Articles | Volume 24, issue 10
https://doi.org/10.5194/acp-24-6323-2024
https://doi.org/10.5194/acp-24-6323-2024
Research article
 | 
29 May 2024
Research article |  | 29 May 2024

Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions

Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2417', Anonymous Referee #1, 28 Mar 2024
    • AC1: 'Reply on RC1', Lu Zhang, 16 Apr 2024
  • RC2: 'Comment on egusphere-2023-2417', Anonymous Referee #2, 12 Apr 2024
    • AC2: 'Reply on RC2', Lu Zhang, 16 Apr 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Lu Zhang on behalf of the Authors (17 Apr 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (18 Apr 2024) by Dantong Liu
AR by Lu Zhang on behalf of the Authors (19 Apr 2024)  Manuscript 
Download
Short summary
Brown carbon (BrC) is related to radiative forcing and climate change. The BrC fraction from residential coal and biomass burning emissions, which were the major source of BrC, was characterized at the molecular level. The CHOS aromatic compounds explained higher light absorption efficiencies of biomass burning emissions compared to coal. The unique formulas of coal combustion aerosols were characterized by higher unsaturated compounds, and such information could be used for source appointment.
Altmetrics
Final-revised paper
Preprint