (i.e., MODIS
and/or VIIRS), there are many driving factors that cause the
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Figure 2. Major source regions of the biomass burning CO emissions used in the inversion analysis between May–September 2023, with an
example of the a priori emission estimate using the GFAS bottom-up inventory. The a priori estimates for these regions from other inventories
are listed in Table 3.

differences in the total emissions (Li et al., 2020; Liu et al.,
2024), which can reach up to an order of magnitude in a finer
spatiotemporal scale (Stockwell et al., 2022). In contrast, the
CFFEPS emissions in NA are comparable to GFAS despite
using a different approach for estimating the emissions.

After assimilating the TROPOMI data, the a posteriori
emissions suggest a large increase in global emissions from
the a priori, with global a posteriori emissions of all invento-
ries in close agreement with each other. We estimate global
fire emissions of 303± 67, 310± 67, and 329± 67 Tg CO
for QFED, GBBEPx, and GFAS, respectively. In North
America, the a posteriori emission estimates are also con-
sistent, with estimates of 126± 18, 127± 17, 113± 20, and
110± 20 Tg CO for CFFEPS, GFAS, GBBEPx, and QFED,
respectively. For most other regions, the inferred emissions
all agree with within the a posteriori uncertainty except
for Siberia, where the a posteriori emission estimates are
45± 13, 24± 9, and 29± 10 Tg CO for GFAS, GBBEPx,
and QFED, respectively. The discrepancy between the a pos-
teriori Siberian emissions could be because the assimilation
did not ingest TROPOMI observations poleward of 60° N,
and there are large emission sources poleward of 60° N, as
can be seen in Fig. 4. Note that although the emissions be-
yond 60° may not be directly corrected from local observa-
tions at the current assimilation step, they can still be updated
using observations between 60° S–60° N and through model
transport and cycling of the assimilation that propagate infor-
mation globally. The overall agreement between the a poste-
riori emission estimates obtained with the different a priori
emissions suggest that TROPOMI provides sufficient infor-
mation to constrain the regional emission estimates.

The joint TCCON and TROPOMI inversion produces a
posteriori emission estimates that agree to within 5 % of
the a posteriori emissions from the TROPOMI-only inver-
sion, but these differences vary among the source regions.
At the global scale, the a posteriori estimates remain within
1σ uncertainty, implying that the increment from the joint
inversion closely matches that from the TROPOMI-only in-
version. Previous inversion studies with CO, and CO2 mea-
surements showed that combining satellite total column ob-
servations with surface in situ measurements (Byrne et al.,
2020; Kim et al., 2024; Wang et al., 2018) could benefit from
the complementarity between the two types of measurements
and provide posterior fluxes that are better informed by mea-
surements. We will discuss later in this section the spatiotem-
poral distributions of the a posteriori emissions in compari-
son with the a priori across all inventories. Table 3 shows that
the joint inversion reduces the uncertainties in the posterior
relative to the inversion using only the TROPOMI data. We
find a global uncertainty reduction of nearly 15 % in all the
a posteriori emission estimates when including the standard
TCCON XCO in the inversion. This reduction is likely due
to the additional temporal information and higher accuracy
provided by TCCON, compared to TROPOMI. The reduc-
tion of uncertainty varies between the source regions. In the
Northern Hemisphere extratropics, where most TCCON sta-
tions are located, the uncertainty reduction reaches 29 % in
NA with CFFEPS emissions, followed by Siberia with GFAS
emissions (26 % reduction). On the other hand, for the trop-
ics and subtropics in the Southern Hemisphere, where there
are fewer TCCON stations, we find smaller reductions in un-
certainties (between 5 % and 10 %). Goudar et al. (2023) in-
vestigated the uncertainties in estimating CO emissions from
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isolated fires using TROPOMI assimilation. They reported
that these estimated uncertainties primarily arise from errors
due to spatial under-sampling of the CO field by TROPOMI
observations and errors due to assumptions about the tem-
poral variability of the emissions. Although we did not ex-
amine individual fire events, the lower overall uncertainty
from the joint TCCON and TROPOMI assimilation suggests
an improved handling of the spatial under-sampling error in
TROPOMI-only assimilation, which is reflected in the un-
certainty estimates. This improvement could be particularly
important, as it shows the isolated effect of adding TCCON
data to the inversions, when other factors such as a priori
emissions and their errors were kept fixed between the joint
and TROPOMI-only assimilations.

To better understand the influence of assimilating TCCON
XCO together with the TROPOMI XCO, we examine the
temporal and spatial variability of the estimated emissions.
Figure 3 shows a priori emissions in blue, a posteriori emis-
sions from the TROPOMI-only assimilation in green, and the
a posteriori emissions from the joint inversion in red between
May and September. In North America, QFED shows only
slight variations in the a priori emissions (Fig. 3a). GBBEPx
(Fig. 3f) shows some degree of improvement over QFED rel-
ative to TROPOMI posterior during a few fire episodes. For
GFAS, however, this improvement over QFED (Fig. 3k) is
significant, so that the GFAS prior exhibits reasonable agree-
ment in both magnitude and temporal variability with the a
posteriori emissions from the TROPOMI-only assimilation.
The posteriors from different priors, but with the same set
of assimilated observations, show overall stronger temporal
variability compared to their respective priors. For instance,
in North America, while the QFED and GBBEPx priors are
relatively flat compared to the GFAS prior, all their posteri-
ors exhibit enhanced and more consistent variability (Fig. 3a,
f, k). Still, differences to some extent remain noticeable be-
tween these posterior time series, likely driven by differ-
ences in the spatial and temporal distribution of the priors,
and their interaction with observational constraints through
model transport and mixing. Comparison of the spatial dis-
tribution of the a priori emissions (Fig. 4a–c) indicates that
two main regions of boreal wildfires in (eastern) Quebec and
(western) Alberta and British Columbia, Canada, correspond
to the large differences in regional emissions among the in-
ventories, although their overall global spatial distributions
are similar. The a posteriori – a priori emissions from the
TROPOMI-only inversions confirm the underestimate of CO
emissions in QFED and GBBEPx, in those regions in Canada
(Fig. 4d–f). GFAS, unlike the other two inventories, has sig-
nificantly larger emissions from wildfires across Canada, so
that they are comparable with the magnitude of the a posteri-
ori emissions in that region (see Table 3 for a comparison of
total emissions and Fig. S2 in the Supplement for the sepa-
rate a posteriori emission maps associated with Fig. 4).

In Siberia, the a posteriori emissions provide an enhance-
ment on the a priori in a few episodes in July and August

Atmos. Chem. Phys., 25, 15527–15565, 2025 https://doi.org/10.5194/acp-25-15527-2025



S. Voshtani et al.: Quantifying wildfire CO emissions using TROPOMI and TCCON 15539

Figure 3. Comparison of the temporal variability of the CO emissions estimate for the priors (blue), posteriors using TROPOMI-only assim-
ilations (green), and posteriors using joint TROPOMI and TCCON assimilations (red), among the three global biomass burning inventories,
including (a–e) QFED, (f–j) GBBEPx, and (k–o) GFAS used as the priors, and for the major inversion source regions as shown in Fig. 2.

(Fig. 3c, h, m), indicating an overall low level of emissions
from all inventories. GFAS, followed by QFED, has not only
higher emissions in the same locations as GBBEPx, but also
has a greater area of BB emissions. However, the a posteriori
emissions suggest that the GFAS inventory required larger
adjustments in the central and western part of SI, suggesting
errors in the spatial allocation of the a posteriori fire emis-
sions in Siberia. In Africa and South America, the emissions

enhancement occurs in late July through the end of the inver-
sion period in September, which are shown in Fig. 3b, g, l, d,
i, n. For these regions, GBBEPx, followed by QFED, provide
a closer estimate to the a posteriori than GFAS, while the
posterior emissions from the TROPOMI-only and joint in-
versions remain nearly identical (Fig. 4d–f versus 4g–i). This
could be because there are very few TCCON measurements
in the Southern Hemisphere near that region. In South Asia
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Figure 4. Comparison of the spatial distribution of the time-averaged biomass burning CO emissions in the (a–c) a priori, (d–f) a posteriori
– a priori using TROPOMI-only assimilation, and (g–i) a posteriori – a priori using joint TROPOMI and TCCON assimilation, and among
three global biomass burning inventories.

and Australia, the emissions enhancement occurs only in two
episodes in early May and early September, which remain
nearly consistent among the inventories. Finally, comparing
the regional a posteriori emissions from the TROPOMI-only
and joint inversions (Fig. 3k, l, m, n, o), we find different tem-
poral variability of the updated emissions, which are distinc-
tive for several wildfire episodes. Additionally, we observed
improvements in the correlation between analogous poste-
rior time series across different BB inventories. For example,
the temporal correlation between the QFED and GFAS pos-
terior emissions in North America increased from r = 0.85
in the TROPOMI-only assimilation to r = 0.90 in the joint
TROPOMI and TCCON assimilation. These findings suggest
that the higher temporal resolution of the TCCON measure-
ments provide additional constraints on temporal variability
of the emissions in the inversion, which is consistent with
findings from previous studies on CO2 inverse modelling
(Byrne et al., 2020, 2024; Chevallier et al., 2011).

Overall, according to the discussion above and the re-
sults from the Observing System Simulation Experiments
(OSSEs) demonstrated in Appendices A and B, we find that
although TCCON alone may not significantly constrain spa-
tiotemporal variability in the major inversion regions – likely
due to the limited number of measurement sites – it is still
clear that adding TCCON to TROPOMI in the joint inversion
reduces the posterior uncertainty estimates everywhere com-
pared to the TROPOMI-only inversion. We found that the re-
duction of the uncertainty by adding TCCON measurements
becomes more significant during high BB emission episodes
or wildfire events. Later, in Sect. 4.1.3, we evaluate the a pri-
ori together with the a posteriori from both TROPOMI-only
and joint inversions using independent measurements.
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4.1.2 Error variance reduction and the information
content

We evaluate the performance of the inversion for constrain-
ing BB CO emissions by quantifying the information content
provided by the TROPOMI and TCCON data. To achieve
this, we use two approaches: (i) computing the reduction of
uncertainty in the model space and (ii) computing the degree
of freedom for signal (DOFS) in the ensemble subspace. Us-
ing these methods will quantify the information provided by
the two observing systems individually. In the first approach,
we compute the a priori and a posteriori error variance for
each grid point, which is obtained as part of the solution for
LETKF processing in CHEEREIO. The reduction of error
variance can be used as a metric for evaluating the inver-
sion performance (Feng et al., 2009); as such, a greater error
variance reduction at a grid point indicates that more reliable
information from observing system is available to constrain
emissions for that grid. Accordingly, we define a normalized
error reduction (ε) for each grid point as follows:

εi = 1−
(σ a
i )2

(σ b
i )2

, (3)

where (σ a
i )2 and (σ b

i )2 denote the error variance of the a pos-
teriori and the a priori, respectively, for the ith emissions in
the state vector. εi varies between 0 to 1, with greater val-
ues indicating a higher reduction of a priori uncertainties.
Although the LETKF method approximates the a posteriori
uncertainty due to the reduced rank representation associated
with the limited number of ensembles used to construct the
error covariances (Livings et al., 2008), it still provides use-
ful information with which to evaluate the analyses.

Figure 5 shows the error variance reduction, εi , for the
a posteriori emissions based on the three different global
BB inventories (i.e., QFED, GBBEPx, and GFAS) using
TROPOMI-only measurements (Fig. 5a–c) and using joint
TROPOMI and TCCON measurements (Fig. 5d–f). The
greater reduction in error variances implies higher confi-
dence in the posterior estimate at those locations. We find
greater reduction of error variance in the joint inversion com-
pared to the inversion with TROPOMI-only data, primarily
in NA and in the vicinity of TCCON stations. In fact, the
reductions correlate with the weight of observations com-
pared to the model a priori, so that increasing the weight
of observations with respect to the model a priori could re-
sult in higher reductions of the error variances. For exam-
ple, with QFED as the a priori emissions, the rate of reduc-
tion is greater in boreal Canada, central and southern part of
the United States, western Europe, eastern Asia, Siberia, and
Australia. This indicates where TCCON provides additional
information to further constrain the emissions based on the
QFED BB inventory. In addition, comparing the cases with
different inventories suggests that there could be differences
in error variance reduction due to the model a priori. Accord-
ingly, the slightly greater reduction with GFAS, compared to

QFED or GBBEPx, is likely due to its higher spatiotemporal
variability, which enables the inversion to better exploit the
information from observations.

In the second approach, following Zupanski et al. (2007),
we compute the degree of freedom for signal (DOFS) ap-
proximated for the ensemble-based assimilation method. The
DOFS, as defined by Rodgers (2000), quantifies the number
of pieces of independent information in an observing sys-
tem toward constraining the state vector of dimension n (also
equivalent to the total number of grids in the model). It is de-
fined as

DOFSn = tr
(

In×n−Pa
n×n

(
Pb
n×n

)−1
)
= tr(An×n), (4)

where Pa
n×n and Pb

n×n are analysis and background error co-
variances, In×n denotes the identity matrix, and An×n rep-
resents the averaging kernel matrix. To compute An×n and
then DOFSn, a Jacobian matrix must be constructed in full
rank, requiring extensive computational cost (e.g., Varon et
al., 2022). In an ensemble-based approach, computing the
Jacobian matrix in the state space is impractical since the
limited number of ensembles are not sufficient to describe
full rank error covariances. However, those quantities can be
approximated for the ensemble subspace with reduced rank
error covariance matrices, so that the information provided
by the observation system is measured relative to the max-
imum independent pieces of information determined by the
ensembles size, k. Therefore, the DOFSk is defined as,

DOFSk = tr
(

(Ik×k +Ck×k)−1Ck×k
)
= tr(Ak×k), (5)

where Ck×k denotes the symmetric information matrix, Ik×k
is the identity matrix, and Ak×k represents an equivalent av-
eraging kernel or influence matrix, all obtained in the ensem-
ble subspace. The derivation of Eq. (5) started from Eq. (4)
is described in Zupanski et al. (2007) and Zupanski (2005).
Subsequently, we can compute the information matrix, Ck×k ,
either within the LETKF calculation of CHEEREIO or as
a postprocessing step if all the outputs from the ensemble
members and the control run are already stored. Accordingly,
every element of matrix C, are computed as

Cij = zT
i zj , (6)

where z is a vector of dimension m (the number of observa-
tions) and is defined as

zi(m)= R−
1
2

m×m (Hm (xi)−Hm (x) ) , (7)

where the observation operator Hm is applied to the per-
turbed, xi , and unperturbed state vector x, and weighted by
the inverse of square root of observation error covariance
Rm×m. Migliorini (2013) used the same method in the square
root filter, where the forecast error covariance matrix is ap-
proximated by the sample covariance matrix, which is pro-
duced by the forecast of each ensemble member. Once matrix
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Figure 5. Comparison of the time-averaged (May–September 2023) a posteriori error variance reduction, ε, of (a–c) TROPOMI-only assim-
ilation and (d–f) joint TROPOMI and TCCON assimilation for three global biomass burning inventories used as a prior.

C is constructed, one can use Eq. (5) to obtain Ak×k and the
DOFSk for the ensemble subspace. Note that using this ap-
proach, there are at most k−1 independent pieces of informa-
tion for the entire assimilation period. Thus, with k = 24 in
this work, the computed DOFS may vary between 0 and 23,
mainly depending on the characteristics of the assimilated
observations, such as their density and error statistics. Al-
though this method does not produce DOFS in the state space
of the emissions (Žagar et al., 2016), it enables a straightfor-
ward comparison of the information content across different
experiments.

The computed DOFS for different inversions are shown
in Fig. 6. Adding TCCON data to the inversion increases
the DOFS from the TROPOMI-only inversion for all the
cases. These values increase from 11.1, 11.4, and 12.7 for
the TROPOMI-only inversions to 15.5, 15.6, and 16.9 for the
inversions with TROPOMI and TCCON data using QFED,
GBBEPx, and GFAS emissions, respectively. The higher
DOFS from GFAS compared to the other BB inventories is

also in agreement with its higher reduction of uncertainty in
Fig. 5. This likely implies that the difference between the per-
turbed and unperturbed forecast of the state vector, which de-
fines the elements of matrix C, correlates with the spatiotem-
poral variability of the prior emissions. Thus, GFAS prior,
with greater variability than the other priors (e.g., Figs. 3a, f,
k and 4a–c), may result in higher DOFS.

4.1.3 Evaluation using ground-based observations

We evaluate the inversion against TCCON, NDACC total
column retrievals, and in situ WDCGG measurements to bet-
ter understand the constraint from each measurement type
used in the inversion. NDACC and WDCGG are independent
data while TCCON are the same data as those used in the
assimilation, so they are not independent for evaluating the
joint inversions. Table 1 shows the measurement sites with
their geographical information (latitude, longitude, and alti-
tude above sea level). First, we evaluate the results against all
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Figure 6. Computed degree of freedom for signal in ensemble sub-
space (DOFSk) associated to the TROPOMI-only (blue) and joint
TROPOMI and TCCON (red) inversions for three global biomass
burning inventories (QFED, GBBEPx, GFAS) used as a priori.

the TCCON measurements from May to September 2023. In
Fig. 7, the model is evaluated against hourly averaged TC-
CON data, with the a priori shown in blue and the a pos-
teriori in red from either the TROPOMI-only inversions (in
the left) or the joint TROPOMI and TCCON inversions (in
the right). The statistics indicate that the inversions signif-
icantly improve on the prior for all the cases. Examination
of the a priori models shows that the GBBEPx simulation
slightly improves on the QFED simulation, with a coefficient
of determination of R2

= 0.31 compared to R2
= 0.27 with

QFED. The GFAS simulation has the highest a priori corre-
lation (R2

= 0.54), resulting in the best a posteriori agree-
ment with TCCON, with R2

= 0.82 and R2
= 0.87 for the

TROPOMI-only and TROPOMI+TCCON assimilations, re-
spectively. The time series plots in Fig. 7 show the improve-
ment of GBBEPx on QFED, with better agreement between
the simulation and the TCCON measurements when there are
wildfire enhancements of XCO. The GFAS simulation shows
a significant improvement during those peaks, indicating that
the GFAS simulation better captures the time variability in
the measurements. The evaluation of the joint inversion using
TROPOMI and TCCON XCO data against the TCCON mea-
surements shows a further improvement of the inversions;
both the slope and the R2 are closer to 1.0 than the results
from the TROPOMI-only assimilation. This is expected be-
cause the same TCCON data are used in the inversion and
the evaluation (Fig. 7d, h, l).

To assess the impact of TCCON on the performance of the
inversion more objectively, we also compare the inversion
results with independent NDACC column measurements and
surface in situ measurements in Fig. 8. The R2, mean bias,
and standard deviation relative to the measurements are
shown for the model a priori (QFED, GBBEPx, and GFAS)
in blue, the a posteriori from the TROPOMI-only assimila-
tion in orange, and the a posteriori from the joint TROPOMI
and TCCON assimilation (i.e., TROPOMI+TCCON) in red.
We find a higher R2 for both a posteriori estimates (i.e.,
TROPOMI-only and TROPOMI+TCCON) relative to the a
priori estimates in almost all the cases, while there is an ad-

ditional increase in correlation for the joint inversion com-
pared to the TROPOMI-only inversion. The a posteriori from
the TROPOMI-only assimilation provides a small reduction
of the mean bias and standard deviation, and by adding TC-
CON to the assimilation, there is a further reduction at sev-
eral sites (Tsukuba, St. Petersburg, MNM, RYO, YON). The
added improvement in the posterior XCO obtained by adding
the TCCON data to the inversion differs between sites. For
the NDACC sites collocated or downwind of TCCON sites,
such as Tsukuba, Lauder, Wollongong (collocated stations),
and St. Petersburg (∼ 2000 km downwind of European sta-
tions), the R2 increases more by adding TCCON to the in-
version. The evaluation at the Arrival Heights NDACC sta-
tion located in a remote area in Antarctica, far from both the
TROPOMI and TCCON assimilated observations, shows an
improvement in the a posteriori that suggests that the assim-
ilation improves global background concentrations of CO.
However, at the Altzomoni NDACC site, located about 75 km
southeast of Mexico City and almost 2 km higher in altitude,
we found little improvement after the assimilation. It is likely
that the local topography cannot be captured in our global
model, which has a 2°× 2.5° spatial resolution. In addition,
the local ambient atmospheric conditions, such as stability
and humidity in this region, cause most of the fire emissions
to stay within the boundary layer, and neither the model nor
the assimilation is capable of capturing such effects (Sha et
al., 2021).

For the surface in situ measurements, we also find an
increase in the correlation between the a priori and the a
posteriori estimates using the TROPOMI+TCCON assimi-
lation, but with a smaller improvement than observed at the
NDACC stations, with the exception of the JFJ and MKN
stations, where there is a larger improvement. The relatively
smaller improvement compared to NDACC may primarily
be attributed to the fact that the surface sites have a larger
representativeness error given our 2°× 2.5° grid resolution,
which limits the ability of the assimilation to significantly
correct for them. For example, at the CGR station, the lo-
cal atmosphere is influenced by a land-sea wind regime that
cannot be resolved by the relatively coarse grid resolution
of the model. In addition, the vertical sensitivity of the TC-
CON and NDACC data based on their averaging kernels may
partly impact these evaluations.

Similar to the evaluation against NDACC, we find slight
improvements in the mean bias and standard deviation at
WDCGG surface stations. In most cases, adding TCCON to
the assimilation reduces the error standard deviations (i.e.,
posterior−measurement errors), while the mean bias re-
mains almost identical to that of the TROPOMI-only inver-
sion. Comparison among the three BB cases shown in Fig. 8
indicates that, for equivalent a priori or a posteriori emissions
estimates (e.g., for TROPOMI-only), their statistics are not
significantly different at most measurement sites.
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Figure 7. Evaluation of the model a priori (blue) and a posteriori from TROPOMI-only assimilation (red) against TCCON measurements
(green) for all sites together using time series and scatter plots based on (a, b) QFED, (e, f) GBBEPx, and (i, j) GFAS biomass burning
emissions (left side). A similar evaluation of the model a priori against TCCON, but with a posteriori from joint TROPOMI and TCCON
assimilation (red) using (c, d) QFED, (g, h) GBBEPx, and (k, l) GFAS as the prior biomass burning emissions estimates (right side).

4.2 North America analysis

4.2.1 Assimilation performance for constraining boreal
wildfires emissions

Our posterior emissions from the inversions indicated that
North America has the highest level of BB emissions and
contributed one-third of the global total in summer 2023.
The emissions primarily came from the boreal forest across
Canada, which were poorly estimated by the bottom-up
emissions inventories, with a 31 %–67 % underestimation in
the a priori relative to the a posteriori from both TROPOMI-
only and joint inversions in this region during the study pe-
riod (see Sect. 4.1 and Table 3). Thus, we take a closer
look at the spatial and temporal characteristics of the XCO
over North America to better understand the localized and
episodic behavior of the fire emissions with respect to the
different inventories. In addition to the three global BB emis-
sions inventories discussed in the previous sections, here,
we also include a regional bottom-up emissions inventory in
North America from CFFEPS (Chen et al., 2019) provided
by ECCC to compare with those global emissions. Note that
for our global simulation with CFFEPS emissions in North
America, we use GFAS for the global emissions which are
replaced by CFFEPS in North America.

We first focus on the temporal variability of the domain-
averaged XCO in North America from the a priori model and
a posteriori estimate using TROPOMI inversion with the four
inventories. In Fig. 9, the model a priori for each emission
inventory is shown in dashed lines with an “x” marker, the
a posteriori is shown with solid lines with a square marker,
and the TROPOMI measurements themselves are indicated
by the black line with circles. Figure 9 shows that the a pri-
ori using QFED and GBBEPx emissions have similar XCO
in the entire period, except a slightly higher level of XCO
with GBBEPx during May and June. On the other hand, the
a priori XCO estimates with GFAS and CFFEPS are both
greater in magnitude (∼ 10 ppb higher) and more variable
than those with QFED and GBBEPx. Although, the model-
estimated CO shows similar trends between CFFEPS and
GFAS, the two inventories produce XCO with different tem-
poral variability and both underestimate the XCO observed
by TROPOMI. In fact, during the large emissions episodes
from wildfires in mid-May and late June, CFFEPS has higher
emissions and better captures the variability in TROPOMI
XCO, whereas from July to September, they produce com-
parable levels and variability of CO, with slightly higher CO
for GFAS at the peaks in late July and early August.

Nevertheless, the inversion using TROPOMI suggests that
all the a posteriori emission estimates are a significant im-
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Figure 8. Evaluation of the time-averaged model a priori (blue), a posteriori using TROPOMI-only assimilation (orange), and a posteriori us-
ing joint TROPOMI and TCCON observations (red) against independent NDACC and in situ measurements between May–September 2023.
Each panel is associated with a particular prior biomass burning emissions inventory, including (a, b) QFED, (c, d) GBBEPx, and (e, f)
GFAS. The top row of each panel shows the coefficient of determination (R2) of the model using the prior or assimilation using the posterior
with respect to the measurements, whereas the bottom row represents the mean bias and the standard deviation of the model or assimilation
with respect to the measurements. Tsukuba, Lauder, and Wollongong are collocated stations for both TCCON and NDACC.
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Figure 9. Evaluation of the domain-averaged CO concentrations (XCO) of the a priori model (dashed lines) and a posteriori using TROPOMI
assimilations (solid lines) for four different inventories in North America, including QFED (blue), GBBEPx (green), GFAS (red), and
CFFEPS (purple), against TROPOMI XCO measurements (black). The a priori model refers to a model forecast using prior emissions and
the a posteriori is equivalent to the ensemble mean from LETKF. Three extreme wildfire episodes across boreal regions are chosen for
comparison between the assimilation results using different inventories and for comparison of the assimilation with the a priori model.

provement from the a priori after about a month, and show
reasonable agreement with the temporal variability of the
TROPOMI measurements. The a posteriori XCO also sug-
gests that the seasonal variability that is usually character-
ized by decreasing CO in summer, due to the higher rate of
oxidation with OH radical, is balanced by the higher rate of
BB CO emissions estimated in the inversions, resulting in
an almost uniform XCO during the summer-fall 2023. De-
spite their poorer a priori estimates, QFED and GBBEPx pro-
vide a posteriori XCO that agrees with TROPOMI measure-
ments better than the a priori of GFAS and CFFEPS. How-
ever, comparing the XCO between the four inversions sug-
gests that CFFEPS, followed by GFAS, perform better at the
XCO peaks, and thus can better capture the variability in the
TROPOMI measurements.

We looked closely at three extreme wildfire episodes that
occurred across the Canadian boreal forest at different times
and regions in summer 2023 to better examine the spatial
characteristics of the a priori and a posteriori estimates at the
time of the fires. As shown in Fig. 9, the first episode cov-
ers five days of large wildfires in Alberta between 19 and
23 May, the second episode occurred in Nova Scotia and
Quebec between 22 and 26 June, and the third episode was
in British Columbia and the Northwest Territories between
17 and 19 July. To evaluate the inversion results from these
events, we compare in Fig. 10 the model a priori (M) and
a posteriori analysis (A) with the TROPOMI observations to
obtain analysis minus observations (A−O) and model minus
observations (M−O) differences for the four emissions in-

ventories during the three extreme wildfire episodes in North
America. A comparison of M−O between the different in-
ventories for all the episodes reveals that CFFEPS, followed
by GFAS, has a smaller underestimation of CO concentra-
tions compared to QFED and GBBEPx. Although the re-
duction of this bias occurred over a large domain, including
downwind of the emissions, the reduction is more significant
in the vicinity of the wildfire emissions. Our results compar-
ing different inventories are consistent with our findings in
Fig. 9, which show that CO concentrations from the a priori
are underestimated due to the lower emissions in the inven-
tories (Fig. 4), in the same order as observed here. We find
similar improvements in our a posteriori analysis between the
different inventories, in which A−O exhibits lower bias with
CFFEPS, followed by GFAS, in comparison with QFED and
GBBEPx. Although the CFFEPS a posteriori XCO is signifi-
cantly closer to the TROPOMI observation, the QFED a pos-
teriori still shows a slight improvement on the CFFEPS a pri-
ori, indicating the larger impact of assimilating TROPOMI
observations compared to providing a better prior.

We also evaluated the a priori and a posteriori XCO with
TCCON data from ETL for the entire simulation period be-
tween May and September 2023. Figure 11a presents a Tay-
lor diagram comparing the standard deviation and correlation
of the a priori or a posteriori against TCCON measurements
at ETL, and Fig. 11b shows the mean bias and standard de-
viation of the prior/posterior−measurement residuals. The
a priori XCO are shown in circles, the a posteriori from the
TROPOMI-only assimilation in squares, and the a posteriori
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Figure 10. Comparison of the difference between model (M) or assimilation (A) and TROPOMI XCO observations (O) (i.e., M−O or
A−O), for three extreme wildfire episodes across boreal regions. Episode 1: 19–23 May; episode 2: 22–26 June; episode 3: 17–19 July.
Assimilation is based on TROPOMI observations and uses different inventories in North America as prior CO emission estimates. The model
and assimilation fields were transformed using the TROPOMI a priori profiles and averaging kernels.

from the joint TROPOMI+TCCON assimilation in triangles.
It shows that the a priori estimates with QFED and GBBEPx
have not only low correlation with the measurements, but
also low variability. The a priori estimates with CFFEPS and
GFAS improve on the correlation but more significantly on
the variability, in addition to the mean bias (Fig. 11b) that
is reduced by more than a factor of 2. The a posteriori for
all cases provides significant improvements on the a priori
by increasing the correlation and lowering the mean bias

and standard deviation, resulting in closer estimates to the
measurements. Among all the a posteriori cases, the joint
TROPOMI and TCCON inversion has a noticeable level of
improvement with increased correlation and slightly smaller
mean bias and standard deviation, in addition to adjusting the
variability towards the measurements variability. A compar-
ison among the inventories suggests that the joint inversion
using CFFEPS provides the highest correlation, lowest stan-
dard deviation, and nearly unbiased estimates with variability
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matching the measurements. The best agreement between the
joint inversion and the TCCON measurements at ETL is with
CFFEPS, followed by GFAS, then GBBEPx, and QFED.

4.2.2 Implications for vertical sensitivities in the
inversion

In this section, we examine the potential use of the experi-
mental TCCON XCO product from the mid-infrared (InSb)
detector available at ETL for the inversions of BB CO emis-
sions. Since the measurements provide us with an inde-
pendent set of XCO with distinct averaging kernels, we
take those as separate pieces of information into our joint
TROPOMI and TCCON inversion. Similar to the standard
TCCON, we assume uncorrelated errors for the InSb data,
however, the effect of possible error correlations can be ap-
proximated and taken into account by re-tuning the regular-
ization factor. The InSb CO measurements are processed in a
similar way to produce a separate set of hourly gridded TC-
CON InSb data. Thus, when these data are added to the joint
inversion, the size of the observation vector and observation
error covariance increases accordingly. The vertical profile
of the averaging kernels in the InSb CO product (Fig. 1d)
has higher sensitivity to the surface and lower troposphere,
and lower sensitivity to higher altitudes compared with the
standard XCO. Thus, we aim to understand the added benefit
of assimilating these data for constraining CO emissions in
the inversion. To achieve this, we conducted inversions us-
ing joint TROPOMI and TCCON data that incorporate three
variations of the TCCON product, including the standard
XCO, the InSb XCO, and the combined InSb and standard
TCCON product. The inversions show nearly identical im-
provements between the posteriors and the prior when using
the CFFEPS inventory, indicating a less than 1 % discrep-
ancy of total BB emissions in North America. However, there
is a noticeable difference in their spatial distributions, espe-
cially in the wildfire hotspots in British Columbia, Alberta,
and Quebec (see Fig. S3 in the Supplement).

To evaluate the performance of these inversions, we use
two independent in situ datasets: tall tower measurements
from Environment and Climate Change Canada (Chen et
al., 2014) and aircraft profiles from the National Oceanic
and Atmospheric Administration (McKain et al., 2024; https:
//gml.noaa.gov/aftp/data/trace_gases/co/pfp/aircraft/, last ac-
cess: 22 February 2025) at ETL. We compare the tall tower
measurements with the a priori (blue) in Fig. 12a, b, the
a posteriori (red) from the joint TROPOMI and TCCON
assimilation using standard TCCON in Fig. 12c, d, the a
posteriori (yellow) from the joint assimilation using the
TROPOMI and InSb TCCON data in Fig. 12e, f, and the a
posteriori (orange) from the combined TROPOMI plus the
standard and InSb TCCON data in Fig. 12g, h. We find a sig-
nificant improvement in all inversion cases compared to the
a priori, especially at the concentration peaks, resulting in an
increase in R2 and the slope of the regression.

The evaluation of the inversions shows that the assimila-
tion with TROPOMI and the InSb XCO data improves the
correlation from the case with standard TCCON XCO (from
R2
= 0.68 to R2

= 0.78), although the slope of the regres-
sion has slightly decreased (from slope= 0.72 to slope=
0.68). However, the inversion using the combined standard
and InSb TCCON product improves on both correlation and
the slope of the regression (slope= 0.73,R2

= 0.77) with re-
spect to the inversion using the standard TCCON. This sug-
gests that the inversion using the InSb XCO better captures
the variability of CO near the surface, likely associated with
the greater sensitivity of these data to lower altitudes, which
improves the sensitivity of the data to surface emissions in lo-
calized regions with short-range transport. The slightly lower
slope is likely due to the greater level of underestimation of
CO at the peak concentrations compared to the standard TC-
CON inversion. This might be because the lower sensitivity
of the InSb XCO to the mid-troposphere than the standard
CO, could reduce the measurement sensitivity to CO plumes
at higher altitudes or in the background, which is normally
captured through longer range transport. However, the com-
bined standard TCCON and InSb CO assimilation captures
the variability slightly better than the standard TCCON CO
assimilation, with improved correlations relative to indepen-
dent data, and also provides us with more representative es-
timates of the background CO. Thus, adding the InSb XCO
dataset potentially benefits the inversion by providing a bet-
ter constraint on the surface BB CO emissions.

Furthermore, an evaluation of the vertical profiles of CO
from the a priori and a posteriori simulations against aircraft
in situ measurements by NOAA at ETL in Fig. 13 shows
that there is a consistent improvement with the joint inver-
sion using different variations of TCCON data (the inversion
using standard TCCON CO is shown in red, whereas the in-
version using the InSb TCCON CO is shown in yellow), and
the combined standard and InSb TCCON CO (in orange).
Note that through the inversion process, we update only CO
emissions, without directly updating concentrations. The re-
sults indicate that replacing the standard TCCON with the
InSb product improves the agreement with the measurements
at lower altitudes (1–2.5 km), while at higher altitudes (2.5–
3.5 km) the standard TCCON assimilation performs slightly
better. Despite the fact that a perfect constraint on vertical
profiles cannot be obtained by assimilating only total col-
umn measurements, due to the limited vertical sensitivity,
using both the standard and InSb CO data together in the
assimilation maintains a balanced and reasonable agreement
with the independent measurements at both lower and higher
altitudes. This suggests that using all the TCCON standard
and InSb CO measurements in the inversion provides an im-
proved constraint on the fire plumes at a broader range of
altitudes. This is likely associated with uniformly larger sen-
sitivities with altitude compared to the inversion using each
of the TCCON XCO datasets individually. Note that we have
not found a similar level of improvement from adding the
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Figure 11. (a) Taylor diagram for evaluation of the assimilation and a priori model using four different biomass burning inventories against
TCCON XCO measurements at East Trout Lake (ETL) between May and September 2023. Assimilation is performed using TROPOMI-only
(square) and joint TROPOMI and TCCON (triangle) data, while their correlations and standard deviations are compared with the model
a priori (coloured circles) and TCCON XCO measurements (black circle). (b) Evaluation of the mean bias and error of the priors (blue),
assimilation using TROPOMI-only data (green), and assimilation using joint TROPOMI and TCCON data (red).

ETL InSb XCO dataset to our inversions when we evaluate
against aircraft in situ data at the Park Falls TCCON sta-
tion (not shown), which is about 1700 km to the southeast
of ETL. This suggests that, although adding the InSb XCO
to the inversion benefits the inversion results, it has a more
local effect and may not provide a substantial additional con-
straint on the regional/global scale. Therefore, providing the
InSb product at other TCCON locations is recommended for
a better constraint on the emissions on larger scales.

5 Summary and conclusions

We used total column measurements from the TROPOMI
satellite and the TCCON ground network to infer CO
biomass burning emissions during the extreme North Amer-
ican fire season between May and September 2023. Using

the CHEEREIO toolkit, we optimized CO emissions glob-
ally at a 2°× 2.5° grid resolution every 3 d. One objective of
this work is to better understand the influence of the TCCON
measurements in providing additional constraints for quanti-
fying CO emissions through a joint TCCON and TROPOMI
inversion. Despite the limited spatial coverage, TCCON has
substantially more observations in time with high accuracy
on column-averaged dry mole fraction measurements. This
motivates the evaluation of the joint inversion in compar-
ison with the TROPOMI-only inversion to constrain emis-
sions from localized and episodic wildfires. A second objec-
tive is to evaluate the global QFED, GBBEPx, and GFAS a
priori BB emission inventories, as well as the regional North
American CFFEPS emissions, and to assess their impact on
the inversion analyses.
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Figure 12. Evaluation of the assimilation and a priori model using the CFFEPS biomass burning inventory against tall tower measurements
at ∼ 60 m above sea level at East Trout Lake (ETL). (a–b) a priori model (blue), (c–d) assimilation using joint TROPOMI and standard
TCCON data (red), (e–f) assimilation using joint TROPOMI and InSb TCCON data (yellow), and (g–h) assimilation using joint TROPOMI
and the standard and InSb TCCON data (orange) are compared with tall tower measurements (green).

All the inversion results indicate that the priors signifi-
cantly underestimate the BB CO emissions. Based only on
TROPOMI observations, the global posterior emission es-
timates for QFED, GBBEPx, and GFAS are 302.9± 67,
309.6± 67, and 328.6± 67 Tg CO, compared to prior esti-
mates of 164.5, 182.6, and 230.3 Tg CO, respectively. For
North America, the posterior emissions for QFED, GBBEPx,
GFAS, and CFFEPS are greater than the priors by a factor of
3.0, 2.6, 1.4, and 1.4, respectively. Adding TCCON through a
joint inversion with TROPOMI makes little difference to the
global total and regional estimates (<5 %), but it improves
the temporal variation as well as the spatial distribution in
the BB hotspots. Furthermore, we found that the joint in-
version reduces the uncertainty of the posterior in all ma-
jor inversion regions, but with different magnitudes, reach-
ing near 30 % over North America. The spatial distribution
shows that the uncertainty reductions are larger in proximity
and upwind of the TCCON measurement sites. Our evalua-
tion of the information content in the ensemble subspace also
indicates that the joint TCCON and TROPOMI inversion in-
crease the DOFS by 33 %–39 %, depending on the prior in-
ventory. However, the additional constraints provided by the
TCCON data correlate with the spatial density of the TC-
CON sites (more sites in the Northern Hemisphere), such that
a greater benefit is obtained in North America and Siberia
than in Africa and South America.

The evaluation of the results against the TCCON mea-
surements and independent NDACC column and in situ sur-
face measurements obtained from WDCGG reveals that the
TROPOMI-only inversion primarily improves on the biases
while the joint inversion further increases the correlations.
The joint inversion can better capture the temporal variability

of the measurements, resulting in a more accurate estimate at
the peak concentrations during the extreme wildfire events.
The statistics also reveal that the standard deviations and the
mean errors of the differences between the assimilation and
measurements are lower in the joint inversion in comparison
with the TROPOMI-only inversion, providing us with more
reliable estimates of atmospheric CO. These improvements
due to the joint inversion are not consistent throughout all the
measurement sites we used for evaluation; there is stronger
agreement at the NDACC and in situ sites that are located
in close proximity to the TCCON measurements used in the
inversion. Thus, the spatial distribution of TCCON is also a
factor driving the improvements in the inversion.

Our comparison using different inventories suggests that,
although they all provide similar spatial distributions of BB
CO emissions, their magnitude and temporal variability can
be different. For example, our evaluations against TROPOMI
in North America suggest that GBBEPx has slightly higher
and GFAS has significantly higher emissions than QFED.
CFFEPS has an overall similar level of emissions to GFAS,
but provides enhanced temporal variability that is in better
agreement with the TROPOMI measurements. However, the
inversion posteriors with all inventories indicate a significant
improvement on the priors, such that the posterior obtained
with QFED, which has the lowest prior emissions, provides
posterior CO that is in better agreement with the measure-
ments than the priors based on GFAS or CFFEPS, which had
higher emissions. However, the impact of better prior emis-
sions is not negligible; for instance, the posterior with CF-
FEPS produces CO which agrees better with observations.
In fact, CFFEPS, in addition to lowering spatial biases of the
inversion results (Assimilation – Observation), more closely
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Figure 13. Evaluation of vertical profiles from the joint inversion using TCCON standard CO (red), InSb CO (yellow), combined standard
and InSb CO (orange), and the a priori model (blue) against aircraft measurement profiles from NOAA at ETL (green squares) on (a) 7 July,
(b) 16 July, (c) 13 August, and (d) 20 August 2023.

captures the temporal variability of the measurements with
the addition of the TCCON data in the inversion.

Finally, we investigated the potential use of the experimen-
tal TCCON InSb CO measurements at ETL in the inversion.
The experimental TCCON XCO provides greater sensitivity
than the standard TCCON XCO to the surface. The evalu-
ation of the inversion results against independent measure-
ments suggests that replacing the TCCON standard CO with

the InSb CO results in posterior CO that correlates better with
surface measurements, although the mean bias slightly in-
creases. This suggests that using InSb CO increases the sensi-
tivity to the local surface emissions, but may degrade the sen-
sitivity to transported plumes or the background CO. How-
ever, the inversion with both the standard and InSb CO data
of TCCON improves on the standard CO inversion, provides
higher correlations and lower mean biases relative to the sur-
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face measurements. The evaluation against aircraft data also
emphasizes the potential benefit of using InSb CO measure-
ments in the inversion for constraining surface emissions, as
it improves the agreements with observations at lower alti-
tudes.

Our results using TCCON measurements in a joint inver-
sion with TROPOMI data suggest that increasing the spa-
tiotemporal density of observations allows the assimilation
to constrain CO emissions at finer scales, providing use-
ful information for a more reliable estimation of local and
episodic wildfires. Furthermore, we showed the benefits of
the TCCON measurements accuracy and temporal density
when they are used jointly with TROPOMI in the inversion.
However, assimilating TCCON data alone is not sufficient
to fully constrain the spatial context. Integrating more obser-
vations from ground networks, such as NDACC, COCCON,
and in situ observations (e.g., Schuldt et al., 2024), with satel-
lite observations offers the potential to greatly enhance the
performance of inversion analyses for quantifying fire emis-
sions.

Appendix A: OSSEs with joint TCCON and TROPOMI
inversion

Observing System Simulation Experiments (OSSEs) are
widely used to evaluate the behaviour of atmospheric in-
version or assimilation systems by using simulated observa-
tions under idealized conditions. OSSEs allow us to explore
how individual observation datasets or the underlying system
setup (e.g., assimilation parameters) can enhance the overall
performance of the system (Lahoz and Schneider, 2014; Boc-
quet et al., 2015; Abida et al., 2017; Voshtani et al., 2023).
Here, we conduct twin experiments (Ghil and Mo, 1991) to
evaluate the implementation of the inversion system. Specif-
ically, we assess the potential utility of TCCON observa-
tions for quantifying CO emissions. Additionally, we use the
OSSEs to estimate assimilation parameters and error statis-
tics of the background and observations, using diagnostics
such as chi-square tests (Ménard and Chang, 2000; Tang et
al., 2024) or statistics based on observation-minus-forecast
(OmF) (Miyazaki et al., 2020; Voshtani et al., 2022).

Each OSSE setup involves multiple inversion runs. A “na-
ture run” (without observation assimilation) is conducted to
generate the “true” state of the concentration fields using
GEOS-Chem with unperturbed emissions – the a priori emis-
sions in the inversion with real observations. The true state is
then mapped into the observation space by an observation op-
erator, generating simulated observations that include added
observation errors under a perfect model transport assump-
tion. A set of “control runs” assimilates these simulated ob-
servations. Each control run may vary in terms of perturba-
tions in the magnitude of the emissions and/or the assimila-
tion parameter range, depending on the experiment’s objec-
tives. In our first OSSE, we use a combined set of simulated

TROPOMI and TCCON observations and apply observation
errors proportional to the retrieval errors, based on the ratio
of simulated to retrieval XCO. Emissions in the control runs
are perturbed by±50 % to evaluate the system’s performance
in recovering the true emissions.

Figure A1 shows that the posteriors (Fig. A1c, d) effec-
tively capture and recover the spatial context of the CO
emissions globally for both control runs, which have±50 %
CO emissions in the prior (Fig. A1a, b). Additionally, the
time series of total CO emissions reveal that approximately
1.5 months (from the start of the assimilation) are required
to constrain the magnitude and temporal variability of the
global CO emissions (Fig. A1e, f). In other experiments
(not shown) where perturbations are applied only to major
source regions (Fig. 2), we observe similar behaviour, even
though the convergence rate for recovering true emissions
slightly varies. For example, emissions are recovered rela-
tively faster in North America (within ∼ 3 weeks), followed
by Europe (∼ 4 weeks), likely due to a higher density of TC-
CON observations in these regions. This trend holds despite
the nearly globally uniform spatiotemporal distribution of
quality-filtered TROPOMI observations (i.e., super observa-
tions). In this experiment, we employ a set of previously opti-
mized LETKF parameters and error statistics for background
and observation errors, described below in Appendix B.
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Figure A1. Two OSSEs within the twin experiments that start with the a priori of −50 % CO emissions with respect to the true emissions as
shown in (a) prior− true and (c) posterior− true emissions; and with the a priori of +50 % CO emissions with respect to the true emissions
as shown in (b) prior− true and (d) posterior− true emissions; time series of CO emissions in the a priori (blue), a posteriori (red), and true
(green) for the OSSE with (e) −50 % CO emissions and (f) +50 % CO emissions.
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Appendix B: Comparing OSSEs with TROPOMI-only
and TCCON-only inversions against joint TCCON and
TROPOMI inversion

Similar OSSEs to those in Appendix A are conducted, us-
ing either only TROPOMI or only TCCON observations,
with prior emissions perturbed by −50 % in one region at
a time, as shown in Table B1. We compute the mean bias
and standard deviation of OmF, along with the convergence
time from the start of assimilation to recover the true emis-
sions. Here, the forecast represents a model field, driven by
either a priori or a posteriori emissions, mapped into the ob-
servation space. For the TROPOMI-only and TCCON-only
inversions, we observe that biases and standard deviations
generally increase across most cases; however, the inversion
remains capable of recovering the true emissions. Compared
to the joint TROPOMI and TCCON inversion, the conver-
gence rate for the TROPOMI-only inversion slows down by
up to a factor of two, depending on the perturbed region in
the inversion. In contrast, convergence for the TCCON-only
inversion can vary significantly. Specifically, the time to re-
cover true emissions extends to 3 months in North America
and 4 months in Europe, likely due to the lower spatial cov-
erage of TCCON observations in these areas compared to
TROPOMI. Additionally, we find that the TCCON-only in-
version requires considerably more time to recover the true
emissions globally and, especially, in Southern Hemisphere
regions, such as Africa. The delay is primarily due to the lim-
ited number of TCCON sites in the Southern Hemisphere –
only two sites are available for this study – and the extended
time of inter-hemispheric exchange of air, which takes about
1 year (Jacob, 1999). As a result, sufficient information to
constrain emissions in the Southern Hemisphere may not be
achievable, especially within the limited 5-month period of
inversion in this study.

To optimize the performance of the inversion, we employ
OmF diagnostics to estimate key LETKF parameters. Specif-
ically, we use the global mean bias and standard deviation
of OmF over the full assimilation period to derive optimal
values for parameters, such as the regularization factor γ ,
the inflation factor 1, and the localization radius (r). We
also configure essential setup elements, like the assimilation
spin-up time, the burn-in duration, and the ensemble size to
support efficient system operation. Our analysis yields the
following optimal values: γTROPOMI = 0.2 and γTCCON = 5,
1= 0.08, r = 500 km, with a minimum of three months for
spin-up, one month for burn-in, and a minimum of 24 ensem-
ble members – each chosen to minimize OmF statistics (e.g.,
see Fig. S4). Although we assume no transport modelling
error, we apply an additional adjustment by inflating obser-
vation errors to offset this assumption. These configurations
are consistently used across all OSSEs in this study.

Overall, our OSSEs results indicate that assimilating TC-
CON observations alone may not provide us with sufficient
information to fully constrain the spatial context of CO emis-

sions in regions in the Southern Hemisphere within the lim-
ited study period. However, in regions of the Northern Hemi-
sphere, including North America and Europe, CO emissions
are fully recovered within 2–3 months, likely due to the
higher density of TCCON stations in these areas. In contrast,
in the joint inversion, TROPOMI observations address the
larger spatial biases, which typically exist in the model a pri-
ori, while TCCON measurements contribute finer constraints
that enhance the representation of spatiotemporal variability.
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Table B1. Mean bias and standard deviation of OmF for prior, posterior using TCCON-only, TROPOMI-only, and joint TROPOMI and
TCCON (TROPOMI+TCCON) emissions. Each OSSE starts with −50 % prior emissions in the specified region. Convergence times to
recover the true emissions are shown from the start of assimilation.

Region OSSE (−50 % OmFa mean OmF standard Convergence time
CO emissions) bias (ppb) deviation (ppb) (month)

Global Prior −14.2 8.2 –
TCCON-only −2.5 4.7 >6b

TROPOMI-only 0.9 4.1 3.0
TROPOMI+TCCON −0.3 3.5 1.5

North America Prior −7.9 4.5 –
TCCON-only −0.5 2.6 3.0
TROPOMI-only 0.7 2.8 2.0
TROPOMI+TCCON −0.2 2.1 1.0

Europe Prior −3.1 4.7 –
TCCON-only −0.4 2.1 4.0
TROPOMI-only −0.5 2.2 2.5
TROPOMI+TCCON −0.3 1.9 1.5

Africa Prior −6.2 5.5 –
TCCON-only −3.7 3.6 >6
TROPOMI-only 0.6 2.3 2.0
TROPOMI+TCCON 0.5 2.0 2.0

a Forecast (F) in OmF uses a posteriori emissions for the assimilation run and a priori emissions for the prior (control) run. b It
means that the true emissions are not fully recovered,

(∣∣∣Eposterior
t −Etrue

t

∣∣∣/Etrue
t

)
6< δ, within 6 months of inversion (δ = 2 %).

Code and data availability. TROPOMI CO data can be
downloaded from https://doi.org/10.5270/S5P-bj3nry0 (Coper-
nicus Sentinel-5P, 2021). The individual TCCON GGG2020
datasets used in this publication are cited in Table 1, and the
references are included in the reference list. The TCCON
data are available at https://tccondata.org/2020 (last access: 6
July 2024; DOI: https://doi.org/10.14291/TCCON.GGG2020,
TCCON Team, 2022). The NDACC data are obtained as
part of the Network for the Detection of Atmospheric
Composition Change (NDACC) and are publicly available
(see https://www-air.larc.nasa.gov/missions/ndacc/data.html;
last access: 6 July 2024). CO in situ measurements from
WDCGG are available at https://gaw.kishou.go.jp/ (last ac-
cess: 1 July 2024). In situ aircraft CO measurements from
Global Monitoring Laboratory of the National Oceanic
and Atmospheric Administration (NOAA) are available at
https://gml.noaa.gov/aftp/data/trace_gases/co/pfp/aircraft/ (last
access: 1 July 2024). In situ tall tower measurements at ETL
provided by Environment and Climate Change Canada are avail-
able at https://gaw.kishou.go.jp/search/station#4007 (last access: 1
July 2024). GEOS-Chem version 14.1.1 source code is archived
at https://doi.org/10.5281/zenodo.7696651 (The International
GEOS-Chem User Community, 2023), and MERRA-2 meteo-
rology input data can be downloaded from WashU data portal at
http://geoschemdata.wustl.edu/ExtData/GEOS_2x2.5/MERRA2/
(last access: 1 July 2024). The QFED emissions (ver-
sion 2.5, release 1) data can be accessed from http:
//geoschemdata.wustl.edu/ExtData/HEMCO/QFED/v2023-05/
(last access: 1 July 2024). The GBBEPx version 4 emissions data

are available at https://www.ospo.noaa.gov/pub/Blended/GBBEPx/
(last access: 1 July 2024). GFAS emissions (version 1.2) can
be downloaded from https://ads.atmosphere.copernicus.eu/datasets/
cams-global-fire-emissions-gfas?tab=overview (last access: 11
June 2024). The CFFEPS output is produced for ECCC’s op-
erational air quality forecast system (ECCC, 2021). The CF-
FEPS emissions code and the accompanying user manual are
available at https://doi.org/10.5281/zenodo.15305591 (Anderson
and Chen, 2021). The CHEEREIO source code is available
at https://github.com/drewpendergrass/CHEEREIO (last access: 1
July 2024) (https://doi.org/10.5281/zenodo.11534085, Pendergrass
et al., 2024) and is documented at https://cheereio.readthedocs.
io (last access: 22 August 2024). An updated repository of
CHEEREIO used in this study, which contains the TCCON CO
and TROPOMI CO observation operators and the assimilation con-
figuration, is available at https://doi.org/10.5281/zenodo.16922699
(Pendergrass et al., 2025).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-25-15527-2025-supplement.
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