Articles | Volume 25, issue 17
https://doi.org/10.5194/acp-25-10421-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-10421-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Uncovering the impact of urban functional zones on air quality in China
Lulu Yuan
College of Earth and Environmental Sciences and College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
Wenchao Han
CORRESPONDING AUTHOR
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
Jiachen Meng
Emergency Management College, Nanjing University of Information Science & Technology, Nanjing, China
College of Earth and Environmental Sciences and College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
Haojie Yu
College of Earth and Environmental Sciences and College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
Wenze Li
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
Related authors
No articles found.
Jiayi Li, Yang Wang, Jiming Li, Weiyuan Zhang, Lijie Zhang, and Yuan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3601, https://doi.org/10.5194/egusphere-2024-3601, 2024
Short summary
Short summary
A key challenge in climate projections is the uncertainty in cloud water response to anthropogenic aerosols, especially its time-dependence on diurnal microphysical-dynamic boundary layer feedback. Geostationary satellite shows neglecting the variations induces a compensation up to 45% of the initial cooling effect from increased cloud droplet concentration. The results provide new insights in aerosol-cloud interactions, verifying this is a significant yet often overlooked source of uncertainty.
Ruixue Li, Bida Jian, Jiming Li, Deyu Wen, Lijie Zhang, Yang Wang, and Yuan Wang
Atmos. Chem. Phys., 24, 9777–9803, https://doi.org/10.5194/acp-24-9777-2024, https://doi.org/10.5194/acp-24-9777-2024, 2024
Short summary
Short summary
Hemispheric or interannual averages of reflected solar radiation (RSR) can mask signals from seasonally active or region-specific mechanisms. We examine RSR characteristics from latitude and month perspectives, revealing decreased trends observed by CERES in both hemispheres driven by clear-sky atmospheric and cloud components at 30–50° N and cloud components at 0–50° S. AVHRR achieves symmetry criteria within uncertainty and is suitable for the long-term analysis of hemispheric RSR symmetry.
Cited articles
Bai, X., Tian, H., Liu, X., Wu, B., Liu, S., Hao, Y., Luo, L., Liu, W., Zhao, S., Lin, S., Hao, J., Guo, Z., and Lv, Y.: Spatial-temporal variation characteristics of air pollution and apportionment of contributions by different sources in Shanxi province of China, Atmos. Environ., 244, 117926, https://doi.org/10.1016/j.atmosenv.2020.117926, 2021.
Ban, Y., Liu, X., Yin, Z., Li, X., Yin, L., and Zheng, W.: Effect of urbanization on aerosol optical depth over Beijing: Land use and surface temperature analysis, Urban Clim., 51, 101655, https://doi.org/10.1016/j.uclim.2023.101655, 2023.
Barzeghar, V., Sarbakhsh, P., Hassanvand, M. S., Faridi, S., and Gholampour, A.: Long-term trend of ambient air PM10, PM2.5, and O3 and their health effects in Tabriz city, Iran, during 2006–2017, Sustain. Cities Soc., 54, 101988, https://doi.org/10.1016/j.scs.2019.101988, 2020.
Berg, C. D., Schiller, J. H., Boffetta, P., Cai, J., Connolly, C., Kerpel-Fronius, A., Kitts, A. B., Lam, D. C. L., Mohan, A., Myers, R., Suri, T., Tammemagi, M. C., Yang, D., and Lam, S.: Air Pollution and Lung Cancer: A Review by International Association for the Study of Lung Cancer Early Detection and Screening Committee, J. Thorac. Oncol., 18, 1277–1289, https://doi.org/10.1016/j.jtho.2023.05.024, 2023.
Cao, C., Lee, X., Liu, S., Schultz, N., Xiao, W., Zhang, M., and Zhao, L.: Urban heat islands in China enhanced by haze pollution, Nat. Commun., 7, 12509, https://doi.org/10.1038/ncomms12509, 2016.
Chen, H. and Sun, J.: Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index, J. Climate, 28, 5430–5447, https://doi.org/10.1175/JCLI-D-14-00707.1, 2015.
Chen, S. and Gong, B.: Response and adaptation of agriculture to climate change: Evidence from China, J. Dev. Econ., 148, 102557, https://doi.org/10.1016/j.jdeveco.2020.102557, 2021.
Chen, X. and Wei, F.: Impact of territorial spatial landscape pattern on PM2.5 and O3 concentrations in the Yangtze River delta urban agglomeration: Exploration and planning strategies, J. Clean. Prod., 452, 142172, https://doi.org/10.1016/j.jclepro.2024.142172, 2024.
Chen, Z.-H., Li, B.-W., Li, B., Peng, Z.-R., Huang, H.-C., Wu, J.-Q., and He, H.-D.: Identification of particle distribution pattern in vertical profile via unmanned aerial vehicles observation, Environ. Pollut., 348, 123893, https://doi.org/10.1016/j.envpol.2024.123893, 2024.
Cheng, Y., Liu, H., Wang, H., and Hao, Q.: Differentiated climate-driven Holocene biome migration in western and eastern China as mediated by topography, Earth-Sci. Rev., 182, 174–185, https://doi.org/10.1016/j.earscirev.2018.05.006, 2018.
Deng, C., Tian, S., Li, Z., and Li, K.: Spatiotemporal characteristics of PM2.5 and ozone concentrations in Chinese urban clusters, Chemosphere, 295, 133813, https://doi.org/10.1016/j.chemosphere.2022.133813, 2022.
Dmitrienko, A., Lipovenko, M., Gostilovich, A., Kolosov, A., and Ming, L.: Development strategies of high-tech companies in China: Huawei and Tencent, Nexo Rev. Científica, 36, 176–187, https://doi.org/10.5377/nexo.v36i02.16058, 2023.
Dong, J., Liu, P., Song, H., Yang, D., Yang, J., Song, G., Miao, C., Zhang, J., and Zhang, L.: Effects of anthropogenic precursor emissions and meteorological conditions on PM2.5 concentrations over the “2+26” cities of northern China, Environ. Pollut., 315, 120392, https://doi.org/10.1016/j.envpol.2022.120392, 2022.
Duan, S., Liu, Q., Jiang, D., Jiang, Y., Lin, Y., and Gong, Z.: Exploring the Joint Impacts of Natural and Built Environments on PM2.5 Concentrations and Their Spatial Heterogeneity in the Context of High-Density Chinese Cities, Sustainability-Basel, 13, 11775, https://doi.org/10.3390/su132111775, 2021.
ElSharkawy, M. F. and Ibrahim, O. A.: Impact of the Restaurant Chimney Emissions on the Outdoor Air Quality, Atmosphere-Basel, 13, 261, https://doi.org/10.3390/atmos13020261, 2022.
Fan, C., Tian, L., Zhou, L., Hou, D., Song, Y., Qiao, X., and Li, J.: Examining the impacts of urban form on air pollutant emissions: Evidence from China, J. Environ. Manage., 212, 405–414, https://doi.org/10.1016/j.jenvman.2018.02.001, 2018a.
Fan, H., Zhao, C., and Yang, Y.: A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018, Atmos. Environ., 220, 117066, https://doi.org/10.1016/j.atmosenv.2019.117066, 2020.
Fan, H., Zhao, C., Yang, Y., and Yang, X.: Spatio-Temporal Variations of the PM PM10 Ratios and Its Application to Air Pollution Type Classification in China, Front. Environ. Sci., 9, 692440, https://doi.org/10.3389/fenvs.2021.692440, 2021.
Fan, J., Leung, L. R., Rosenfeld, D., Chen, Q., Li, Z., Zhang, J., and Yan, H.: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds, P. Natl. Acad. Sci. USA, 110, E4581–E4590, https://doi.org/10.1073/pnas.1316830110, 2013.
Fan, J., Wu, L., Zhang, F., Cai, H., Wang, X., Lu, X., and Xiang, Y.: Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature, Renew. Sust. Energ. Rev., 94, 732–747, https://doi.org/10.1016/j.rser.2018.06.029, 2018b.
Fang, C., Xue, K., Li, J., and Wang, J.: Characteristics and Weekend Effect of Air Pollution in Eastern Jilin Province, Atmosphere-Basel, 13, 681, https://doi.org/10.3390/atmos13050681, 2022.
Geng, G., Liu, Y., Liu, Y., Liu, S., Cheng, J., Yan, L., Wu, N., Hu, H., Tong, D., Zheng, B., Yin, Z., He, K., and Zhang, Q.: Efficacy of China's clean air actions to tackle PM2.5 pollution between 2013 and 2020, Nat. Geosci., 17, 987–994, https://doi.org/10.1038/s41561-024-01540-z, 2024.
Gong, P., Chen, B., Li, X., Liu, H., Wang, J., Bai, Y., Chen, J., Chen, X., Fang, L., Feng, S., Feng, Y., Gong, Y., Gu, H., Huang, H., Huang, X., Jiao, H., Kang, Y., Lei, G., Li, A., Li, X., Li, X., Li, Y., Li, Z., Li, Z., Liu, C., Liu, C., Liu, M., Liu, S., Mao, W., Miao, C., Ni, H., Pan, Q., Qi, S., Ren, Z., Shan, Z., Shen, S., Shi, M., Song, Y., Su, M., Ping Suen, H., Sun, B., Sun, F., Sun, J., Sun, L., Sun, W., Tian, T., Tong, X., Tseng, Y., Tu, Y., Wang, H., Wang, L., Wang, X., Wang, Z., Wu, T., Xie, Y., Yang, J., Yang, J., Yuan, M., Yue, W., Zeng, H., Zhang, K., Zhang, N., Zhang, T., Zhang, Y., Zhao, F., Zheng, Y., Zhou, Q., Clinton, N., Zhu, Z., and Xu, B.: Mapping essential urban land use categories in China (EULUC-China): preliminary results for 2018, Sci. Bull., 65, 182–187, https://doi.org/10.1016/j.scib.2019.12.007, 2020.
Guo, D., Dall'erba, S., and Gallo, J. L.: The Leading Role of Manufacturing in China's Regional Economic Growth: A Spatial Econometric Approach of Kaldor's Laws, Int. Regional Sci. Rev., 36, 139–166, https://doi.org/10.1177/0160017612457779, 2013.
Guo, J., Deng, M., Lee, S. S., Wang, F., Li, Z., Zhai, P., Liu, H., Lv, W., Yao, W., and Li, X.: Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses, J. Geophys. Res.-Atmos., 121, 6472–6488, https://doi.org/10.1002/2015JD023257, 2016.
Guo, Y., Lu, Q., Wang, S., and Wang, Q.: Analysis of air quality spatial spillover effect caused by transportation infrastructure, Transport Res. D-Tr. E., 108, 103325, https://doi.org/10.1016/j.trd.2022.103325, 2022.
Han, W., Li, Z., Wu, F., Zhang, Y., Guo, J., Su, T., Cribb, M., Fan, J., Chen, T., Wei, J., and Lee, S.-S.: The mechanisms and seasonal differences of the impact of aerosols on daytime surface urban heat island effect, Atmos. Chem. Phys., 20, 6479–6493, https://doi.org/10.5194/acp-20-6479-2020, 2020.
He, C., Zhang, Y., Schneider, A., Chen, R., Zhang, Y., Ma, W., Kinney, P. L., and Kan, H.: The inequality labor loss risk from future urban warming and adaptation strategies, Nat. Commun., 13, 3847, https://doi.org/10.1038/s41467-022-31145-2, 2022.
He, C., Wu, Q., Li, B., Liu, J., Gong, X., and Zhang, L.: Surface ozone pollution in China: Trends, exposure risks, and drivers, Front. Public Health, 11, 1131753, https://doi.org/10.3389/fpubh.2023.1131753, 2023a.
He, C., Kumar, R., Tang, W., Pfister, G., Xu, Y., Qian, Y., and Brasseur, G.: Air Pollution Interactions with Weather and Climate Extremes: Current Knowledge, Gaps, and Future Directions, Curr. Pollut. Rep., 10, 430–442, https://doi.org/10.1007/s40726-024-00296-9, 2024.
He, J., Zhao, M., Zhang, B., Wang, P., Zhang, D., Wang, M., Liu, B., Li, N., Yu, K., Zhang, Y., Zhou, T., and Jing, B.: The impact of steel emissions on air quality and pollution control strategy in Caofeidian, North China, Atmos. Pollut. Res., 11, 1238–1247, https://doi.org/10.1016/j.apr.2020.04.012, 2020.
He, R.-R.: Quantifying the weekly cycle effect of air pollution in cities of China, Stoch. Env. Res. Risk A., 37, 2445–2457, https://doi.org/10.1007/s00477-023-02399-z, 2023.
He, T., Tang, Y., Cao, R., Xia, N., Li, B., and Du, E.: Distinct urban-rural gradients of air NO2 and SO2 concentrations in response to emission reductions during 2015–2022 in Beijing, China, Environ. Pollut., 333, 122021, https://doi.org/10.1016/j.envpol.2023.122021, 2023b.
Hong, C. and Jin, X.: Green change in the core build-up areas of China: Information from MODIS data, Ecol. Indic., 122, 107270, https://doi.org/10.1016/j.ecolind.2020.107270, 2021.
Hua, J., Zhang, Y., de Foy, B., Mei, X., Shang, J., and Feng, C.: Competing PM2.5 and NO2 holiday effects in the Beijing area vary locally due to differences in residential coal burning and traffic patterns, Sci. Total Environ., 750, 141575, https://doi.org/10.1016/j.scitotenv.2020.141575, 2021.
Huang, J., Zhou, C., Lee, X., Bao, Y., Zhao, X., Fung, J., Richter, A., Liu, X., and Zheng, Y.: The effects of rapid urbanization on the levels in tropospheric nitrogen dioxide and ozone over East China, Atmos. Environ., 77, 558–567, https://doi.org/10.1016/j.atmosenv.2013.05.030, 2013.
Huang, Q., Xu, C., Jiang, W., Yue, W., Rong, Q., Gu, Z., and Su, M.: Urban compactness and patch complexity influence PM2.5 concentrations in contrasting ways: Evidence from the Guangdong-Hong Kong-Macao Greater Bay Area of China, Ecol. Indic., 133, 108407, https://doi.org/10.1016/j.ecolind.2021.108407, 2021a.
Huang, R., Ju, T., Dong, H., Duan, J., Fan, J., Liang, Z., and Geng, T.: Analysis of atmospheric SO2 in Sichuan-Chongqing region based on OMI data, Environ. Monit. Assess., 193, 849, https://doi.org/10.1007/s10661-021-09638-2, 2021b.
Huszar, P., Karlický, J., Bartík, L., Liaskoni, M., Prieto Perez, A. P., and Šindelářová, K.: Impact of urbanization on gas-phase pollutant concentrations: a regional-scale, model-based analysis of the contributing factors, Atmos. Chem. Phys., 22, 12647–12674, https://doi.org/10.5194/acp-22-12647-2022, 2022.
Kuerban, M., Waili, Y., Fan, F., Liu, Y., Qin, W., Dore, A. J., Peng, J., Xu, W., and Zhang, F.: Spatio-temporal patterns of air pollution in China from 2015 to 2018 and implications for health risks, Environ. Pollut., 258, 113659, https://doi.org/10.1016/j.envpol.2019.113659, 2020.
Li, F. and Zhou, T.: Effects of urban form on air quality in China: An analysis based on the spatial autoregressive model, Cities, 89, 130–140, https://doi.org/10.1016/j.cities.2019.01.025, 2019.
Li, J., Lu, H., Cao, M., Tong, M., Wang, R., Yang, X., Liu, H., Xiao, Q., Chao, B., Liu, Y., Xue, T., and Guan, T.: Long-Term Exposure to Ozone Increases Neurological Disability after Stroke: Findings from a Nationwide Longitudinal Study in China, Biology, 11, 1216, https://doi.org/10.3390/biology11081216, 2022a.
Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China, P. Natl. Acad. Sci. USA, 116, 422–427, https://doi.org/10.1073/pnas.1812168116, 2019a.
Li, K., Li, C., Liu, M., Hu, Y., Wang, H., and Wu, W.: Multiscale analysis of the effects of urban green infrastructure landscape patterns on PM2.5 concentrations in an area of rapid urbanization, J. Clean. Prod., 325, 129324, https://doi.org/10.1016/j.jclepro.2021.129324, 2021.
Li, R., Fu, H., Cui, L., Li, J., Wu, Y., Meng, Y., Wang, Y., and Chen, J.: The spatiotemporal variation and key factors of SO2 in 336 cities across China, J. Clean. Prod., 210, 602–611, https://doi.org/10.1016/j.jclepro.2018.11.062, 2019b.
Li, S., Zou, B., Ma, X., Liu, N., Zhang, Z., Xie, M., and Zhi, L.: Improving air quality through urban form optimization: A review study, Build. Environ., 243, 110685, https://doi.org/10.1016/j.buildenv.2023.110685, 2023.
Li, W., Yang, G., and Qian, X.: The socioeconomic factors influencing the PM2.5 levels of 160 cities in China, Sustain. Cities Soc., 84, 104023, https://doi.org/10.1016/j.scs.2022.104023, 2022b.
Li, X., Zhang, F., Ren, J., Han, W., Zheng, B., Liu, J., Chen, L., and Jiang, S.: Rapid narrowing of the urban–suburban gap in air pollutant concentrations in Beijing from 2014 to 2019, Environ. Pollut., 304, 119146, https://doi.org/10.1016/j.envpol.2022.119146, 2022c.
Li, Z., Rosenfeld, D., and Fan, J.: Aerosols and Their Impact on Radiation, Clouds, Precipitation, and Severe Weather Events, in: Oxford Research Encyclopedia of Environmental Science, https://doi.org/10.1093/acrefore/9780199389414.013.126, 2017.
Lin, C., Huang, R.-J., Zhong, H., Duan, J., Wang, Z., Huang, W., and Xu, W.: Elucidating ozone and PM2.5 pollution in the Fenwei Plain reveals the co-benefits of controlling precursor gas emissions in winter haze, Atmos. Chem. Phys., 23, 3595–3607, https://doi.org/10.5194/acp-23-3595-2023, 2023.
Liu, M. and Liu, H.: Influence of Climate Change on Carbon Emissions during Grain Production and Its Mechanism, Sustainability-Basel, 15, 10237, https://doi.org/10.3390/su151310237, 2023.
Liu, M., Wei, D., and Chen, H.: Consistency of the relationship between air pollution and the urban form: Evidence from the COVID-19 natural experiment, Sustain. Cities Soc., 83, 103972, https://doi.org/10.1016/j.scs.2022.103972, 2022.
Liu, R., Shao, M., and Wang, Q.: Multi-timescale variation characteristics of PM2.5 in different regions of China during 2014–2022, Sci. Total Environ., 920, 171008, https://doi.org/10.1016/j.scitotenv.2024.171008, 2024.
Liu, Y., Zhang, X., Pan, X., Ma, X., and Tang, M.: The spatial integration and coordinated industrial development of urban agglomerations in the Yangtze River Economic Belt, China, Cities, 104, 102801, https://doi.org/10.1016/j.cities.2020.102801, 2020.
Liu, Y., Wang, T., Stavrakou, T., Elguindi, N., Doumbia, T., Granier, C., Bouarar, I., Gaubert, B., and Brasseur, G. P.: Diverse response of surface ozone to COVID-19 lockdown in China, Sci. Total Environ., 789, 147739, https://doi.org/10.1016/j.scitotenv.2021.147739, 2021.
Liu, Y., Geng, G., Cheng, J., Liu, Y., Xiao, Q., Liu, L., Shi, Q., Tong, D., He, K., and Zhang, Q.: Drivers of Increasing Ozone during the Two Phases of Clean Air Actions in China 2013–2020, Environ. Sci. Technol., 57, 8954–8964, https://doi.org/10.1021/acs.est.3c00054, 2023.
Lopez-Aparicio, S., Grythe, H., Drabicki, A., Chwastek, K., Toboła, K., Górska-Niemas, L., Kierpiec, U., Markelj, M., Strużewska, J., Kud, B., and Sousa Santos, G.: Environmental sustainability of urban expansion: Implications for transport emissions, air pollution, and city growth, Environ. Int., 196, 109310, https://doi.org/10.1016/j.envint.2025.109310, 2025.
Lu, C., Mao, J., Wang, L., Guan, Z., Zhao, G., and Li, M.: An unusual high ozone event over the North and Northeast China during the record-breaking summer in 2018, J. Environ. Sci., 104, 264–276, https://doi.org/10.1016/j.jes.2020.11.030, 2021.
Luo, Y., Zhao, T., Yang, Y., Zong, L., Kumar, K. R., Wang, H., Meng, K., Zhang, L., Lu, S., and Xin, Y.: Seasonal changes in the recent decline of combined high PM2.5 and O3 pollution and associated chemical and meteorological drivers in the Beijing–Tianjin–Hebei region, China, Sci. Total Environ., 838, 156312, https://doi.org/10.1016/j.scitotenv.2022.156312, 2022.
Luo, Y., Xu, L., Li, Z., Zhou, X., Zhang, X., Wang, F., Peng, J., Cao, C., Chen, Z., and Yu, H.: Air pollution in heavy industrial cities along the northern slope of the Tianshan Mountains, Xinjiang: characteristics, meteorological influence, and sources, Environ. Sci. Pollut. R., 30, 55092–55111, https://doi.org/10.1007/s11356-023-25757-4, 2023.
Ma, R., Ban, J., Wang, Q., Zhang, Y., Yang, Y., He, M. Z., Li, S., Shi, W., and Li, T.: Random forest model based fine scale spatiotemporal O3 trends in the Beijing-Tianjin-Hebei region in China, 2010 to 2017, Environ. Pollut., 276, 116635, https://doi.org/10.1016/j.envpol.2021.116635, 2021.
Magazzino, C. and Mele, M.: On the relationship between transportation infrastructure and economic development in China, Res. Transp. Econ., 88, 100947, https://doi.org/10.1016/j.retrec.2020.100947, 2021.
Mao, X., Wang, L., Pan, X., Zhang, M., Wu, X., and Zhang, W.: A study on the dynamic spatial spillover effect of urban form on PM2.5 concentration at county scale in China, Atmos. Res., 269, 106046, https://doi.org/10.1016/j.atmosres.2022.106046, 2022.
Meng, J., Han, W., and Yuan, C.: Seasonal and multi-scale difference of the relationship between built-up land landscape pattern and PM2.5 concentration distribution in Nanjing, Ecol. Indic., 156, 111079, https://doi.org/10.1016/j.ecolind.2023.111079, 2023.
NDRC: Clean Winter Heating Plan for Northern China (2017–2021), National Development and Reform Commission, https://www.gov.cn/xinwen/2017-12/20/content_5248855.htm (last access: 7 August 2024), 2017 (in Chinese).
Ouyang, X., Wei, X., Li, Y., Wang, X.-C., and Klemeš, J. J.: Impacts of urban land morphology on PM2.5 concentration in the urban agglomerations of China, J. Environ. Manage., 283, 112000, https://doi.org/10.1016/j.jenvman.2021.112000, 2021.
Qi, G., Wang, Z., Wei, L., and Wang, Z.: Multidimensional effects of urbanization on PM2.5 concentration in China, Environ. Sci. Pollut. R., 29, 77081–77096, https://doi.org/10.1007/s11356-022-21298-4, 2022.
Qi, G., Che, J., and Wang, Z.: Differential effects of urbanization on air pollution: Evidences from six air pollutants in mainland China, Ecol. Indic., 146, 109924, https://doi.org/10.1016/j.ecolind.2023.109924, 2023.
Qian, Y., Scherer, L., Tukker, A., and Behrens, P.: China's potential SO2 emissions from coal by 2050, Energ. Policy, 147, 111856, https://doi.org/10.1016/j.enpol.2020.111856, 2020.
Qian, Y., Chakraborty, T. C., Li, J., Li, D., He, C., Sarangi, C., Chen, F., Yang, X., and Leung, L. R.: Urbanization Impact on Regional Climate and Extreme Weather: Current Understanding, Uncertainties, and Future Research Directions, Adv. Atmos. Sci., 39, 819–860, https://doi.org/10.1007/s00376-021-1371-9, 2022.
Qin, Y., Li, J., Gong, K., Wu, Z., Chen, M., Qin, M., Huang, L., and Hu, J.: Double high pollution events in the Yangtze River Delta from 2015 to 2019: Characteristics, trends, and meteorological situations, Sci. Total Environ., 792, 148349, https://doi.org/10.1016/j.scitotenv.2021.148349, 2021.
Qin, Y., Sun, C., Li, D., Zhang, H., Wang, H., and Duan, Y.: Does urban air pollution have an impact on public health? Empirical evidence from 288 prefecture-level cities in China, Urban Clim., 51, 101660, https://doi.org/10.1016/j.uclim.2023.101660, 2023.
Quan, J., Wang, Q., Ma, P., Dou, Y., Liao, Z., Pan, Y., Cheng, Z., Ding, D., and Jia, X.: Secondary aerosol formation in cloud serves as a vital source of aerosol in the troposphere, Atmos. Environ., 253, 118374, https://doi.org/10.1016/j.atmosenv.2021.118374, 2021.
Rohde, R. A. and Muller, R. A.: Air Pollution in China: Mapping of Concentrations and Sources, PLOS ONE, 10, e0135749, https://doi.org/10.1371/journal.pone.0135749, 2015.
Román-Cascón, C., Yagüe, C., Ortiz-Corral, P., Serrano, E., Sánchez, B., Sastre, M., Maqueda, G., Alonso-Blanco, E., Artiñano, B., Gómez-Moreno, F. J., Diaz-Ramiro, E., Fernández, J., Martilli, A., García, A. M., Núñez, A., Cordero, J. M., Narros, A., and Borge, R.: Wind and turbulence relationship with NO2 in an urban environment: a fine-scale observational analysis, Urban Clim., 51, 101663, https://doi.org/10.1016/j.uclim.2023.101663, 2023.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M. O.: Flood or Drought: How Do Aerosols Affect Precipitation?, Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606, 2008.
SC: Notice of the general office of the state council on issuing the air pollution prevention and control action plan, State Council of the People's Republic of China, https://www.gov.cn/gongbao/content/2013/content_2496394.htm (last access: 7 August 2024), 2013 (in Chinese).
SC: Notice of the general office of thes tate council on issuing the three-year action plan for winning the blue sky defense battle, State Council of the People's Republic of China, https://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm (last access: 7 August 2024), 2018 (in Chinese).
Shen, H., Tao, S., Chen, Y., Ciais, P., Güneralp, B., Ru, M., Zhong, Q., Yun, X., Zhu, X., Huang, T., Tao, W., Chen, Y., Li, B., Wang, X., Liu, W., Liu, J., and Zhao, S.: Urbanization-induced population migration has reduced ambient PM2.5 concentrations in China, Sci. Adv., 3, e1700300, https://doi.org/10.1126/sciadv.1700300, 2017.
Shen, Y., Zhang, L., Fang, X., Ji, H., Li, X., and Zhao, Z.: Spatiotemporal patterns of recent PM2.5 concentrations over typical urban agglomerations in China, Sci. Total Environ., 655, 13–26, https://doi.org/10.1016/j.scitotenv.2018.11.105, 2019.
Shen, Z., Zhang, Z., Cui, L., Xia, Z., and Zhang, Y.: Coordinated change of PM2.5 and multiple landscapes based on spatial coupling model: Comparison of inland and waterfront cities, Environ. Impact Assess., 102, 107194, https://doi.org/10.1016/j.eiar.2023.107194, 2023.
Silver, B., Reddington, C. L., Arnold, S. R., and Spracklen, D. V.: Substantial changes in air pollution across China during 2015–2017, Environ. Res. Lett., 13, 114012, https://doi.org/10.1088/1748-9326/aae718, 2018.
Song, C., Liu, B., Cheng, K., Cole, M. A., Dai, Q., Elliott, R. J. R., and Shi, Z.: Attribution of Air Quality Benefits to Clean Winter Heating Policies in China: Combining Machine Learning with Causal Inference, Environ. Sci. Technol., 57, 17707–17717, https://doi.org/10.1021/acs.est.2c06800, 2023.
Song, J., Zhao, C., Lin, T., Li, X., and Prishchepov, A. V.: Spatio-temporal patterns of traffic-related air pollutant emissions in different urban functional zones estimated by real-time video and deep learning technique, J. Clean. Prod., 238, 117881, https://doi.org/10.1016/j.jclepro.2019.117881, 2019.
Tao, T., Shi, Y., Gilbert, K. M., and Liu, X.: Spatiotemporal variations of air pollutants based on ground observation and emission sources over 19 Chinese urban agglomerations during 2015–2019, Sci. Rep.-UK, 12, 4293, https://doi.org/10.1038/s41598-022-08377-9, 2022.
Tao, Y., Zhang, Z., Ou, W., Guo, J., and Pueppke, S. G.: How does urban form influence PM2.5 concentrations: Insights from 350 different-sized cities in the rapidly urbanizing Yangtze River Delta region of China, 1998–2015, Cities, 98, 102581, https://doi.org/10.1016/j.cities.2019.102581, 2020.
Wang, C.: New Chains of Space Weather Monitoring Stations in China, Adv. Space Res., 8, S08001, https://doi.org/10.1029/2010SW000603, 2010.
Wang, D., Hu, J., Xu, Y., Lv, D., Xie, X., Kleeman, M., Xing, J., Zhang, H., and Ying, Q.: Source contributions to primary and secondary inorganic particulate matter during a severe wintertime PM2.5 pollution episode in Xi'an, China, Atmos. Environ., 97, 182–194, https://doi.org/10.1016/j.atmosenv.2014.08.020, 2014.
Wang, F. T., Zhang, K., Xue, J., Huang, L., Wang, Y. J., Chen, H., Wang, S. Y., Fu, J. S., and Li, L.: Understanding Regional Background Ozone by Multiple Methods: A Case Study in the Shandong Region, China, 2018–2020, J. Geophys. Res.-Atmos., 127, e2022JD036809, https://doi.org/10.1029/2022JD036809, 2022a.
Wang, J., Wang, S., and Li, S.: Examining the spatially varying effects of factors on PM2.5 concentrations in Chinese cities using geographically weighted regression modeling, Environ. Pollut., 248, 792–803, https://doi.org/10.1016/j.envpol.2019.02.081, 2019.
Wang, P., Wang, M., Zhou, M., He, J., Feng, X., Du, X., Wang, Y., and Wang, Y.: The Benefits of the Clean Heating Plan on Air Quality in the Beijing–Tianjin–Hebei Region, Atmosphere-Basel, 13, 555, https://doi.org/10.3390/atmos13040555, 2022b.
Wang, S., Zhou, C., Wang, Z., Feng, K., and Hubacek, K.: The characteristics and drivers of fine particulate matter (PM2.5) distribution in China, J. Clean. Prod., 142, 1800–1809, https://doi.org/10.1016/j.jclepro.2016.11.104, 2017.
Wang, Y., Hu, B., Tang, G., Ji, D., Zhang, H., Bai, J., Wang, X., and Wang, Y.: Characteristics of ozone and its precursors in Northern China: A comparative study of three sites, Atmos. Res., 132–133, 450–459, https://doi.org/10.1016/j.atmosres.2013.04.005, 2013.
Wang, Y., Duan, X., Liang, T., Wang, L., and Wang, L.: Analysis of spatio-temporal distribution characteristics and socioeconomic drivers of urban air quality in China, Chemosphere, 291, 132799, https://doi.org/10.1016/j.chemosphere.2021.132799, 2022c.
Ward-Caviness, C. K. and Cascio, W. E.: A Narrative Review on the Impact of Air Pollution on Heart Failure Risk and Exacerbation, Can. J. Cardiol., 39, 1244–1252, https://doi.org/10.1016/j.cjca.2023.06.423, 2023.
Wen, W., Su, Y., Yang, X., Liang, Y., Guo, Y., and Liu, H.: Global economic structure transition boosts PM2.5-related human health impact in Belt and Road Initiative, Sci. Total Environ., 916, 170071, https://doi.org/10.1016/j.scitotenv.2024.170071, 2024.
Wilcox, E. M., Thomas, R. M., Praveen, P. S., Pistone, K., Bender, F. A.-M., and Ramanathan, V.: Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer, P. Natl. Acad. Sci. USA, 113, 11794–11799, https://doi.org/10.1073/pnas.1525746113, 2016.
Xin, Y., Shao, S., Wang, Z., Xu, Z., and Li, H.: COVID-2019 lockdown in Beijing: A rare opportunity to analyze the contribution rate of road traffic to air pollutants, Sustain. Cities Soc., 75, 102989, https://doi.org/10.1016/j.scs.2021.102989, 2021.
Yang, J., Shi, B., Zheng, Y., Shi, Y., and Xia, G.: Urban form and air pollution disperse: Key indexes and mitigation strategies, Sustain. Cities Soc., 57, 101955, https://doi.org/10.1016/j.scs.2019.101955, 2020.
Yang, W., Yu, C., Yuan, W., Wu, X., Zhang, W., and Wang, X.: High-resolution vehicle emission inventory and emission control policy scenario analysis, a case in the Beijing-Tianjin-Hebei (BTH) region, China, J. Clean. Prod., 203, 530–539, https://doi.org/10.1016/j.jclepro.2018.08.256, 2018.
Yang, X., Yang, Y., Xu, S., Karimian, H., Zhao, Y., Jin, L., Xu, Y., and Qi, Y.: Unveiling the air pollution tapestry in China: A comprehensive assessment of spatiotemporal variations through geographically and temporally weighted regression, Atmos. Pollut. Res., 15, 101987, https://doi.org/10.1016/j.apr.2023.101987, 2024.
Yim, S. H. L., Wang, M., Gu, Y., Yang, Y., Dong, G., and Li, Q.: Effect of Urbanization on Ozone and Resultant Health Effects in the Pearl River Delta Region of China, J. Geophys. Res.-Atmos., 124, 11568–11579, https://doi.org/10.1029/2019JD030562, 2019.
You, Z., Zhu, Y., Jang, C., Wang, S., Gao, J., Lin, C.-J., Li, M., Zhu, Z., Wei, H., and Yang, W.: Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China, J. Environ. Sci., 51, 294–304, https://doi.org/10.1016/j.jes.2016.05.034, 2017.
Youn, J., Kim, H., and Lee, J.: Relationships between Thermal Environment and Air Pollution of Seoul's 25 Districts Using Vector Autoregressive Granger Causality, Sustainability-Basel, 15, 16140, https://doi.org/10.3390/su152316140, 2023.
Yu, H., Wang, Y., Yuan, L., Kong, R., Han, S., Han, W., and Li, J.: Longer dust events over Northwest China from 2015 to 2022, Atmos. Res., 304, 107365, https://doi.org/10.1016/j.atmosres.2024.107365, 2024.
Yuan, M., Huang, Y., Shen, H., and Li, T.: Effects of urban form on haze pollution in China: Spatial regression analysis based on PM2.5 remote sensing data, Appl. Geogr., 98, 215–223, https://doi.org/10.1016/j.apgeog.2018.07.018, 2018.
Zawacki, M., Baker, K. R., Phillips, S., Davidson, K., and Wolfe, P.: Mobile source contributions to ambient ozone and particulate matter in 2025, Atmos. Environ., 188, 129–141, https://doi.org/10.1016/j.atmosenv.2018.04.057, 2018.
Zeng, Y., Cao, Y., Qiao, X., Seyler, B. C., and Tang, Y.: Air pollution reduction in China: Recent success but great challenge for the future, Sci. Total Environ., 663, 329–337, https://doi.org/10.1016/j.scitotenv.2019.01.262, 2019.
Zhang, A., Xia, C., and Li, W.: Exploring the effects of 3D urban form on urban air quality: Evidence from fifteen megacities in China, Sustain. Cities Soc., 78, 103649, https://doi.org/10.1016/j.scs.2021.103649, 2022a.
Zhang, W., Zhang, S., Bo, L., Haque, M., and Liu, E.: Does China's Regional Digital Economy Promote the Development of a Green Economy?, Sustainability-Basel, 15, 1564, https://doi.org/10.3390/su15021564, 2023.
Zhang, X., Zhang, M., Cui, Y., and He, Y.: Estimation of Daily Ground-Received Global Solar Radiation Using Air Pollutant Data, Front. Public Health, 10, 860107, https://doi.org/10.3389/fpubh.2022.860107, 2022b.
Zhang, Y., Wang, L., Tang, Z., Zhang, K., and Wang, T.: Spatial effects of urban expansion on air pollution and eco-efficiency: Evidence from multisource remote sensing and statistical data in China, J. Clean. Prod., 367, 132973, https://doi.org/10.1016/j.jclepro.2022.132973, 2022c.
Zhang, Y.-L. and Cao, F.: Fine particulate matter (PM2.5) in China at a city level, Sci. Rep.-UK, 5, 14884, https://doi.org/10.1038/srep14884, 2015.
Zhao, C., Sun, Y., Zhong, Y., Xu, S., Liang, Y., Liu, S., He, X., Zhu, J., Shibamoto, T., and He, M.: Spatio-temporal analysis of urban air pollutants throughout China during 2014–2019, Air Qual. Atmos. Hlth., 14, 1619–1632, https://doi.org/10.1007/s11869-021-01043-5, 2021a.
Zhao, H., Chen, K., Liu, Z., Zhang, Y., Shao, T., and Zhang, H.: Coordinated control of PM2.5 and O3 is urgently needed in China after implementation of the “Air pollution prevention and control action plan”, Chemosphere, 270, 129441, https://doi.org/10.1016/j.chemosphere.2020.129441, 2021b.
Zhao, S., Yu, Y., Yin, D., He, J., Liu, N., Qu, J., and Xiao, J.: Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center, Environ. Int., 86, 92–106, https://doi.org/10.1016/j.envint.2015.11.003, 2016.
Zhao, X., Zhou, W., Wu, T., and Han, L.: The impacts of urban structure on PM2.5 pollution depend on city size and location, Environ. Pollut., 292, 118302, https://doi.org/10.1016/j.envpol.2021.118302, 2022.
Zheng, X., Ren, J., Hao, Y., and Xie, S.: Weekend-weekday variations, sources, and secondary transformation potential of volatile organic compounds in urban Zhengzhou, China, Atmos. Environ., 300, 119679, https://doi.org/10.1016/j.atmosenv.2023.119679, 2023.
Zhong, S., Qian, Y., Sarangi, C., Zhao, C., Leung, R., Wang, H., Yan, H., Yang, T., and Yang, B.: Urbanization Effect on Winter Haze in the Yangtze River Delta Region of China, Geophys. Res. Lett., 45, 6710–6718, https://doi.org/10.1029/2018GL077239, 2018.
Zhu, S., Tang, J., Zhou, X., Li, P., Liu, Z., Zhang, C., Zou, Z., Li, T., and Peng, C.: Spatiotemporal analysis of the impact of urban landscape forms on PM2.5 in China from 2001 to 2020, Int. J. Digit. Earth, 16, 3417–3434, https://doi.org/10.1080/17538947.2023.2249862, 2023.
Short summary
This study utilizes multi-source data to reveal the impact of various urban functional zones in China on the spatial distribution of pollutants. The findings indicate that the residential and commercial zones see notable air quality gains, but the improvement of air quality in the transportation zone is the least considerable. Moreover, the industrial zone has the most seasonal air quality variation. Therefore, air pollution prevention policies should consider differences in functional zones.
This study utilizes multi-source data to reveal the impact of various urban functional zones in...
Altmetrics
Final-revised paper
Preprint