Articles | Volume 25, issue 20
https://doi.org/10.5194/acp-25-13799-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-25-13799-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Natural Tropical Oscillations phase impact on stationary and westward travelling planetary waves
Department of Atmospheric Physics, Saint Petersburg State University, St. Petersburg, 199034, Russia
Space Weather Prediction Center, Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow, 108840, Russia
Andrey V. Koval
Department of Atmospheric Physics, Saint Petersburg State University, St. Petersburg, 199034, Russia
Department of Meteorological Forecasts, Russian State Hydrometeorological University, St. Petersburg, 195196, Russia
Tatiana S. Ermakova
Department of Atmospheric Physics, Saint Petersburg State University, St. Petersburg, 199034, Russia
Dynamic Meteorology and Climatology Department, The Federal State Budgetary Institution “Voeikov Main Geophysical Observatory” (FGBI “MGO”), St. Petersburg, 194021, Russia
Aleksey S. Fadeev
Department of Atmospheric Physics, Saint Petersburg State University, St. Petersburg, 199034, Russia
Luyang Xu
Beijing Weather Forecast Center, Beijing, 100089, China
Ke Wei
CORRESPONDING AUTHOR
Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
Related authors
Andrey V. Koval, Olga N. Toptunova, Maxim A. Motsakov, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, and Eugene V. Rozanov
Atmos. Chem. Phys., 23, 4105–4114, https://doi.org/10.5194/acp-23-4105-2023, https://doi.org/10.5194/acp-23-4105-2023, 2023
Short summary
Short summary
Periodic changes in all hydrodynamic parameters are constantly observed in the atmosphere. The amplitude of these fluctuations increases with height due to a decrease in the atmospheric density. In the upper layers of the atmosphere, waves are the dominant form of motion. We use a model of the general circulation of the atmosphere to study the contribution to the formation of the dynamic and temperature regimes of the middle and upper atmosphere made by different global-scale atmospheric waves.
Andrey V. Koval, Wen Chen, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, Alexander I. Pogoreltsev, Olga N. Toptunova, Ke Wei, Anna N. Yarusova, and Anton S. Zarubin
Ann. Geophys., 39, 357–368, https://doi.org/10.5194/angeo-39-357-2021, https://doi.org/10.5194/angeo-39-357-2021, 2021
Short summary
Short summary
Numerical modelling is used to simulate atmospheric circulation and calculate residual mean meridional circulation (RMC) during sudden stratospheric warming (SSW) events. Calculating the RMC is used to take into account wave effects on the transport of atmospheric quantities and gas species in the meridional plane. The results show that RMC undergoes significant changes at different stages of SSW and contributes to SSW development.
Andrey V. Koval, Olga N. Toptunova, Maxim A. Motsakov, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, and Eugene V. Rozanov
Atmos. Chem. Phys., 23, 4105–4114, https://doi.org/10.5194/acp-23-4105-2023, https://doi.org/10.5194/acp-23-4105-2023, 2023
Short summary
Short summary
Periodic changes in all hydrodynamic parameters are constantly observed in the atmosphere. The amplitude of these fluctuations increases with height due to a decrease in the atmospheric density. In the upper layers of the atmosphere, waves are the dominant form of motion. We use a model of the general circulation of the atmosphere to study the contribution to the formation of the dynamic and temperature regimes of the middle and upper atmosphere made by different global-scale atmospheric waves.
Andrey V. Koval, Wen Chen, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, Alexander I. Pogoreltsev, Olga N. Toptunova, Ke Wei, Anna N. Yarusova, and Anton S. Zarubin
Ann. Geophys., 39, 357–368, https://doi.org/10.5194/angeo-39-357-2021, https://doi.org/10.5194/angeo-39-357-2021, 2021
Short summary
Short summary
Numerical modelling is used to simulate atmospheric circulation and calculate residual mean meridional circulation (RMC) during sudden stratospheric warming (SSW) events. Calculating the RMC is used to take into account wave effects on the transport of atmospheric quantities and gas species in the meridional plane. The results show that RMC undergoes significant changes at different stages of SSW and contributes to SSW development.
Cited articles
Albers, J. R. and Birner, T.: Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings, J. Atmos. Sci., 71, 4028–4054, 2014.
Albers, J. R., McCormack, J. P., and Nathan, T. R.: Stratospheric ozone and the morphology of the northern hemisphere planetary waveguide, J. Geophys. Res. Atmos., 118, 563–576, https://doi.org/10.1029/2012JD017937, 2013.
Baldwin, M., Birner, T., Brasseur, G., Burrows, J., Butchart, N., Garcia R., Geller M., Gray, L., Hamilton, K., Harnik, N., Hegglin, M. I., Langematz, U., Robock, A., Sato, K., and Scaife, A.: 100 years of progress in understanding the stratosphere and mesosphere, Meteor. Mon., 59, 27.1–27.62, https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0003.1, 2019.
Baldwin, M. P., Thompson, D. W. J., Shuckburgh, E. F., Norton, W. A., and Gillett, N. P.: Weather from the stratosphere?, Science, 301, 317–319, 2003.
Calvo, N., Giorgetta, M. A., Garcia-Herrera, R., and Manzini, E.: Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations, J. Geophys. Res., 114, D13109, https://doi.org/10.1029/2008JD011445, 2009.
Chen, W., Yang, S., and Huang, R.-H.: Relationship between stationary planetary wave activity and the East Asian winter monsoon, J. Geophys. Res., 110, D14110, https://doi.org/10.1029/2004JD005669, 2005.
Didenko, K.: Natural Tropical Oscillations phase impact on stationary and westward travelling planetary waves, Zenodo [data set], https://doi.org/10.5281/zenodo.17311023, 2025.
Didenko, K. A., Koval, A. V., Ermakova, T. S., Sokolov, A. V., and Toptunova, O. N.: Analysis of a Secondary 16-day Planetary Wave Generation through Nonlinear Interactions in the Atmosphere, Earth, Planets and Space, 76, 124, https://doi.org/10.1186/s40623-024-02072-x, 2024.
Ding, Q. and Wang, B.: Circumglobal Teleconnection in the Northern Hemisphere Summer, J. Climate, 18, 3483–3505, https://doi.org/10.1175/JCLI3473.1, 2005.
Ermakova, T. S., Aniskina, O. G., Statnaya, I. A., Motsakov, M. A., and Pogoreltsev, A. I.: Simulation of the ENSO influence on the extra-tropical middle atmosphere, Earth Planets Space, 71, 8, https://doi.org/10.1186/s40623-019-0987-9, 2019.
Forbes, J. M. and Zhang, X.: Quasi-10-day wave in the atmosphere, J. Geophys. Res., 120, 11079–11089, https://doi.org/10.1002/2015JD023327, 2015.
Fraedrich, K., Pawson, S., and Wang, R.: An EOF analysis of the vertical time delay structure of the Quasi-Biennial Oscillation, J. Atmos. Sci., 50, 3357–3365, https://doi.org/10.1175/1520-0469(1993)050<3357:AEAOTV>2.0.CO;2, 1993.
Fröhlich, K., Pogoreltsev, A.I., and Jacobi, Ch.: The 48-layer COMMA-LIM model, Rep. Inst. Meteorol. Univ. Leipz., 30, 157–185, 2003.
Funke, B, López-Puertas, M., Bermejo-Pantaleón, D., GarcÌa-Comas, M., Stiller, G. P., von Clarmann, T., Kiefer, M., and Linden, A.: Evidence for dynamical coupling from the lower atmosphere to the thermosphere during a major stratospheric warming, Geophys. Res. Lett., 37, 13803, https://doi.org/10.1029/2010GL043619, 2010.
Garcia, R. G., Liberman, R., Russell, J. M., and Mlynczak, M. G.: Large-scale waves in the mesosphere and lower thermosphere observed by SABER, J. Atmos. Sci., 62, 4384–4399, https://doi.org/10.1175/JAS3612.1, 2004.
Garfinkel, C. I. and Hartmann, D. L.: Effects of the El Niño-Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere, J. Geophys. Res., 112, D19112, https://doi.org/10.1029/2007JD008481, 2007.
Garfinkel, C. and Hartmann, D.: Different ENSO teleconnections and their effects on the stratospheric polar vortex, J. Geophys. Res., 113, D18114, 2008.
Garfinkel, C. I., Shaw, T. A., Hartmann, D. L., and Waugh, D. W.: Does the Holton–Tan Mechanism Explain How the Quasi-Biennial Oscillation Modulates the Arctic Polar Vortex?, J. Atmos. Sci., 69, 1713–1733, https://doi.org/10.1175/JAS-D-11-0209.1, 2012.
Garfinkel, C. I., Schwartz, C., Domeisen, D. I. V., Son, S.-W., Butler, A. H., and White, I. P.: Extratropical atmospheric predictability from the quasi-biennial oscillation in subseasonal forecast models, J. Geophys. Res.: Atmospheres, 123, 7855–7866, https://doi.org/10.1029/2018JD028724, 2018.
Gavrilov, N. M., Koval, A. V., Pogoreltsev, A. I., and Savenkova, E. N.: Simulating planetary wave propagation to the upper atmosphere during stratospheric warming events at different mountain wave scenarios, Adv. Space Res., 61, 1819–1836, https://doi.org/10.1016/j.asr.2017.08.022, 2018.
Hagan, M. E., Maude, A., and Roble, R.G.: Tropospheric tidal effects on the middle and upper atmosphere, J. Geophys. Res., 114, 01302, https://doi.org/10.1029/2008JA013637, 2009.
Halpert, M. S. and Ropelewski, C. F.: Surface temperature patterns associated with the Southern Oscillation, J. Clim., 5, 577–593, https://doi.org/10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2, 1992.
Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J., and Shine K. P.: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces, J. Atmos. Sci. 48, 651–678., https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2, 1991.
Hirooka, T.: Influence of normal mode Rossby waves on the mean field: Influence with quasi-stationary waves, J. Atmos. Sci., 43, 2088–2097, 1986.
Hirooka, T.: Normal mode Rossby waves as revealed by UARS/ISAMS observations, J. Atmos. Sci., 57, 1277–1285, https://doi.org/10.1175/1520-0469(2000)057<1277:NMRWAR>2.0.CO;2, 2000.
Hirooka, T. and Hirota, I.: Normal mode Rossby waves observed in the upper stratosphere. Part II: Second antisymmetric and symmetric modes of zonal wavenumbers 1 and 2, J. Atmos. Sci., 42, 536–548, 1985.
Hoffmann, P., Jacobi, Ch., and Borries, C.: A possible planetary wave coupling between the stratosphere and ionosphere by gravity wave modulation, J. Atmos. Solar-Terr. Phys., 75–76, https://doi.org/10.1016/j.jastp.2011.07.008, 2012.
Holton, J. R. and Tan, H.: The influence of the equatorial quasibiennial oscillation on the global circulation at 50 mb, J. Atmos. Sci., 37, 2200–2208, 1980.
Holton, J. R., Haynes, P. H, McIntyre, M. E., Douglas, A. R., Rood, R. B., and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys., 33, 403–439, 1995.
Huang, J., Hitchcock, P., Maycock, A. C., McKenna, Ch. M., and Tian, W.: Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions, Commun. Earth Environ., 2, 147, https://doi.org/10.1038/s43247-021-00215-6, 2021.
Jacobi, C., Ermakova, T., Mewes, D., and Pogoreltsev, A. I.: El Niño influence on the mesosphere/lower thermosphere circulation at midlatitudes as seen by a VHF meteor radar at Collm (51.3 ° N, 13 ° E), Adv. Radio Sci., 15, 199–206, https://doi.org/10.5194/ars-15-199-2017, 2017.
Kawatani, Y., Hamilton, K., Sato, K., Dunkerton, T. J., Watanabe, S., and Kikuchi, K.: ENSO Modulation of the QBO: Results from MIROC Models with and without Nonorographic Gravity Wave Parameterization, J. Atmos. Sci., 76, 3893–3917, https://doi.org/10.1175/JAS-D-19-0163.1 , 2019.
Koval, A. V.: Statistically significant estimates of influence of solar activity on planetary waves. In the middle atmosphere of the northern hemisphere as derived from MUAM model data, J. Atmos. Solar.-Terr. Phys., 5, 4, 53–59, https://doi.org/10.12737/stp-54201907, 2019.
Koval, A. V., Gavrilov, N. M., Pogoreltsev, A. I., and Savenkova, E. N.: Comparisons of planetary wave propagation to the upper atmosphere during stratospheric warming events at different QBO phases, J. Atmo.s Sol. Terr. Phys., 171, 201–209, https://doi.org/10.1016/j.jastp.2017.04.013, 2018.
Koval, A. V., Gavrilov, N. M., Pogoreltsev, A. I., and Shevchuk, N. O.: Reactions of the middle atmosphere circulation and stationary planetary waves on the solar activity effects in the thermosphere, J. Geophys. Res.: Space Phys., 124, 10645–10658, https://doi.org/10.1029/2019JA027392, 2019.
Koval, A. V., Chen, W., Didenko, K. A., Ermakova, T. S., Gavrilov, N. M., Pogoreltsev, A. I., Toptunova, O. N., Wei, K., Yarusova, A. N., and Zarubin, A. S.: Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events, Ann. Geophys., 39, 357–368, https://doi.org/10.5194/angeo-39-357-2021, 2021.
Koval, A. V., Gavrilov, N. M., Kandieva, K. K., Ermakova, T. S., and Didenko, K. A.: Numerical simulation of stratospheric QBO impact on the planetary waves up to the thermosphere, Sci. Rep., 12, 1–12, 2022a.
Koval, A. V., Gavrilov, N. M., Pogoreltsev, A. I., and Kandieva, K. K.: Dynamical impacts of strato-spheric QBO on the global circulation up to the lower thermosphere, J. Geophys. Res.: Atmospheres, 127, 1–14, 2022b.
Koval, A. V., Toptunova, O. N., Motsakov, M. A., Didenko, K. A., Ermakova, T. S., Gavrilov, N. M., and Rozanov, E. V.: Numerical modelling of relative contribution of planetary waves to the atmospheric circulation, Atmos. Chem. Phys., 23, 4105–4114, https://doi.org/10.5194/acp-23-4105-2023, 2023.
Koval, A. V., Didenko, K. A., Ermakova, T. S., Gavrilov, N. M., and Sokolov, A. V.: Changes in general circulation of the middle and upper atmosphere associated with main and transitional QBO phases, Adv. Space Res., 74, 4793–4808, https://doi.org/10.1016/j.asr.2024.07.037, 2024.
Koval, A. V., Didenko, K. A., Ermakova, T. S., Gavrilov, N. M., and Golovko, A. G.: Diagnostics of the solar activity influence on the global atmospheric circulation in the thermosphere and MLT area: wave–mean flow interaction effects, Clim. Dyn., 63, 19, https://doi.org/10.1007/s00382-024-07490-x, 2025.
Kumar, V., Yoden, S., and Hitchman, M. H.: QBO and ENSO effects on the mean meridional circulation, polar vortex, subtropical westerly jets, and wave patterns during boreal winter, J. Geophys. Res.: Atmospheres, 127, e2022JD036691, https://doi.org/10.1029/2022JD036691, 2022.
Laštovicka, J.: Forcing of the ionosphere by waves from below, J. Atmos. Sol.-Terr. Phys., 68, 479–497, 2006.
Lee, H. and Jin, E.: A new understanding of the causes of future change in El Niño teleconnection, Atmos. Res., 307, https://doi.org/10.1016/j.atmosres.2024.107508, 2024.
Li, T. and Wang, B.: Impact of atmosphere–ocean interactions on propagation and initiation of boreal winter and summer intraseasonal oscillations, Tropical and Extratropical Air-Sea Interactions, Elsevier, 17–60, https://doi.org/10.1016/B978-0-12-818156-0.00011-3, 2021.
Li, W., Huang, C., and Zhang, S.: Global characteristics of the westward-propagating quasi-16 day wave with zonal wavenumber 1 and the connection with the 2012/2013 SSW revealed by ERA-interim, Earth Planet Space, 73, https://doi.org/10.1186/s40623-021-01431-2, 2021.
Liang, J., Wang, Z., Zhang, Z., and Luo, J.: Impacts of Quasi-Biennial Oscillation and El Niño-Southern Oscillation on Stratospheric Isentropic Mixing Process, Remote Sens., 15, 2715, https://doi.org/10.3390/rs15112715, 2023.
Lifar, V. D., Didenko, K. A., Koval, A. V., and Ermakova, T. S.: Numerical Simulation of QBO and ENSO Phase Effect on the Propagation of Planetary Waves and the Evolvement of Sudden Stratospheric Warming, Atmos. Ocean. Opt., 37, 415–421, https://doi.org/10.1134/S1024856024700489, 2024.
Liu, T., Liu, Z., Zhao, Y., and Zhang, S.: Strong Extratropical Impact on Observed ENSO, J. Climate, 37, 943–962, https://doi.org/10.1175/JCLI-D-23-0023.1, 2024.
Longuet-Higgins, M. S.: The eigenfunctions of Laplace's tidal equation over a sphere, Philos. Trans. R. Soc. Lond., 262, 511–607, 1968.
Lu, Q., Rao, J., Liang, Z., Guo, D., Luo, J., Liu, S., Wang, Ch., and Wang, T.: The sudden stratospheric warming in January 2021, Environ. Res. Lett., 16, 084029, https://doi.org/10.1088/1748-9326/ac12f4, 2021.
Lü, Z., Li, F., Orsolini, Y. J., Gao, Y., and He, S.: Understanding of European Cold Extremes, Sudden Stratospheric Warming, and Siberian Snow Accumulation in the Winter of 2017/18, J. Climate, 33, 527–545, https://doi.org/10.1175/JCLI-D-18-0861.1, 2020.
Ma, Z., Gong, Y., Zhang, S., Zhou, Q., Huang, C., Huang, K., and Li, G.: Study of a Quasi 4-day oscillation during the 2018/2019 SSW over Mohe, China, J. Geophys. Res.: Space Phys., 125, e2019JA027687, https://doi.org/10.1029/2019ja027687, 2020.
Madden, R. A.: Large-scale, free Rossby waves in the atmosphere – An update, Tellus A, 59, 571–590, 2007.
Matsuno, T.: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere, J. Atmos. Sci., 27, 871–883, 1970.
Matsuno, T.: A dynamical model of stratospheric warmings, J. Atmos. Sci., 28, 1479–1494, 1971.
McDonald, A. J., Hibbins, R. E., and Jarvis, M. J.: Properties of the quasi 16 day wave derived from EOS MLS observations, J. Geophys. Res., 116, D06112, https://doi.org/10.1029/2010JD014719, 2011.
Medvedeva, I. V., Semenov, A. I., Pogoreltsev, A. I., and Tatarnikov, A. V.: Influence of sudden stratospheric warming on the mesosphere/lower thermosphere from the hydroxyl emission observations and numerical simulations, J. Atmos. Sol.-Terr. Phy., 187, 22–32, https://doi.org/10.1016/j.jastp.2019.02.005, 2019
Mukhtarov, P., Pancheva, D., and Andonov, B.: Climatology of the stationary planetary waves seen in the SABER/TIMED temperatures (2002–2007), J. Geophys. Res., 115, A06315, https://doi.org/10.1029/2009JA015156, 2010.
Pogoreltsev, A. I.: Simulation of planetary waves and their influence on the zonally averaged circulation in the middle atmosphere, Earth Planets Space, 51, 773–784, 1999.
Pogoreltsev, A. I.: Generation of normal atmospheric modes by stratospheric vacillations, Izvestiya, Atmos. Ocean. Phys., 43, 423–435, 2007.
Pogoreltsev, A. I., Vlasov, A. A., Fröhlich, K., and Jacobi, Ch.: Planetary waves in coupling the lower and upper atmosphere, J. Atmos. Solar-Terr. Phys., 69, 2083–2101, https://doi.org/10.1016/j.jastp.2007.05.014, 2007.
Pogoreltsev, A. I., Savenkova, E. N., and Pertsev, N. N.: Sudden stratospheric warmings: the role of norm al atmospheric modes, Geomag. Aeron., 54, 357–372, 2014.
Pogoreltsev, A. I., Savenkova, E. N., Aniskina, O. G., Ermakova, T. S., Chen, W., and Wei, K.: Interannual and intraseasonal variability of stratospheric dynamics and stratosphere-troposphere coupling during northern winter, J. Atmos. Solar-Terr. Phys., 136, 187–200, 2015.
Qin, Y., Gu, S.-Y., Dou, X., and Wei, Y.: Unexpected global structure ofquasi-4-day wave with westward zonal wavenumber 2 during the February 2023 unusual major sudden stratospheric warming with elevated stratopause, Geophys. Res. Lett., 51, e2024GL109682, https://doi.org/10.1029/2024GL109682, 2024.
Rao, J., Yu, Y. Y., Guo, D., Shi, C. H., Chen, D., and Hu, D. Z.: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth Planet. Phys., 3, 166–181, https://www.researchgate.net/publication/331249718_Evaluating_the_Brewer-Dobson_circulation_and_its_responses_to_ENSO_QBO_and_the_solar_cycle_in_different_reanalyses (last access: 2 December 2024), 2019a.
Rao, J., Garfinkel, C. I., Chen, H., and White, I. P.: The 2019 new year stratospheric sudden warming and its real-time redictions in multiple S2S models, J. Geophys. Res. Atmos., 124, 11155–11174, 2019b.
Riggin, D. M., Liu, H. -L., Lieberman, R. S., Roble, R. G., Russell III, J. M., Mertens, C. J., Mlynczak, M. G., Pancheva, D., Franke, S. J., Murayama, Y., Manson, A. H., Meek, C. E., and Vincent, R. A.: Observations of the 5-day wave in the mesosphere and lower thermosphere, J. Atmos. Solar-Terr. Phys., 68, 323–339, 2013.
Rudeva, I. and Simmonds, I.: Midlatitude Winter Extreme Temperature Events and Connections with Anomalies in the Arctic and Tropics, J. Climate, 34, 3733–3749, https://doi.org/10.1175/JCLI-D-20-0371.1, 2021.
Salby, M. L.: Rossby Normal modes in nonuniform background configurations. Part II. Equinox and solstice conditions, J. Atmos. Sci., 38, 1827–1840, https://doi.org/10.1175/1520-0469(1981)038<1827:RNMINB>2.0.CO;2, 1981.
Salby, M. L.: Survey of planetary-scale traveling waves: The state of theory and observations, Rev. Geophys., 22, 209–236, 1984.
Sassi, F., Garcia, R. R., and Hoppel, K. W.: Large-scale Rossby normal modes during some recent Northern Hemisphere winters, J. Atmos. Sci., 69, 820–839, 2012.
Su, Y., Jiao, B., Fu, S., and Jiang, Y.: Quasi-10-day waves in temperature and polar mesospheric clouds: Results of AIM/SOFIE and Aura/MLS observations, Heliyon, 14, e31241, https://doi.org/10.1016/j.heliyon.2024.e31241, 2024.
Swarztrauber, P. N. and Kasahara, A.: The vector harmonic analysis of Laplace's tidal equations, SIAM J. Sci. Stat. Comp., 6, 464–491, 1985.
Taguchi, M.: Observed connection of the stratospheric quasi-biennial oscillation with El Niño–Southern Oscillation in radiosonde data, J. Geophys. Res., 115, D18120, https://doi.org/10.1029/2010JD014325, 2010.
Thompson, D. W. J., Baldwin, M. P., and Wallace, J. M.: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction, J. Climate, 15, 1421–1428, 2002.
Vincent, R. A.: The dynamics of the mesosphere and lower thermosphere: a brief review, Prog. in Earth and Planet. Sci., 2, https://doi.org/10.1186/s40645-015-0035-8, 2015.
Wallace, J. M., Panetta, R. L., and Estberg, J.: Representation of the equatorial stratospheric Quasi-Biennial Oscillation in EOF phase space, J. Atmos. Sci., 50, 1751–1762, 1993.
Wang, J. C., Palo, S. E., Forbes, J. M., Marino, J., Moffat-Griffin, T., and Mitchell, N. J.: Unusual quasi 10-day planetary wave activity and the ionospheric response during the 2019 Southern Hemisphere sudden stratospheric warming, J. Geophys. Res.: Space Phys., 126, e2021JA029286, https://doi.org/10.1029/2021JA029286, 2021.
Wang, Z., Zhang, G., Dunkerton, T. J., and Jin, F.: Summertime stationary waves integrate tropical and extratropical impacts on tropical cyclone activity, Proc. Natl. Acad. Sci. USA, 117, 22720–22726, https://doi.org/10.1073/pnas.2010547117, 2020.
Waters, J. W., Froidevaux, L, Harwood, R. S., Jarnot, R.F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A., Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C., Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S., Perun, V. S., Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A., Chandra, K. M., Chavez, M. C., Chen, G.-S., Chudasama, Bh. V., Dodge, R., Fuller, R. A., Girard, M. A., Jiang, J. H., Jiang, Y., Knosp, B. W., LaBelle, R. C., Lam, J. C., Lee, K. A., Miller, D., Oswald, J. E., Patel, N. C., Pukala, D. M., Quintero, O., Scaff, D. M., Van Snyder, W., Tope, M. C., Wagner, P. A., and Walch, M. J.: The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite, IEEE Trans. Geosci. Remote Sens., 44, 1075–1092, 2006.
White, I. P., Lu, H., Mitchell, N. J., and Phillips, T.: Dynamical Response to the QBO in the Northern Winter Stratosphere: Signatures in Wave Forcing and Eddy Fluxes of Potential Vorticity, J. Atmos. Sci., 72, 4487–4507, https://doi.org/10.1175/JAS-D-14-0358.1, 2015.
Wolter, K. and Timlin, M. S.: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext), Int. J. Climatol., 31, 1074–1087, https://doi.org/10.1002/joc.2336, 2011.
Xu, X, Manson, A. H., Meek, C. E., Riggin, D. M, Jacobi, C., and Drummond, J. R.: Mesospheric wind diurnal tides within the canadian middle atmosphere model data assimilation system, J. Atmos. Solar.-Terr. Phys., 74, 24–43, 2012.
Yamazaki, Y., Matthias, V., and Miyoshi, Y.: Quasi-4-day wave: Atmospheric manifestation of the first symmetric Rossby normal mode of zonal wavenumber 2, J. Geophys. Res.: Atmospheres, 126, e2021JD034855, https://doi.org/10.1029/2021JD034855, 2021.
Yan, M., Liu, Z., Han, J., Zeng, C., Ning, L., and Liu, J.: Relationship between the East Asian Summer and Winter Monsoons at Obliquity Time Scales, J. Climate, 36, 3993–4003, https://doi.org/10.1175/JCLI-D-22-0587.1, 2023.
Yang, S., Lau, K.-M., and Kim, K.-M.: Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies, J. Clim., 15, 306–325, 2002.
Zhang, P., Wu, Y., Chen, G., and Yu, Y.: North American cold events following sudden stratospheric warming in the presence of low Barents-Kara Sea sea ice, Environ. Res. Lett., 15, 124017, https://doi.org/10.1088/1748-9326/abc215, 2020.
Zhang, Y. X., Si, D., Ding, Y. H., Jiang, D. B., Li, Q. Q., and Wang, G. F.: Influence of major stratospheric sudden warming on the unprecedented cold wave in East Asia in January 2021, Adv. Atmos. Sci., 39, 576–590, https://doi.org/10.1007/s00376-022-1318-9, 2022.
Short summary
The main patterns of tropical oscillations influence on atmospheric planetary waves were investigated by numerical simulation of atmospheric circulation. The results showed that the joint effect of the considered tropical oscillations, originating in low latitudes, significantly affect the structure of planetary waves, not only in the regions of their climatic maximum but also throughout the middle atmosphere and thermosphere of both hemispheres.
The main patterns of tropical oscillations influence on atmospheric planetary waves were...
Altmetrics
Final-revised paper
Preprint