Articles | Volume 25, issue 19
https://doi.org/10.5194/acp-25-12535-2025
https://doi.org/10.5194/acp-25-12535-2025
Research article
 | 
09 Oct 2025
Research article |  | 09 Oct 2025

Snow particle fragmentation enhances snow sublimation

Ning Huang, Jiacheng Bao, Hongxiang Yu, and Guang Li

Related authors

Snow Particle Motion in Process of Cornice Formation
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458,https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Wind conditions for snow cornice formation in a wind tunnel
Hongxiang Yu, Guang Li, Benjamin Walter, Michael Lehning, Jie Zhang, and Ning Huang
The Cryosphere, 17, 639–651, https://doi.org/10.5194/tc-17-639-2023,https://doi.org/10.5194/tc-17-639-2023, 2023
Short summary
Impact of turbulence on aeolian particle entrainment: results from wind-tunnel experiments
Jie Zhang, Guang Li, Li Shi, Ning Huang, and Yaping Shao
Atmos. Chem. Phys., 22, 9525–9535, https://doi.org/10.5194/acp-22-9525-2022,https://doi.org/10.5194/acp-22-9525-2022, 2022
Short summary
Large-eddy-simulation study on turbulent particle deposition and its dependence on atmospheric-boundary-layer stability
Xin Yin, Cong Jiang, Yaping Shao, Ning Huang, and Jie Zhang
Atmos. Chem. Phys., 22, 4509–4522, https://doi.org/10.5194/acp-22-4509-2022,https://doi.org/10.5194/acp-22-4509-2022, 2022
Short summary
Dependency of particle size distribution at dust emission on friction velocity and atmospheric boundary-layer stability
Yaping Shao, Jie Zhang, Masahide Ishizuka, Masao Mikami, John Leys, and Ning Huang
Atmos. Chem. Phys., 20, 12939–12953, https://doi.org/10.5194/acp-20-12939-2020,https://doi.org/10.5194/acp-20-12939-2020, 2020
Short summary

Cited articles

Albert, M. R. and Mcgilvary, W. R.: Thermal effects due to air flow and vapor transport in dry snow, J. Glaciol., 38, 273–281, https://doi.org/10.3189/S0022143000003683, 1992. a
Anderson, R. S. and Haff, P. K.: Wind modification and bed response during saltation of sand in air, Acta Mechanica Suppl., 1, 21–51, 1991. a
Bintanja, R.: Snowdrift suspension and atmospheric turbulence. Part I: Theoretical background and model description, Boundary-Layer Meteorology, 95, 343–368, https://doi.org/10.1023/A:1002676804487, 2000. a, b, c
Comola, F., Kok, J., Gaume, J., Paterna, E., and Lehning, M.: Fragmentation of wind-blown snow crystals: blowing snow fragmentation, Geophys. Res. Lett., 44, https://doi.org/10.1002/2017GL073039, 2017. a, b, c, d, e
Csanady, G. T.: Turbulent diffusion of heavy particles in the atmosphere, J. Atmos. Sci., 20, 201–208, https://doi.org/10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2, 1963. a
Download
Short summary
Particle fragmentation makes snowflakes spherical during wind-drifting snow. However, no drifting snow model has presented this process so far. We established a drifting snow model considering particle fragmentation and investigated the effects of snow particle fragmentation on drifting and blowing snow. Our results show that fragmentation intensifies the sublimation of blowing snow and changes the airborne particle size distribution, which should not be ignored in current blowing snow models.
Share
Altmetrics
Final-revised paper
Preprint