Articles | Volume 25, issue 21
https://doi.org/10.5194/acp-25-14371-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-14371-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Insight into the size-resolved markers and eco-health significance of microplastics from typical sources in northwest China
Liyan Liu
Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
Mengyun Yang
Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Tafeng Hu
SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
Abdullah Akhtar
Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Jian Sun
Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Zhenxing Shen
Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
Related authors
No articles found.
Tafeng Hu, Niu jin, Yingpan Song, Feng Wu, Jing Duan, Yuqing Zhu, Hong Huang, Yu Huang, Junji Cao, and Daizhou Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-5822, https://doi.org/10.5194/egusphere-2025-5822, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The dissolution behavior and climate impact of atmospheric calcium dust are governed by its size-resolved mineralogy. Our analysis of Asian dust reveals that a significant fraction of water-soluble calcium originates from calcite and gypsum present as soluble coatings on other dust particles. This specific mixing state facilitates rapid dissolution during atmospheric processing and constrains the role of Asian dust in atmospheric acid neutralization and the mitigation of ocean acidification.
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
Atmos. Chem. Phys., 24, 13101–13113, https://doi.org/10.5194/acp-24-13101-2024, https://doi.org/10.5194/acp-24-13101-2024, 2024
Short summary
Short summary
A novel concept integrating crop cycle information into fire spot extraction was proposed. Spatiotemporal variations of open straw burning in Northeast China are revealed. Open straw burning in Northeast China emitted a total of 218 Tg of CO2-eq during 2001–2020. The policy of banning straw burning effectively reduced greenhouse gas emissions.
Qian Zhang, Yujie Zhang, Zhichun Wu, Bin Zhang, Yaling Zeng, Jian Sun, Hongmei Xu, Qiyuan Wang, Zhihua Li, Junji Cao, and Zhenxing Shen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-801, https://doi.org/10.5194/acp-2022-801, 2022
Revised manuscript not accepted
Short summary
Short summary
We identified the brown carbon (BrC) molecules and their absorbing abilities on a molecular level from animal dung fuel combustion over the Tibetan Plateau region in China. The ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometer coupled with the partial least squares regression were precisely applied to characterize the molecular absorptions, key molecular markers, and radiative effects of BrC from household combustion scenarios at the high-altitude area.
Diwei Wang, Zhenxing Shen, Qian Zhang, Yali Lei, Tian Zhang, Shasha Huang, Jian Sun, Hongmei Xu, and Junji Cao
Atmos. Chem. Phys., 22, 14893–14904, https://doi.org/10.5194/acp-22-14893-2022, https://doi.org/10.5194/acp-22-14893-2022, 2022
Short summary
Short summary
The optical properties and molecular structure of atmospheric brown carbon (BrC) in winter of several megacities in China were analyzed, and the source contribution of brown carbon was improved by using positive matrix factorization coupled with a multilayer perceptron neural network. These results can provide a basis for the more effective control of BrC to reduce its impacts on regional climates and human health.
Yi Cheng, Shaofei Kong, Liquan Yao, Huang Zheng, Jian Wu, Qin Yan, Shurui Zheng, Yao Hu, Zhenzhen Niu, Yingying Yan, Zhenxing Shen, Guofeng Shen, Dantong Liu, Shuxiao Wang, and Shihua Qi
Earth Syst. Sci. Data, 14, 4757–4775, https://doi.org/10.5194/essd-14-4757-2022, https://doi.org/10.5194/essd-14-4757-2022, 2022
Short summary
Short summary
This work establishes the first emission inventory of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue, using multi-source datasets and tested emission factors. These emissions were concentrated in specific periods and areas. Positive and negative correlations between income and emissions were revealed in urban and rural regions. The dataset will be helpful for improving modeling studies and modifying corresponding emission control policies.
Jiarui Wu, Naifang Bei, Yuan Wang, Xia Li, Suixin Liu, Lang Liu, Ruonan Wang, Jiaoyang Yu, Tianhao Le, Min Zuo, Zhenxing Shen, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 21, 2229–2249, https://doi.org/10.5194/acp-21-2229-2021, https://doi.org/10.5194/acp-21-2229-2021, 2021
Short summary
Short summary
A source-oriented version of the WRF-Chem model is developed to conduct source identification of wintertime PM2.5 in the North China Plain. Trans-boundary transport of air pollutants generally dominates the haze pollution in Beijing and Tianjin. The air quality in Hebei, Shandong, and Shanxi is generally controlled by local emissions. Primary aerosol species, such as EC and POA, are generally controlled by local emissions, while secondary aerosol shows evident regional characteristics.
Cited articles
Aini, S. A., Syafiuddin, A., and Kueh, A. B. H.: Quantification, characteristics, and distribution of microplastics released from waste burning furnaces and their associated health impacts, Environmental Quality Management, 33, 303–310, https://doi.org/10.1002/tqem.22056, 2023.
Akhbarizadeh, R., Dobaradaran, S., Torkmahalleh, M. A., Saeedi, R., Aibaghi, R., and Ghasemi, F. F.: Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible relationships and health implications, Environ. Res., 192, 12, https://doi.org/10.1016/j.envres.2020.110339, 2021.
Ali, M. M., Anwar, R., Yousef, A. F., Li, B. Q., Luvisi, A., De Bellis, L., Aprile, A., and Chen, F. X.: Influence of Bagging on the Development and Quality of Fruits, Plants-Basel, 10, 16, https://doi.org/10.3390/plants10020358, 2021.
Allen, S., Allen, D., Moss, K., Le Roux, G., Phoenix, V. R., and Sonke, J. E.: Examination of the ocean as a source for atmospheric microplastics, Plos One, 15, https://doi.org/10.1371/journal.pone.0232746, 2020.
Avagyan, R., Sadiktsis, I., Bergvall, C., and Westerholm, R.: Tire tread wear particles in ambient air-a previously unknown source of human exposure to the biocide 2-mercaptobenzothiazole, Environ. Sci. Pollut. Res., 21, 11580–11586, https://doi.org/10.1007/s11356-014-3131-1, 2014.
Bates, J. T., Fang, T., Verma, V., Zeng, L. H., Weber, R. J., Tolbert, P. E., Abrams, J. Y., Sarnat, S. E., Klein, M., Mulholland, J. A., and Russell, A. G.: Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects, Environ. Sci. Technol., 53, 4003–4019, https://doi.org/10.1021/acs.est.8b03430, 2019.
Billings, A., Jones, K. C., Pereira, M. G., and Spurgeon, D. J.: Emerging and legacy plasticisers in coastal and estuarine environments: A review, Sci. Total Environ., 908, https://doi.org/10.1016/j.scitotenv.2023.168462, 2024.
Bogdanowicz, A., Zubrowska-Sudol, M., Krasinski, A., and Sudol, M.: Cross-Contamination as a Problem in Collection and Analysis of Environmental Samples Containing Microplastics – A Review, Sustainability, 13, 18, https://doi.org/10.3390/su132112123, 2021.
Boogaard, H., Janssen, N. A. H., Fischer, P. H., Kos, G. P. A., Weijers, E. P., Cassee, F. R., van der Zee, S. C., de Hartog, J. J., Brunekreef, B., and Hoek, G.: Contrasts in Oxidative Potential and Other Particulate Matter Characteristics Collected Near Major Streets and Background Locations, Environ. Health Persp., 120, 185–191, https://doi.org/10.1289/ehp.1103667, 2012.
Brahney, J., Mahowald, N., Prank, M., Cornwell, G., Klimont, Z., Matsui, H., and Prather, K. A.: Constraining the atmospheric limb of the plastic cycle, P. Natl. Acad. Sci. USA, 118, https://doi.org/10.1073/pnas.2020719118, 2021.
Can-Guven, E.: Microplastics as emerging atmospheric pollutants: a review and bibliometric analysis, Air Qual. Atmos. Health, 14, 203–215, https://doi.org/10.1007/s11869-020-00926-3, 2021.
Chandra, S. and Chakraborty, P.: Air-water exchange and risk assessment of phthalic acid esters during the early phase of COVID-19 pandemic in tropical riverine catchments of India, Chemosphere, 341, 140013–140013, https://doi.org/10.1016/j.chemosphere.2023.140013, 2023.
Chen, H., Chen, Y. H., Xu, Y. B., Xiao, C. Q., Liu, J. C., Wu, R. R., and Guo, X. T.: Different functional areas and human activities significantly affect the occurrence and characteristics of microplastics in soils of the Xi'an metropolitan area, Sci. Total Environ., 852, 8, https://doi.org/10.1016/j.scitotenv.2022.158581, 2022.
Chen, N.-T., Yeh, C.-L., and Jung, C.-C.: Influence of agricultural activity in corn farming on airborne microplastic in surrounding elementary school, Sci. Total Environ., 948, https://doi.org/10.1016/j.scitotenv.2024.174807, 2024.
Chirizzi, D., Cesari, D., Guascito, M. R., Dinoi, A., Giotta, L., Donateo, A., and Contini, D.: Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10, Atmos. Environ., 163, 1–8, https://doi.org/10.1016/j.atmosenv.2017.05.021, 2017.
Corrales, J., Kristofco, L. A., Steele, W. B., Yates, B. S., Breed, C. S., Williams, E. S., and Brooks, B. W.: Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation, Dose-Response, 13, 29, https://doi.org/10.1177/1559325815598308, 2015.
Cui, Z. G., Shi, C., Zha, L. T., Liu, J. M., Guo, Y. C., Li, X. H., Zhang, E. J., and Yin, Z. H.: Phthalates in the environment of China: A scoping review of distribution, anthropogenic impact, and degradation based on meta-analysis, Ecotox. Environ. Safe., 289, 13, https://doi.org/10.1016/j.ecoenv.2024.117659, 2025.
Demir, A. P. T. and Ulutan, S.: Migration of phthalate and non-phthalate plasticizers out of plasticized PVC films into air, J. Appl. Polym. Sci., 128, 1948–1961, https://doi.org/10.1002/app.38291, 2013.
Evangeliou, N., Grythe, H., Klimont, Z., Heyes, C., Eckhardt, S., Lopez-Aparicio, S., and Stohl, A.: Atmospheric transport is a major pathway of microplastics to remote regions, Nat. Commun., 11, https://doi.org/10.1038/s41467-020-17201-9, 2020.
Feng, S., Gao, D., Liao, F., Zhou, F., and Wang, X.: The health effects of ambient PM2.5 and potential mechanisms, Ecotox. Environ. Safe., 128, 67–74, https://doi.org/10.1016/j.ecoenv.2016.01.030, 2016.
García-Prieto, A., Lunar, M. L., Rubio, S., and Pérez-Bendito, D.: Determination of urinary bisphenol A by coacervative microextraction and liquid chromatography-fluorescence detection, Anal. Chim. Acta, 630, 19–27, https://doi.org/10.1016/j.aca.2008.09.060, 2008.
Gasperi, J., Wright, S. L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, V., Kelly, F. J., and Tassin, B.: Microplastics in air: Are we breathing it in?, Current Opinion in Environmental Science & Health, 1, 1–5, https://doi.org/10.1016/j.coesh.2017.10.002, 2018.
Geyer, R., Jambeck, J. R., and Law, K. L.: Production, use, and fate of all plastics ever made, Sci. Adv., 3, 5, https://doi.org/10.1126/sciadv.1700782, 2017.
Ghanem, M., Perdrix, E., Alleman, L. Y., Rousset, D., and Coddeville, P.: Phosphate Buffer Solubility and Oxidative Potential of Single Metals or Multielement Particles of Welding Fumes, Atmosphere, 12, 23, https://doi.org/10.3390/atmos12010030, 2021.
Ginsberg, G., Toal, B., and Kurland, T.: Benzothiazole Toxicity Assessment In Support Of Synthetic Turf Field Human Health Risk Assessment, J. Toxicol. Env. Heal. A, 74, 1175–1183, https://doi.org/10.1080/15287394.2011.586943, 2011.
Guyton, K. Z., Chiu, W. A., Bateson, T. F., Jinot, J., Scott, C. S., Brown, R. C., and Caldwell, J. C.: A Reexamination of the PPAR-α Activation Mode of Action as a Basis for Assessing Human Cancer Risks of Environmental Contaminants, Environ. Health Persp., 117, 1664–1672, https://doi.org/10.1289/ehp.0900758, 2009.
He, M. J., Lu, J. F., Wang, J., Wei, S. Q., and Hageman, K. J.: Phthalate esters in biota, air and water in an agricultural area of western China, with emphasis on bioaccumulation and human exposure, Sci. Total Environ., 698, 9, https://doi.org/10.1016/j.scitotenv.2019.134264, 2020.
Ho, S. S. H., Li, L. J., Qu, L. L., Cao, J. J., Lui, K. H., Niu, X. Y., Lee, S. C., and Ho, K. F.: Seasonal behavior of water-soluble organic nitrogen in fine particulate matter (PM2.5) at urban coastal environments in Hong Kong, Air Qual. Atmos. Health, 12, 389–399, https://doi.org/10.1007/s11869-018-0654-5, 2019.
Huang, L., Zhu, X. Z., Zhou, S. X., Cheng, Z. R., Shi, K., Zhang, C., and Shao, H.: Phthalic Acid Esters: Natural Sources and Biological Activities, Toxins, 13, 17, https://doi.org/10.3390/toxins13070495, 2021.
Jiang, H. H., Ahmed, C. M. S., Canchola, A., Chen, J. Y., and Lin, Y. H.: Use of Dithiothreitol Assay to Evaluate the Oxidative Potential of Atmospheric Aerosols, Atmosphere, 10, 21, https://doi.org/10.3390/atmos10100571, 2019.
Jian-ke, Z., Kun, L., and Jing, P.: Pre-concentration of Trace Bisphenol A in Seawater by Microextraction Flask and Determination by High Performance Liquid Chromatography, 2011 5th International Conference on Bioinformatics and Biomedical Engineering, 4 pp., https://doi.org/10.1109/icbbe.2011.5780781, 2011.
Jin, T. Y., Tang, J. C., Lyu, H. H., Wang, L., Gillmore, A. B., and Schaeffer, S. M.: Activities of Microplastics (MPs) in Agricultural Soil: A Review of MPs Pollution from the Perspective of Agricultural Ecosystems, J. Agr. Food Chem., 70, 4182–4201, https://doi.org/10.1021/acs.jafc.1c07849, 2022.
Klein, M., Bechtel, B., Brecht, T., and Fischer, E. K.: Spatial distribution of atmospheric microplastics in bulk-deposition of urban and rural environments – A one-year follow-up study in northern Germany, Sci. Total Environ., 901, 11, https://doi.org/10.1016/j.scitotenv.2023.165923, 2023.
Kole, P. J., Lohr, A. J., Van Belleghem, F. G. A. J., and Ragas, A. M. J.: Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment, Int. J. Env. Res. Pub. He., 14, https://doi.org/10.3390/ijerph14101265, 2017.
Lakhiar, I. A., Yan, H. F., Zhang, J. Y., Wang, G. Q., Deng, S. S., Bao, R. X., Zhang, C., Syed, T. N., Wang, B. Y., Zhou, R., and Wang, X. X.: Plastic Pollution in Agriculture as a Threat to Food Security, the Ecosystem, and the Environment: An Overview, Agronomy-Basel, 14, 36, https://doi.org/10.3390/agronomy14030548, 2024.
Liao, Z., Ji, X., Ma, Y., Lv, B., Huang, W., Zhu, X., Fang, M., Wang, Q., Wang, X., Dahlgren, R., and Shang, X.: Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China, J. Hazard. Mater., 417, https://doi.org/10.1016/j.jhazmat.2021.126007, 2021.
Lithner, D., Larsson, Å., and Dave, G.: Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition, Sci. Total Environ., 409, 3309–3324, https://doi.org/10.1016/j.scitotenv.2011.04.038, 2011.
Liu, H., Hu, B., Zhang, L., Zhao, X. J., Shang, K. Z., Wang, Y. S., and Wang, J.: Ultraviolet radiation over China: Spatial distribution and trends, Renew. Sust. Energ. Rev., 76, 1371–1383, https://doi.org/10.1016/j.rser.2017.03.102, 2017.
Liu, K., Wang, X., Fang, T., Xu, P., Zhu, L., and Li, D.: Source and potential risk assessment of suspended atmospheric microplastics in Shanghai, Sci. Total Environ., 675, 462–471, https://doi.org/10.1016/j.scitotenv.2019.04.110, 2019.
Liu, M. X., Xu, H. M., Feng, R., Gu, Y. X., Bai, Y. L., Zhang, N. N., Wang, Q. Y., Ho, S. S. H., Qu, L. L., Shen, Z. X., and Cao, J. J.: Chemical composition and potential health risks of tire and road wear microplastics from light-duty vehicles in an urban tunnel in China, Environ. Pollut., 330, 9, https://doi.org/10.1016/j.envpol.2023.121835, 2023.
Lu, L., Zhang, R., Wang, K., Tian, J., Wu, Q., and Xu, L.: Occurrence, influencing factors and sources of atmospheric microplastics in peri-urban farmland ecosystems of Beijing, China, Sci. Total Environ., 912, https://doi.org/10.1016/j.scitotenv.2023.168834, 2024.
Luo, D., Wang, Z., Liao, Z., Chen, G., Ji, X., Sang, Y., Qu, L., Chen, Z., Wang, Z., Dahlgren, R. A., Zhang, M., and Shang, X.: Airborne microplastics in urban, rural and wildland environments on the Tibetan Plateau, J. Hazard. Mater., 465, https://doi.org/10.1016/j.jhazmat.2023.133177, 2024a.
Luo, L., Guo, S., Shen, D., Shentu, J., Lu, L., Qi, S., Zhu, M., and Long, Y.: Characteristics and release potential of microplastics in municipal solid waste incineration bottom ash, Chemosphere, 364, 143163, https://doi.org/10.1016/j.chemosphere.2024.143163, 2024b.
Luo, R. C. and Guo, K.: The hidden threat of microplastics in the bloodstream, The Innovation Life, 3, https://doi.org/10.59717/j.xinn-life.2025.100130, 2025.
Luo, Y., Gibson, C. T., Chuah, C., Tang, Y., Ruan, Y., Naidu, R., and Fang, C.: Fire releases micro- and nanoplastics: Raman imaging on burned disposable gloves, Environ. Pollut., 312, https://doi.org/10.1016/j.envpol.2022.120073, 2022.
Luo, Y., Zeng, Y. L., Xu, H. M., Li, D., Zhang, T., Lei, Y. L., Huang, S. S., and Shen, Z. X.: Connecting oxidative potential with organic carbon molecule composition and source-specific apportionment in PM2.5 in Xi'an, China, Atmos. Environ., 306, 9, https://doi.org/10.1016/j.atmosenv.2023.119808, 2023.
Luo, Y., Yang, X. T., Wang, D. W., Xu, H. M., Zhang, H. A., Huang, S. S., Wang, Q. Y., Zhang, N. N., Cao, J. J., and Shen, Z. X.: Insights the dominant contribution of biomass burning to methanol-soluble PM2.5 bounded oxidation potential based on multilayer perceptron neural network analysis in Xi'an, China, Sci. Total Environ., 908, 8, https://doi.org/10.1016/j.scitotenv.2023.168273, 2024c.
Ma, B. B., Wang, L. J., Tao, W. D., Liu, M. M., Zhang, P. Q., Zhang, S. W., Li, X. P., and Lu, X. W.: Phthalate esters in atmospheric PM2.5 and PM10 in the semi-arid city of Xi'an, Northwest China: Pollution characteristics, sources, health risks, and relationships with meteorological factors, Chemosphere, 242, 10, https://doi.org/10.1016/j.chemosphere.2019.125226, 2020.
Nunez, A., Vallecillos, L., Maria Marce, R., and Borrull, F.: Occurrence and risk assessment of benzothiazole, benzotriazole and benzenesulfonamide derivatives in airborne particulate matter from an industrial area in Spain, Sci. Total Environ., 708, https://doi.org/10.1016/j.scitotenv.2019.135065, 2020.
Panko, J. M., Chu, J., Kreider, M. L., and Unice, K. M.: Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States, Atmos. Environ., 72, 192–199, https://doi.org/10.1016/j.atmosenv.2013.01.040, 2013.
Pant, P., Baker, S. J., Shukla, A., Maikawa, C., Pollitt, K. J. G., and Harrison, R. M.: The PM10 fraction of road dust in the UK and India: Characterization, source profiles and oxidative potential, Sci. Total Environ., 530, 445–452, https://doi.org/10.1016/j.scitotenv.2015.05.084, 2015.
Pathak, G., Nichter, M., Hardon, A., Moyer, E., Latkar, A., Simbaya, J., Pakasi, D., Taqueban, E., and Love, J.: Plastic pollution and the open burning of plastic wastes, Glob. Environ. Change-Human Policy Dimens., 80, 9, https://doi.org/10.1016/j.gloenvcha.2023.102648, 2023.
Pathak, G., Nichter, M., Hardon, A., and Moyer, E.: The Open Burning of Plastic Wastes is an Urgent Global Health Issue, Ann. Glob. Health, 90, https://doi.org/10.5334/aogh.4232, 2024.
Peeken, I., Primpke, S., Beyer, B., Gütermann, J., Katlein, C., Krumpen, T., Bergmann, M., Hehemann, L., and Gerdts, G.: Arctic sea ice is an important temporal sink and means of transport for microplastic, Nat. Commun., 9, 12, https://doi.org/10.1038/s41467-018-03825-5, 2018.
Qi, R., Tang, Y., Jones, D. L., He, W., and Yan, C.: Occurrence and characteristics of microplastics in soils from greenhouse and open-field cultivation using plastic mulch film, Sci. Total Environ., 905, https://doi.org/10.1016/j.scitotenv.2023.166935, 2023.
Seeley, M. E. and Lynch, J. M.: Previous successes and untapped potential of pyrolysis-GC/MS for the analysis of plastic pollution, Anal. Bioanal. Chem., 415, 2873–2890, https://doi.org/10.1007/s00216-023-04671-1, 2023.
Shirmohammadi, F., Wang, D., Hasheminassab, S., Verma, V., Schauer, J. J., Shafer, M. M., and Sioutas, C.: Oxidative potential of on-road fine particulate matter (PM2.5) measured on major freeways of Los Angeles, CA, and a 10-year comparison with earlier roadside studies, Atmos. Environ., 148, 102–114, https://doi.org/10.1016/j.atmosenv.2016.10.042, 2017.
Simoneit, B. R. T., Medeiros, P. M., and Didyk, B. M.: Combustion products of plastics as indicators for refuse burning in the atmosphere, Environ. Sci. Technol., 39, 6961–6970, https://doi.org/10.1021/es050767x, 2005.
Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W., and Shim, W. J.: Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmentation by Polymer Type, Environ. Sci. Technol., 51, 4368–4376, https://doi.org/10.1021/acs.est.6b06155, 2017.
Sun, J., Ho, S. S. H., Niu, X. Y., Xu, H. M., Qu, L. L., Shen, Z. X., Cao, J. J., Chuang, H. C., and Ho, K. F.: Explorations of tire and road wear microplastics in road dust PM2.5 at eight megacities in China, Sci. Total Environ., 823, 8, https://doi.org/10.1016/j.scitotenv.2022.153717, 2022.
U.S.EPA: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual Supplemental Guidance, Washington, DC, https://www.epa.gov/risk/risk-assessment-guidance-superfund-volume-i-human-health (last access: 25 March 1991), 1989.
Velis, C. A. and Cook, E.: Mismanagement of Plastic Waste through Open Burning with Emphasis on the Global South: A Systematic Review of Risks to Occupational and Public Health, Environ. Sci. Technol., 55, 7186–7207, https://doi.org/10.1021/acs.est.0c08536, 2021.
Waldschläger, K., Lechthaler, S., Stauch, G., and Schüttrumpf, H.: The way of microplastic through the environment – Application of the source-pathway-receptor model (review), Sci. Total Environ., 713, 20, https://doi.org/10.1016/j.scitotenv.2020.136584, 2020.
Wang, G. L., Lu, J. J., Li, W. J., Ning, J. Y., Zhou, L., Tong, Y. B., Liu, Z. L., Zhou, H. J., and Xiayihazi, N.: Seasonal variation and risk assessment of microplastics in surface water of the Manas River Basin, China, Ecotox. Environ. Safe., 208, 9, https://doi.org/10.1016/j.ecoenv.2020.111477, 2021a.
Wang, J., Ho, S. S. H., Ma, S., Cao, J., Dai, W., Liu, S., Shen, Z., Huang, R., Wang, G., and Han, Y.: Characterization of PM2.5 in Guangzhou, China: uses of organic markers for supporting source apportionment, Sci. Total Environ., 550, 961–971, https://doi.org/10.1016/j.scitotenv.2016.01.138, 2016.
Wang, K., Chen, W., Tian, J., Niu, F., Xing, Y., Wu, Y., Zhang, R., Zheng, J., and Xu, L.: Accumulation of microplastics in greenhouse soil after long-term plastic film mulching in Beijing, China, Sci. Total Environ., 828, https://doi.org/10.1016/j.scitotenv.2022.154544, 2022a.
Wang, L. J., Pei, W. L., Li, J. C., Feng, Y. M., Gao, X. S., Jiang, P., Wu, Q., and Li, L.: Microplastics induced apoptosis in macrophages by promoting ROS generation and altering metabolic profiles, Ecotox. Environ. Safe., 271, 11, https://doi.org/10.1016/j.ecoenv.2024.115970, 2024.
Wang, R., Huang, Y., Dong, S., Wang, P., and Su, X.: The occurrence of bisphenol compounds in animal feed plastic packaging and migration into feed, Chemosphere, 265, https://doi.org/10.1016/j.chemosphere.2020.129022, 2021b.
Wang, R., Dong, S., Wang, P., Li, T., Huang, Y., Zhao, L., and Su, X.: Development and validation of an ultra performance liquid chromatography-tandem mass spectrometry method for twelve bisphenol compounds in animal feed, J. Chromatogr. B, 1178, https://doi.org/10.1016/j.jchromb.2021.122613, 2021c.
Wang, Y., Zhu, H. K., and Kannan, K.: A Review of Biomonitoring of Phthalate Exposures, Toxics, 7, 28, https://doi.org/10.3390/toxics7020021, 2019.
Wang, Z. X., Xu, H. M., Gu, Y. X., Feng, R., Zhang, N. N., Wang, Q. Y., Liu, S. X., Zhang, Q., Liu, P. P., Qu, L. L., Ho, S. S. H., Shen, Z. X., and Cao, J. J.: Chemical characterization of PM2.5 in heavy polluted industrial zones in the Guanzhong Plain, northwest China: Determination of fingerprint source profiles, Sci. Total Environ., 840, 9, https://doi.org/10.1016/j.scitotenv.2022.156729, 2022b.
Xu, H., Bai, Y., Peng, Z., Liu, M., Shen, Z., Zhang, N., Bei, N., Li, G., and Cao, J.: Estimation of historical daily PM2.5 concentrations for three Chinese megacities: Insight into the socioeconomic factors affecting PM2.5, Atmos. Pollut. Res., 15, https://doi.org/10.1016/j.apr.2024.102130, 2024a.
Xu, L., Li, J. F., Yang, S. S., Li, Z. Y., Liu, Y., Zhao, Y. F., Liu, D. T., Targino, A. C., Zheng, Z. H., Yu, M. Z., Xu, P., Sun, Y. L., and Li, W. J.: Characterization of atmospheric microplastics in Hangzhou, a megacity of the Yangtze river delta, China, Environ. Sci.-Atmos., 4, 1161–1169, https://doi.org/10.1039/d4ea00069b, 2024b.
Xu, P., Peng, G. Y., Su, L., Gao, Y. Q., Gao, L., and Li, D. J.: Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China, Mar. Pollut. Bull., 133, 647–654, https://doi.org/10.1016/j.marpolbul.2018.06.020, 2018.
Yadav, I. C., Devi, N. L., Zhong, G., Li, J., Zhang, G., and Covaci, A.: Occurrence and fate of organophosphate ester flame retardants and plasticizers in indoor air and dust of Nepal: Implication for human exposure, Environ. Pollut., 229, 668–678, https://doi.org/10.1016/j.envpol.2017.06.089, 2017.
Yang, H. G., Gu, F. W., Wu, F., Wang, B. K., Shi, L. L., and Hu, Z. C.: Production, Use and Recycling of Fruit Cultivating Bags in China, Sustainability, 14, 18, https://doi.org/10.3390/su142114144, 2022.
Yang, J., Peng, Z., Sun, J., Chen, Z., Niu, X., Xu, H., Ho, K.-F., Cao, J., and Shen, Z.: A review on advancements in atmospheric microplastics research: The pivotal role of machine learning, Sci. Total Environ., 945, 173966–173966, https://doi.org/10.1016/j.scitotenv.2024.173966, 2024.
Yang, Z., Lu, F., Zhang, H., Wang, W., Shao, L., Ye, J., and He, P.: Is incineration the terminator of plastics and microplastics?, J. Hazard. Mater., 401, https://doi.org/10.1016/j.jhazmat.2020.123429, 2021.
Yuan, C. L., Li, X. Q., Lu, C. H., Sun, L. N., Fan, C. Y., Fu, M. M., Wang, H. X., Duan, M. N., and Xia, S.: Micro/nanoplastics in the Shenyang city atmosphere: Distribution and sources, Environ. Pollut., 372, 8, https://doi.org/10.1016/j.envpol.2025.126027, 2025.
Zeng, L.-J., Huang, Y.-H., Chen, X.-T., Chen, X.-H., Mo, C.-H., Feng, Y.-X., Lu, H., Xiang, L., Li, Y.-W., Li, H., Cai, Q.-Y., and Wong, M.-H.: Prevalent phthalates in air-soil-vegetable systems of plastic greenhouses in a subtropical city and health risk assessments, Sci. Total Environ., 743, https://doi.org/10.1016/j.scitotenv.2020.140755, 2020.
Zhang, H., Yang, R. F., Shi, W. Y., Zhou, X., and Sun, S. J.: The association between bisphenol A exposure and oxidative damage in rats/mice: A systematic review and meta-analysis, Environ. Pollut., 292, 9, https://doi.org/10.1016/j.envpol.2021.118444, 2022.
Zhang, J., Zhang, X., Wu, L., Wang, T., Zhao, J., Zhang, Y., Men, Z., and Mao, H.: Occurrence of benzothiazole and its derivates in tire wear, road dust, and roadside soil, Chemosphere, 201, 310–317, https://doi.org/10.1016/j.chemosphere.2018.03.007, 2018.
Zhen, Z. X., Yin, Y., Chen, K., Zhang, X., Kuang, X., Jiang, H., Wang, H. L., Cui, Y., He, C., and Ezekiel, A. O.: Phthalate esters in atmospheric PM2.5 at Mount Tai, north China plain: Concentrations and sources in the background and urban area, Atmos. Environ., 213, 505–514, https://doi.org/10.1016/j.atmosenv.2019.06.039, 2019.
Short summary
Atmospheric microplastics and plasticizers can disperse into the ecosystem and directly enter the human body, causing multiple adverse effects. The fingerprint markers of microplastic sources are very limited. We examine the concentration, size distribution, eco-health risks, and production of reactive oxygen species of microplastics from five typical sources, especially neglected rural sources. Our results could provide a scientific foundation for developing efficient management strategies.
Atmospheric microplastics and plasticizers can disperse into the ecosystem and directly enter...
Altmetrics
Final-revised paper
Preprint