Supplement of Atmos. Chem. Phys., 25, 10421–10442, 2025 https://doi.org/10.5194/acp-25-10421-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Uncovering the impact of urban functional zones on air quality in China

Lulu Yuan et al.

Correspondence to: Wenchao Han (han.wenchao@craes.org.cn) and Yang Wang (wang_yang@lzu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Variation differences in pollutant concentrations among different urban scale (low densityhigh density).

	PM _{2.5}	PM_{10}	SO_2	NO ₂	O ₃	СО
Residential	0.23%	1.01%	4.17%	0.19%	-1.28%	-0.43%
Commercial	2.33%	1.66%	4.65%	1.75%	-1.53%	1.22%
Industrial	1.76%	1.25%	6.26%	2.10%	-0.92%	0.93%
Transportation	-0.33%	1.63%	2.73%	4.59%	-0.33%	1.10%
Public management and service	4.47%	3.77%	5.28%	3.88%	-2.04%	0.39%

Figure S1. Average annual variation of PM_{2.5} (a), PM₁₀ (b), SO₂ (c), NO₂ (d), O₃ (e), and CO (f) concentrations in various functional zones of Chinese cities.

Figure S2. Seasonal variation trend of PM_{10} (a), SO_2 (b), NO_2 (c), and CO (d) concentrations in various functional zones of Chinese cities. The dashed lines indicate the difference between the highest and lowest monthly mean concentration in the corresponding year.

Figure S3. Statistical significance test of seasonal fluctuations of $PM_{2.5}$ (a), PM_{10} (b), SO_2 (c), NO_2 (d), O_3 (e), and CO (f) in various functional zones of Chinese cities.

Figure S4. Daily variation curve of PM_{2.5} (a), PM₁₀ (b), SO₂ (c), NO₂ (d), O₃ (e), and CO (f) concentrations in various functional zones of Chinese cities. BTH-K: Beijing-Tianjin-Hebei region and its surrounding areas; YRD-K: Yangtze River Delta region; FWP: Fen-Wei Plain.

Figure S5. Weekly variation curve of PM_{2.5} (a), PM₁₀ (b), SO₂ (c), NO₂ (d), O₃ (e), and CO (f) concentrations in various functional zones of Chinese cities. BTH-K: Beijing-Tianjin-Hebei region and its surrounding areas; YRD-K: Yangtze River Delta region; FWP: Fen-Wei Plain.

Figure S6. Three key areas for air pollution control in China: the Beijing-Tianjin-Hebei region and its surrounding areas (BTH-K), the Fen-Wei Plain (FWP), and the Yangtze River Delta region (YRD-K).