Articles | Volume 25, issue 19
https://doi.org/10.5194/acp-25-12467-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-12467-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Current-use and legacy pesticides' multi-annual trends in air in central Europe: primary and unidentified secondary sources
Ludovic Mayer
RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
Lisa Melymuk
RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
Adela Holubová Šmejkalová
Air Quality Department, Czech Hydrometeorological Institute, Košetice Observatory, Košetice, Czech Republic
Jiři Kalina
RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
Petr Kukučka
RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
Jakub Martiník
RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
Petra Přibylová
RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
Petr Šenk
RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
Pourya Shahpoury
Environmental and Life Sciences, Trent University, Peterborough, Canada
Gerhard Lammel
CORRESPONDING AUTHOR
RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
Related authors
No articles found.
Mega Octaviani, Benjamin A. Musa Bandowe, Qing Mu, Jake Wilson, Holger Tost, Hang Su, Yafang Cheng, Manabu Shiraiwa, Ulrich Pöschl, Thomas Berkemeier, and Gerhard Lammel
EGUsphere, https://doi.org/10.5194/egusphere-2025-186, https://doi.org/10.5194/egusphere-2025-186, 2025
Short summary
Short summary
This research explores the atmospheric concentration of benzo(a)pyrene (BaP), a harmful air pollutant linked to lung cancer. Using advanced Earth system modeling, the study examines how BaP's degradation varies with temperature and humidity, affecting its global distribution and associated lung cancer risks. The findings reveal that BaP persists longer in colder, less humid regions, leading to higher lung cancer risks in parts of Europe and Asia.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025, https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP dithiothreitol assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardisation in OP procedures.
Marco Wietzoreck, Marios Kyprianou, Benjamin A. Musa Bandowe, Siddika Celik, John N. Crowley, Frank Drewnick, Philipp Eger, Nils Friedrich, Minas Iakovides, Petr Kukučka, Jan Kuta, Barbora Nežiková, Petra Pokorná, Petra Přibylová, Roman Prokeš, Roland Rohloff, Ivan Tadic, Sebastian Tauer, Jake Wilson, Hartwig Harder, Jos Lelieveld, Ulrich Pöschl, Euripides G. Stephanou, and Gerhard Lammel
Atmos. Chem. Phys., 22, 8739–8766, https://doi.org/10.5194/acp-22-8739-2022, https://doi.org/10.5194/acp-22-8739-2022, 2022
Short summary
Short summary
A unique dataset of concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) and their alkylated, oxygenated and nitrated derivatives, in total 74 individual species, in the marine atmosphere is presented. Exposure to these substances poses a major health risk. We found very low concentrations over the Arabian Sea, while both local and long-range-transported pollution caused elevated levels over the Mediterranean Sea and the Arabian Gulf.
Petra Pokorná, Naděžda Zíková, Petr Vodička, Radek Lhotka, Saliou Mbengue, Adéla Holubová Šmejkalová, Véronique Riffault, Jakub Ondráček, Jaroslav Schwarz, and Vladimír Ždímal
Atmos. Chem. Phys., 22, 5829–5858, https://doi.org/10.5194/acp-22-5829-2022, https://doi.org/10.5194/acp-22-5829-2022, 2022
Short summary
Short summary
By examining individual episodes of high mass and number concentrations, we show that the seasonality in the physicochemical properties of aerosol particles was caused by the sources' diversity and was related to the different air masses and meteorology. We also confirmed the relation between particle size and age that is reflected in oxidation state and shape (difference in densities; effective vs. material). The results have general validity and thus transcend the study regional character.
Cited articles
Alarcón, P. C., Kitanovski, Z., Padervand, M., Pöschl, U., Lammel, G., and Zetzsch, C.: Atmospheric hydroxyl radical reaction rate coefficient and total environmental lifetime of α-endosulfan, Environ. Sci. Technol., 57, 15999–16005, 2023.
Alexandratos, N. and Bruinsma, J.: World agriculture towards 2030/2050: the 2012 revision, Food and Agriculture Organization (FAO), Rome, Italy, https://www.fao.org /docrep/016/ap106e/ap106e.pdf, last access: 15 November 2023, 2012.
Alletto, L., Coquet, Y., Benoit, P., Heddadj, D., and Barriuso, E.: Tillage management effects on pesticide fate in soils. A review, Agron. Sustain. Dev., 30, 367–400, 2010.
Balmer, J. E., Morris, A. D., Hung, H., Jantunen, L., Vorkamp, K., Rigét, F., Evans, M., Houde, M., and Muir, D. C. G.: Levels and trends of current-use pesticides (CUPs) in the arctic: An updated review 2010–2018, Emerg. Contam., 5, 70–88, 2019.
Becker, S., Halsall, C. J., Tych, W., Kallenborn, R., Su, Y., and Hung, H.: Long-term trends in atmospheric concentrations of α- and γ-HCH in the Arctic provide insight into the effects of legislation and climatic fluctuations on contaminant levels, Atmos. Environ., 42, 8225–8233, 2008.
Bedos, C., Cellier, P., Calvet, R., Barriuso, E., and Gabrielle, B.: Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: Overview, Agronomie, 22, 21–33, 2002.
Bidleman, T. F.: Atmospheric transport and air-surface exchange of pesticides, in: Fate of Pesticides in the Atmosphere: Implications for Environmental Risk Assessment, edited by: van Dijk, H. F. G., van Pul, W. A. J., and de Voogt, P., Springer, Dordrecht, Netherlands, 115–166, https://doi.org/10.1023/A:1005249305515, 1999.
Bidleman, T. F., Jantunen, L. M., Falconer, R. L., Barrie, L. A., and Fellin, P.: Decline of hexachlorocyclohexane in the Arctic atmosphere and reversal of air-sea gas exchange, Geophys. Res. Lett., 22, 219–222, 1995.
BCPC: British Crop Protection Council.: The pesticide manual: A world compendium, edited by: MacBean, C., 16th Edn., BCPC Publications, Alton, United Kingdom, ISBN 9781901396867, 2012.
Bogdal, C., Schmid, P., Zennegg, M., Anselmetti, F. S., Scheringer, M., and Hungerbühler, K.: Blast from the past: Melting glaciers as a relevant source for persistent organic pollutants, Environ. Sci. Technol., 43, 8173–8177, 2009.
Cabrerizo, A., Dachs, J., Jones, K. C., and Barceló, D.: Soil-Air exchange controls on background atmospheric concentrations of organochlorine pesticides, Atmos. Chem. Phys., 11, 12799–12811, https://doi.org/10.5194/acp-11-12799-2011, 2011.
Carratalá, A., Moreno-González, R., and León, V. M.: Occurrence and seasonal distribution of polycyclic aromatic hydrocarbons and legacy and current-use pesticides in air from a Mediterranean coastal lagoon (Mar Menor, SE Spain), Chemosphere, 167, 382–395, 2017.
Carvalho, F. P.: Pesticides, environment, and food safety, Food Energy Secur., 6, 48–60, 2017.
Christensen, K.: Thawing permafrost releases industrial contaminants into Arctic communities. Environ. Health Persp., 132, 032001, https://doi.org/10.1289/EHP13998, 2024.
Cindoruk, S. S.: Atmospheric organochlorine pesticide (OCP) levels in a metropolitan city in Turkey, Chemosphere, 82, 78–87, 2011.
Coscollà, C., Colin, P., Yahyaoui, A., Petrique, O., Yusà, V., Mellouki, A., and Pastor, A.: Occurrence of currently used pesticides in ambient air of Centre Region (France), Atmos. Environ., 44, 3915–3925, 2010.
Coscollà, C., López, A., Yahyaoui, A., Colin, P., Robin, C., Poinsignon, Q., and Yusà, V.: Human exposure and risk assessment to airborne pesticides in a rural French community, Sci. Total Environ., 584–585, 856–868, 2017.
Debler, F., Abrantes, N., Harkes, P., Campos, I., and Gandrass, J.: Occurrence and distribution of pesticides and transformation products in ambient air in two European agricultural areas, Sci. Total Environ., 940, 173705, https://doi.org/10.1016/j.scitotenv.2024.173705, 2024.
Degrendele, C., Okonski, K., Melymuk, L., Landlová, L., Kukučka, P., Audy, O., Kohoutek, J., Čupr, P., and Klánová, J.: Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides, Atmos. Chem. Phys., 16, 1531–1544, https://doi.org/10.5194/acp-16-1531-2016, 2016.
Degrendele, C., Wilson, J., Kukučka, P., Klánová, J., and Lammel, G.: Are atmospheric PBDE levels declining in central Europe? Examination of the seasonal and semi-long-term variations, gas–particle partitioning and implications for long-range atmospheric transport, Atmos. Chem. Phys., 18, 12877–12890, https://doi.org/10.5194/acp-18-12877-2018, 2018.
Degrendele, C., Fiedler, H., Kočan, A., Kukučka, P., Přibylová, P., Prokeš, R., Klánová, J., and Lammel, G.: Multiyear levels of PCDD/Fs, dl-PCBs and PAHs in background air in central Europe and implications for deposition, Chemosphere, 240, https://doi.org/10.1016/j.chemosphere.2019.124852, 2020.
Désert, M., Ravier, S., Gille, G., Quinapallo, A., Armengaud, A., Pochet, G., Savelli, J. L., Wortham, H., and Quivet, E.: Spatial and temporal distribution of current-use pesticides in ambient air of Provence-Alpes-Côte-d'Azur Region and Corsica, France, Atmos. Environ., 192, 241–256, 2018.
Dobson, R., Scheyer, A., Rizet, A. L., Mirabel, P., and Millet, M.: Comparison of the efficiencies of different types of adsorbents at trapping currently used pesticides in the gaseous phase using the technique of high-volume sampling, Anal. Bioanal. Chem., 386, 1781–1789, 2006.
Dvorská, A., Lammel, G. and Holoubek, I.: Recent trends of persistent organic pollutants in air in Europe – Air monitoring in combination with air mass trajectory statistics as a tool to study the effectivity of regional chemical policy, Atmos. Environ., 43, 1280-1287, 2009.
Duyzer, J.: Pesticides in Perspective Pesticide concentrations in air and precipitation in the Netherlands, J. Environ. Monit., 5, 77N–80N, 2003.
FAOSTAT: Pesticides use, UN Food and Agriculture Organisation (FAO), http://www.fao.org/faostat/en/#data/RP, last access: 21 March 2024.
Fiedler, H., Abad, E., and de Boer, J.: Preliminary trends over ten years of persistent organic pollutants in air – Comparison of two sets of data in the same countries, Chemosphere, 324, 138299, https://doi.org/10.1016/j.chemosphere.2023.138299, 2023.
Gao, H., Ma, J., Cao, Z., Dove, A., and Zhang, L.: Trend and climate signals in seasonal air concentration of organochlorine pesticides over the Great Lakes, J. Geophys. Res., 115, https://doi.org/10.1029/2009JD013627, 2010.
Garthwaite, D. G., Hudson, S., Barker, I., Parrish, G., Smith, L., and Pietravalle, S.: Pesticide usage survey report 250: Arable crops in the United Kingdom 2012 (including aerial applications 2012), Food and Environment Research Agency, York, UK, https://pusstats.fera.co.uk/upload/kxZtSlyLVGQl5Wj0oFpHmPtX3PI3i6ZOF7L8Ep8Q.pdf (last access: 3 January 2025), 2014.
Gevao, B., Porcelli, M., Rajagopalan, S., Krishnan, D., Martinez-Guijarro, K., Alshemmari, H., Bahloul, M., and Zafar, J.: Spatial and temporal variations in the atmospheric concentrations of “Stockholm Convention” organochlorine pesticides in Kuwait, Sci. Total Environ., 622–623, 1621–1629, 2018.
Glotfelty, D. E., Leech, M. M., Jersey, J., and Taylor, A. W.: Volatilization and wind erosion of soil surface applied atrazine, simazine, alachlor and toxaphene, J. Agric. Food Chem., 37, 546–551, 1989.
Gong, W. W., Fiedler, H., Liu, X. T., Wang, B., and Yu, G.: Emission factors of unintentional HCB and PeCBz and their correlation with PCDD/PCDF, Environ. Pollut., 230, 516–522, 2017.
Habran, S., Giusti, A., Galloy, A., Gérard, G., Delvaux, A., Pigeon, O., and Remy, S.: Spatial and temporal variations of currently used pesticides (CUPs) concentrations in ambient air in Wallonia, Belgium, Chemosphere, 351, 141241, https://doi.org/10.1016/j.chemosphere.2024.141241, 2024.
Hansen, K. M., Christensen, J. H., Brandt, J., Frohn, L. M., and Geels, C.: Modelling atmospheric transport of α-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP, Atmos. Chem. Phys., 4, 1125–1137, https://doi.org/10.5194/acp-4-1125-2004, 2004.
Hayward, S. J., Gouin, T., and Wania, F.: Comparison of four active and passive sampling techniques for pesticides in air, Environ. Sci. Technol., 44, 3410–3416, 2010.
Hites, R. A. and Venier, M.: Good news: Some insecticides have been virtually eliminated in air near the Great Lakes, Environ. Sci. Technol., 57, 2199–2204, 2023.
Hoff, R. M., Brice, K. A., and Halsall, C. J.: Nonlinearity in the slopes of Clausius−Clapeyron plots for SVOCs, Environ. Sci. Technol., 32, 1793–1798, 1998.
Holoubek, I., Klánová, J., Jarkovský, J., and Kohoutek, J.: Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic. Part I. Ambient air and wet deposition 1996-2005, J. Environ. Monit., 9, 557–563, 2007.
Hulin, M., Leroux, C., Mathieu, A., Gouzy, A., Berthet, A., Boivin, A., Bonicelli, B., Chubilleau, C., Hulin, A., Leoz Garziandia, E., Mamy, L., Millet, M., Pernot, P., Quivet, E., Scelo, A. L., Merlo, M., Ruelle, B., and Bedos, C.: Monitoring of pesticides in ambient air: Prioritization of substances, Sci. Total Environ., 753, 141722, https://doi.org/10.1016/j.scitotenv.2020.141722, 2021.
Hung, H., Blanchard, P., Halsall, C. J., Bidleman, T. F., Stern, G. A., Fellin, P., Muir, D. C. G., Barrie, L. A., Jantunen, L. M., Helm, P. A., Ma, J., and Konoplev, A.: Temporal and spatial variabilities of atmospheric polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Canadian Arctic: Results from a decade of monitoring, Sci. Total Environ., 342, 119–144, 2005.
Hung, H., Kallenborn, R., Breivik, K., Su, Y., Brorström-Lundén, E., Olafsdottir, K., Thorlacius, J. M., Leppänen, S., Bossi, R., Skov, H., Manø, S., Patton, G. W., Stern, G., Sverko, E., and Fellin, P.: Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993–2006, Sci. Total Environ., 408, 2854–2873, 2010.
Hung, H., Katsoyiannis, A. A., Brorström-Lundén, E., Olafsdottir, K., Aas, W., Breivik, K., Bohlin-Nizzetto, P., Sigurdsson, A., Hakola, H., Bossi, R., Skov, H., Sverko, E., Barresi, E., Fellin, P., and Wilson, S.: Temporal trends of Persistent Organic Pollutants (POPs) in Arctic air: 20 years of monitoring under the Arctic Monitoring and Assessment Programme (AMAP), Environ. Pollut., 217, 52–61, 2016.
Ilyin, I., Batrakova, N., Gusev, A., Kleimenov, M., Rozovskaya, O., Shatalov, V., Strizhkina, I., Travnikov, O., Vulykh, N., Breivik, K., Bohlin-Nizzetto, P., Pfaffhuber, K. A., Aas, W., Poupa, S., Wankmueller, R., Ullrich, B., Bank, M., Ho, Q. T., Vivanco, M.G., Theobald, M. R., Garrido, J. L., Gil, V., Couvidat, F., Collette, A., Mircea, M., Adani, M., Delia, I., Kouznetsov, R. D., and Kadancev, E. V.: Assessment of heavy metal and POP pollution on global, regional and national scales. Status Report No. 2/2022, Meteorological Synthesizing Centre – East, Moscow, https://msc-east.org/wp-content/uploads/2024/08/2022_2.pdf (last access: 12 January 2025), 2022.
IVL: Nationell luftovervakning 2019, Swedish environmental research institute report C584, Stockholm, https://ivl.diva-portal.org/smash/get/diva2:1565338/FULLTEXT01.pdf (last access: 12 January 2025), 2021.
Jepson, P. C., Murray, K., Bach, O., Bonilla, M. A., and Neumeister, L.: Selection of pesticides to reduce human and environmental health risks: a global guideline and minimum pesticides list, Lancet Planet. Health, 4, e56–e63, 2020.
Jiang, H. Y., Li, J., Zhang, R. J., Pansak, W., Zhong, G. C., Li, K. C., Zhao, S. Z., Bualert, S., Phewnil, O., and Zhang, G.: Mapping the contribution of biomass burning to persistent organic pollutants in the air of the Indo-China Peninsula based on a passive air monitoring network, Environ. Sci. Technol., 57, 2274–2285, 2023.
Kalina, J., White, K. B., Scheringer, M., Přibylová, P., Kukučka, P., Audy, O., Martiník, J., and Klánová, J.: Comparability of semivolatile organic compound concentrations from co-located active and passive air monitoring networks in Europe, Environ. Sci. Proc. Impacts, 24, 898–909, 2022.
Khuman, S. N., Park, M. K., Kim, H. J., Hwang, S. M., Lee, C. H., and Choi, S. D.: Nationwide assessment of atmospheric organochlorine pesticides over a decade during 2008–2017 in South Korea, Sci. Total Environ., 877, 162927, https://doi.org/10.1016/j.scitotenv.2023.162927, 2023.
Kruse-Plaß, M., Hofmann, F., Wosniok, W., Schlechtriemen, U., and Kohlschütter, N.: Pesticides and pesticide-related products in ambient air in Germany, Environ. Sci. Eur., 33, 114, https://doi.org/10.1186/s12302-021-00553-4, 2021.
Lakaschus, S., Weber, K., Wania, F., Bruhn, R., and Schrems, O.: The air−sea equilibrium and time trend of hexachlorocyclohexanes in the Atlantic Ocean between the Arctic and Antarctica, Environ. Sci. Technol., 36, 138–145, 2002.
Lammel, G., Novák, J., Landlová, L., Dvorská, A., Klánová, J., Čupr, P., Kohoutek, J., Reimer, E., and Škrdlíková, L.: Sources and distributions of polycyclic aromatic hydrocarbons and toxicity of polluted atmosphere aerosols, in: Urban Airborne Particulate Matter: Origin, Chemistry, Fate and Health Impact edited by: Zereini, F. and Wiseman, C. L. S., Springer, Berlin, 39–62, https://doi.org/10.1007/978-3-642-12278-1_3, 2010.
Lammel, G., Degrendele, C., Gunthe, S. S., Mu, Q., Muthalagu, A., Audy, O., Biju, C. V., Kukučka, P., Mulder, M. D., Octaviani, M., Příbylová, P., Shahpoury, P., Stemmler, I., and Valsan, A. E.: Revolatilisation of soil-accumulated pollutants triggered by the summer monsoon in India, Atmos. Chem. Phys., 18, 11031–11040, https://doi.org/10.5194/acp-18-11031-2018, 2018.
LCSQA: Résultats de la campagne nationale exploratoire de mesure des résidus de pesticides dans l'air ambiant (2018–2019), https://www.lcsqa.org/fr/rapport/resultats-de-la-campagne-nationale-exploratoire-de-mesure-des-residus-de-pesticides-dans (last access: 13 January 2025), 2019.
Lee, M., Lee, S., Noh, S., Park, K. S., Yu, S. M., Lee, S., Do, Y. S., Kim, Y. H., Kwon, M., Kim, H., and Park, M. K.: Assessment of organochlorine pesticides in the atmosphere of South Korea: spatial distribution, seasonal variation, and sources, Environ. Monit. Assess., 194, 754, https://doi.org/10.1007/s10661-022-10335-x, 2022.
Lewis, K. A., Tzilivakis, J., Warner, D. J., and Green, A.: An international database for pesticide risk assessments and management, Hum. Ecol. Risk Assess. Int. J., 22, 1050–1064, 2016.
Li, W. L., Huo, C. Y., Liu, L.Y., Song, W. W., Zhang, Z. F., Ma, W. L., Qiao, L. N., and Li, Y. F.: Multi-year air monitoring of legacy and current-use brominated flame retardants in an urban center in northeastern China, Sci. Total Environ., 571, 633–642, 2016.
Li, Y., Lohmann, R., Zou, X., Wang, C., and Zhang, L.: Air-water exchange and distribution pattern of organochlorine pesticides in the atmosphere and surface water of the open Pacific Ocean, Environ. Pollut., 265, https://doi.org/10.1016/j.envpol.2020.114956, 2020.
Li, Y. F. and Macdonald, R. W.: Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review, Sci. Total Environ. 342, 87–106, 2005.
Liu, L. Y., Salamova, A., Venier, M., and Hites, R. A.: Trends in the levels of halogenated flame retardants in the Great Lakes atmosphere over the period 2005–2013, Environ. Int., 92–93, 442–449, 2016.
Liu, X., Zhang, G., Li, J., Yu, L. L., Xu, Y., Li, X. D., Kobara, Y., and Jones, K. C.: Seasonal patterns and current sources of DDTs, chlordanes, hexachlorobenzene, and endosulfan in the atmosphere of 37 Chinese cities, Environ. Sci. Technol., 43, 1316–1321, 2009.
López, A., Coscollà, C., and Yusà, V.: Evaluation of sampling adsorbents and validation of a LC-HRMS method for determination of 28 airborne pesticides, Talanta, 189, 211–219, 2018.
Lunder Halvorsen, H., Bohlin-Nizzetto, P., Eckhardt, S., Gusev, A., Moeckel, C., Shatalov, V., Skogeng, L. P., and Breivik, K.: Spatial variability and temporal changes of POPs in European background air, Atmos. Environ., 299, https://doi.org/10.1016/j.atmosenv.2023.119658, 2023.
Ma, Y., Salamova, A., Venier, M., and Hites, R. A.: Has the phase-out of PBDEs affected their atmospheric levels? Trends of PBDEs and their replacements in the Great Lakes atmosphere, Environ. Sci. Technol., 47, 11457–11464, 2013.
Mackay, D. and Parnis, J. M.: Multimedia environmental models: The fugacity approach, 3rd Edn., CRC Press, Boca Raton, USA, https://doi.org/10.1201/9780367809829, 2020.
Maggi, F., Tang, F. H. M., la Cecilia, D., and McBratney, A.: PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025, Sci. Dat., 6, 170–190, 2019.
Mai, C., Theobald, N., Lammel, G., and Hühnerfuss, H.: Spatial, seasonal and vertical distributions of currently-used pesticides in the marine boundary layer of the North Sea, Atmos. Environ., 75, 92–102, 2013.
Mamontova, E. A. and Mamontov, A. A.: Air monitoring of polychlorinated biphenyls and organochlorine pesticides in Eastern Siberia: Levels, temporal trends, and risk assessment, Atmosphere, 13, 1971, https://doi.org/10.3390/atmos13121971, 2022.
Mayer, L., Degrendele, C., Šenk, P., Kohoutek, J., Přibylová, P., Kukučka, P., Melymuk, L., Durand, A., Ravier, S., Alastuey, A., Baker, A. R., Baltensperger, U., Baumann-Stanzer, K., Biermann, T., Bohlin-Nizzetto, P., Ceburnis, D., Conil, S., Couret, C., Degórska, A., Diapouli, E., Eckhardt, S., Eleftheriadis, K., Forster, G. L., Freier, K., Gheusi, F., Gini, M. I., Hellén, H., Henne, S., Herrmann, H., Holubová Šmejkalová, A., Hõrrak, U., Hüglin, C., Junninen, H., Kristensson, A., Langrene, L., Levula, J., Lothon, M., Ludewig, E., Makkonen, U., Matejovičová, J., Mihalopoulos, N., Mináriková, V., Moche, W., Noe, S. M., Pérez, N., Petäjä, T., Pont, V., Poulain, L., Quivet, E., Ratz, G., Rehm, T., Reimann, S., Simmons, I., Sonke, J. E., Sorribas, M., Spoor, R., Swart, D. P. J., Vasilatou, V., Wortham, H., Yela, M., Zarmpas, P., Zellweger Fäsi, C., Tørseth, K., Laj, P., Klánová, J., and Lammel, G.: Widespread pesticide distribution in the European atmosphere questions their degradability in air, Environ. Sci. Technol., 58, 3342–3352, 2024.
Miglioranza, K. S. B., Ondarza, P. M., Costa, P. G., de Azevedo, A., Gonzalez, M., Shimabukuro, V. M., Grondona, S. I., Mitton, F. M., Barra, R. O., Wania, F., and Fillmann, G.: Spatial and temporal distribution of Persistent Organic Pollutants and current use pesticides in the atmosphere of Argentinean Patagonia, Chemosphere, 266, 129015, https://doi.org/10.1016/j.chemosphere.2020.129015, 2021.
Nadal, M., Marquès, M., Mari, M., and Domingo, J. L.: Climate change and environmental concentrations of POPs: A review, Environ. Res., 143, 177–185, 2015.
Ni, J., Cai, M., Lin, Y. J., Li, T., and Ma, J.: Occurrence, seasonal variations, and spatial distributions of current-use organoamine pesticides in the atmosphere of Shanghai, China, Atmos. Pollut. Res., 15, 102187, https://doi.org/10.1016/j.apr.2024.102187, 2024.
Nizzetto, L., MacLeod, M., Borgå, K., Cabrerizo, A., Dachs, J., di Guardo, A., Ghirardello, D., Hansen, K. M., Jarvis, A., Lindroth, A., Ludwig, B., Monteith, D., Perlinger, J. A., Scheringer, M., Schwendenmann, L., Semple, K. T., Wick, L. Y., Zhang, G., and Jones, K. C.: Past, present, and future controls on levels of persistent organic pollutants in the global environment – Understanding the legacy of persistent organic pollutants requires studying the transition from primary to secondary source control. Environ. Sci. Technol., 44, 6526–6531, 2010.
Nuyttens, D., Devarrewaere, W., Verboven, P., and Foqué, D.: Pesticide-laden dust emission and drift from treated seeds during seed drilling: A review, Pest Manag. Sci., 69, 564–575, 2013.
O'Driscoll, K.: Air-sea exchange of legacy POPs in the North Sea based on results of fate and transport, and shelf-sea hydrodynamic ocean models, Atmosphere, 5, 156–177, 2014.
Paragot, N., Bečanová, J., Karásková, P., Prokeš, R., Klánová, J., Lammel, G., and Degrendele, C.: Multi-year atmospheric concentrations of per- and polyfluoroalkyl substances (PFASs) at a background site in central Europe, Environ. Pollut., 265, 114851, https://doi.org/10.1016/j.envpol.2020.114851, 2020.
Qin, M., Yang, P. F., Hu, P. T., Hao, S., Macdonald, R. W., and Li, Y. F.: Particle/gas partitioning for semi-volatile organic compounds (SVOCs) in level III multimedia fugacity models: Both gaseous and particulate emissions, Sci. Total Environ., 790, 148012, https://doi.org/10.1016/j.scitotenv.2021.148012, 2021.
Qiu, X., Zhu, T., Yao, B., Hu, J., and Hu, S.: Contribution of dicofol to the current DDT pollution in China, Environ Sci. Technol., 39, 4385–4390, 2005.
Ricking, M. and Schwarzbauer, J.: DDT isomers and metabolites in the environment: an overview, Environ. Chem. Lett., 10, 317–323, 2012.
Salamova, A., Venier, M., and Hites, R. A.: Revised temporal trends of persistent organic pollutant concentrations in air around the Great Lakes, Environ. Sci. Technol. Lett., 2, 20–25, 2015.
Sari, M. F., Córdova del Águila, D. A., Tasdemir, Y., and Esen, F.: Atmospheric concentration, source identification, and health risk assessment of persistent organic pollutants (POPs) in two countries: Peru and Turkey, Environ. Monit. Assess., 192, 655, https://doi.org/10.1007/s10661-020-08604-8, 2020.
Semeena, V. S. and Lammel, G.: The significance of the grasshopper effect on the atmospheric distribution of persistent organic substances, Geophys. Res. Lett., 32, L07804, https://doi.org/10.1029/2004GL022229, 2005.
Semeena, V. S., Feichter, J., and Lammel, G.: Impact of the regional climate and substance properties on the fate and atmospheric long-range transport of persistent organic pollutants - examples of DDT and γ-HCH, Atmos. Chem. Phys., 6, 1231–1248, https://doi.org/10.5194/acp-6-1231-2006, 2006.
Shahpoury, P., Lammel, G., Albinet, A., Sofuoglu, A., Dumanoglu, Y., Sofuoglu, S. C., Wagner, Z., and Ždimal, V.: Evaluation of a conceptual model for gas-particle partitioning of polycyclic aromatic hydrocarbons using polyparameter linear free energy relationships, Environ. Sci. Technol., 50, 12312–12319, 2016.
Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O.I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., and Thukral, A.K.: Worldwide pesticide usage and its impacts on ecosystem, SN Appl. Sci., 1, 1446, https://doi.org/10.1007/s42452-019-1485-1, 2019.
Shunthirasingham, C., Gawor, A., Hung, H., Brice, K. A., Su, K., Alexandrou, N., Dryfhout-Clark, H., Backus, S., Sverko, E., Shin, C., Park, R., and Noronha, R.: Atmospheric concentrations and loadings of organochlorine pesticides and polychlorinated biphenyls in the Canadian Great Lakes Basin (GLB): Spatial and temporal analysis (1992–2012), Environ. Pollut., 217, 124–133, 2016.
Sofuoglu, A., Cetin, E., Bozacioglu, S. S., Sener, G. D., and Odabasi, M.: Short-term variation in ambient concentrations and gas/particle partitioning of organochlorine pesticides in Izmir, Turkey, Atmos. Environ., 38, 4483–4493, 2004.
Stemmler, I. and Lammel, G.: Cycling of DDT in the global environment 1950–2002: World Ocean returns the pollutant, Geophys. Res. Lett., 36, https://doi.org/10.1029/2009GL041340, 2009.
Tang, F. H. M., Lenzen, M., McBratney, A., and Maggi, F.: Risk of pesticide pollution at the global scale, Nat. Geosci., 14, 206–210, 2021.
Thomsen, M., Nielsen, O. K., and Illerup, J. B.: Unintentional formation and emission of the persistent organic pollutants HCB and PCBs in the Nordic countries: Documentation of existing information regarding sources and emissions to air, water and soil, with focus on reporting obligations according to the Stockholm Convention, the UNECE POP protocol, and PRTR registers. Nordic Council of Ministers, TemaNord No. 518, http://norden.diva-portal.org/smash/get/diva2:700932/FULLTEXT01.pdf (last access: 5 December 2024), 2009.
UNEP: Stockholm Convention on Persistent Organic Pollutants (POPs), United Nations Environment Programme, http://chm.pops.int/tabid/208/Default.aspx (last access: 5 December 2024), 2001.
UNEP: United Nations Environment Programme (UNEP), Regionally Based Assessment of Persistent Toxic Substances, Global Rep., Geneva, Switzerland, 211 pp., https://digitallibrary.un.org/record/500225?ln=en&v=pdf (last access: 13 January 2025), 2003.
UNEP: Third global monitoring report. Global monitoring plan for persistent organic pollutants under the Stockholm Convention Article 16 on effectiveness evaluation. Secretariat of the Basel, Rotterdam and Stockholm conventions, United Nations Environment Programme, Geneva, https://www.pops.int/Implementation/GlobalMonitoringPlan/MonitoringReports/tabid/525 (last access: 13 January 2025), 2023.
UNEP: Acceptable purposes DDT, https://chm.pops.int/Implementation/Exemptions/AcceptablePurposes/AcceptablePurposesDDT/tabid/456/Default.aspx, (last access: 13 January 2025), 2025.
ÚKZÚZ: Consumption of plant protection products per individual years. 2024. Central Institute for Supervising and Testing in Agriculture (ÚZKÚZ), Prague, Czech Republic, https://eagri.cz/public/portal/ukzuz/pripravky-na-or/ucinne-latky-v-por-statistika-spotreba/spotreba-pripravku-na-or/spotreba-v-jednotlivych-letech, last access: 20 June 2024.
Váňa, M., Šmejkalová, A. H., Svobodová, J., and Machálek, P.: Long-term trends of air pollution at national atmospheric observatory Košetice (ACTRIS, EMEP, GAW), Atmosphere, 11, 537, https://doi.org/10.3390/atmos11050537, 2020.
van den Berg, F., Kubiak, R., Benjey, W. G., Majewski, M. S., Yates, S. R., Reeves, G. L., Smelt, J. H., and van der Linden, A. M. A.: Emission of pesticides into the air, Water Air Soil Pollut., 115, 195–218, 1999.
van den Berg, H., Manuweera, G., and Konradsen, F.: Global trends in the production and use of DDT for control of malaria and other vector-borne diseases, Malar. J., 16, 401, https://doi.org/10.1186/s12936-017-2050-2, 2017.
van Pul, W. A. J., Bidleman, T. F., Brorström-Lunden, E., Builtjes, P. J. H., Dutchak, S., Duyzer, J. H., Gryning, S. E., Jones, K. C., van Dijk, H. F. G., and van Jaarsveld, J. A.: Atmospheric transport and deposition of pesticide: an assessment of current knowledge, Water, Air Soil Pollut., 115, 245–256, 1999.
Venier, M. and Hites, R. A.: Time trend analysis of atmospheric POPs concentrations in the Great Lakes region since 1990, Environ. Sci. Technol., 44, 8050–8055, 2010.
Venier, M., Hung, H., Tych, W., and Hites, R. A.: Temporal trends of persistent organic pollutants: A comparison of different time series models, Environ. Sci. Technol., 46, 3928–3934, 2012.
Villiot, A., Chrétien, E., Drab-Sommesous, E., Rivière, E., Chakir, A., and Roth, E.: Temporal and seasonal variation of atmospheric concentrations of currently used pesticides in Champagne in the centre of Reims from 2012 to 2015, Atmos. Environ., 174, 82–91, 2018.
Wang, C., Wang, X., Gong, P., and Yao, T.: Long-term trends of atmospheric organochlorine pollutants and polycyclic aromatic hydrocarbons over the southeastern Tibetan Plateau, Sci. Total Environ., 624, 241–249, 2018.
Wang, C., Wang, P., Zhao, J., Fu, M., Zhang, L., Li, Y., Yang, R., Zhu, Y., Fu, J., Zhang, Q., and Jiang, G.: Atmospheric organophosphate esters in the Western Antarctic Peninsula over 2014–2018: Occurrence, temporal trend and source implication, Environ. Pollut., 267, https://doi.org/10.1016/j.envpol.2020.115428, 2020.
Wang, S., Salamova, A., and Venier, M.: Occurrence, spatial, and seasonal variations, and gas-particle partitioning of atmospheric current-use pesticides (CUPs) in the Great Lakes Basin, Environ. Sci. Technol., 55, 3539–3548, 2021.
Wania, F., Haugen, J. E., Lei, Y. D., and Mackay, D.: Temperature dependence of atmospheric concentrations of semivolatile organic compounds, Environ. Sci. Technol., 32, 1013–1021, 1998.
Wania, F. and Mackay, D.: Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions, Ambio, 22, 10–18, 1993.
White, K. B., Kalina, J., Scheringer, M., Přibylová, P., Kukučka, P., Kohoutek, J., Prokeš, R., and Klánová, J.: Temporal trends of persistent organic pollutants across Africa after a decade of MONET passive air sampling, Environ. Sci. Technol., 55, 9413–9424, 2021.
Wijewardene, L., Wu, N. C., Hörmann, G., Messyasz, B., Riis, T., Hölzel, C., Ulrich, U., and Fohrer, N.: Effects of the herbicides metazachlor and flufenacet on phytoplankton communities – A microcosm assay. Ecotox. Environ. Safety, 228, 113036, https://doi.org/10.1016/j.ecoenv.2021.113036, 2021.
Wöhrnschimmel, H., Tay, P., von Waldow, H., Hung, H., Li, Y. F., MacLeod, M., and Hungerbühler, K.: Comparative assessment of the global fate of α- and β-hexachlorocyclohexane before and after phase-out, Environ. Sci. Technol., 46, 2047–2054, 2012.
Wöhrnschimmel, H., MacLeod, M., and Hungerbühler, K.: Emissions, fate and transport of persistent organic pollutants to the Arctic in a changing global climate, Environ. Sci. Technol., 47, 2323–2330, 2013.
Wöhrnschimmel, H., Scheringer, M., Bogdal, C., Hung, H., Salamova, A., Venier, M., Katsoyiannis, A., Hites, R. A., Hungerbühler, K., and Fiedler, H.: Ten years after entry into force of the Stockholm Convention: What do air monitoring data tell about its effectiveness?, Environ. Pollut., 217, 149–158, 2016.
Wong, F., Hung, H., Dryfhout-Clark, H., Aas, W., Bohlin-Nizzetto, P., Breivik, K., Mastromonaco, M. N., Lundén, E. B., Ólafsdóttir, K., Sigurðsson, Á., Vorkamp, K., Bossi, R., Skov, H., Hakola, H., Barresi, E., Sverko, E., Fellin, P., Li, H., Vlasenko, A., Zapevalov, M., Samsonov, D., and Wilson, S.: Time trends of persistent organic pollutants (POPs) and chemicals of emerging arctic concern (CEAC) in Arctic air from 25 years of monitoring, Sci. Total Environ., 775, 145109, https://doi.org/10.1016/j.scitotenv.2021.145109, 2021.
Yang, Y., Li, D., and Mu, D.: Levels, seasonal variations and sources of organochlorine pesticides in ambient air of Guangzhou, China, Atmos. Environ., 42, 677–687, 2008.
Zhan, L., Lin, T., Wang, Z., Cheng, Z., Zhang, G., Lyu, X., and Cheng, H.: Occurrence and air–soil exchange of organochlorine pesticides and polychlorinated biphenyls at a CAWNET background site in central China: Implications for influencing factors and fate, Chemosphere, 186, 475–487, 2017.
Zhan, F. Q., Li, Y. N., Shunthirasingham, C., Oh, J., Lei, Y. D., Lu, Z., Ben Chaaben, A., Lee, K., Gobas, F. A. P. C., Hung, H., Breivik, K., and Wania, F.: Archetypes of spatial concentration variability of organic contaminants in the atmosphere: Implications for identifying sources and mapping the gaseous outdoor inhalation exposome, Environ. Sci. Technol., 58, 18273–18283, 2024.
Short summary
This study explored pesticides in the air at a rural site in the Czech Republic. Older pesticides, banned decades ago, are still found due to their release from soils, especially in summer. While levels of many have declined over time, some show new emissions from local or distant sources. Newer pesticides peaked during application seasons but declined after bans, though traces lingered. These findings highlight the lasting impacts of pesticide use and the importance of regulations.
This study explored pesticides in the air at a rural site in the Czech Republic. Older...
Altmetrics
Final-revised paper
Preprint