Articles | Volume 24, issue 9
https://doi.org/10.5194/acp-24-5713-2024
https://doi.org/10.5194/acp-24-5713-2024
Research article
 | 
17 May 2024
Research article |  | 17 May 2024

Interactions between trade wind clouds and local forcings over the Great Barrier Reef: a case study using convection-permitting simulations

Wenhui Zhao, Yi Huang, Steven Siems, Michael Manton, and Daniel Harrison

Related authors

Contributions of the synoptic meteorology to the seasonal CCN cycle over the Southern Ocean
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2397,https://doi.org/10.5194/egusphere-2024-2397, 2024
Short summary
Measurement report: Aerosol vertical profiling over the Southern Great Barrier Reef using lidar and MAX-DOAS measurements
Robert G. Ryan, Lilani Toms-Hardman, Alexander Smirnov, Daniel Harrison, and Robyn Schofield
EGUsphere, https://doi.org/10.5194/egusphere-2024-1111,https://doi.org/10.5194/egusphere-2024-1111, 2024
Short summary
On the relationship between mesoscale cellular convection and meteorological forcing: comparing the Southern Ocean against the North Pacific
Francisco Lang, Steven T. Siems, Yi Huang, Tahereh Alinejadtabrizi, and Luis Ackermann
Atmos. Chem. Phys., 24, 1451–1466, https://doi.org/10.5194/acp-24-1451-2024,https://doi.org/10.5194/acp-24-1451-2024, 2024
Short summary
A climatology of open and closed mesoscale cellular convection over the Southern Ocean derived from Himawari-8 observations
Francisco Lang, Luis Ackermann, Yi Huang, Son C. H. Truong, Steven T. Siems, and Michael J. Manton
Atmos. Chem. Phys., 22, 2135–2152, https://doi.org/10.5194/acp-22-2135-2022,https://doi.org/10.5194/acp-22-2135-2022, 2022
Short summary
Lidar ratios of stratospheric volcanic ash and sulfate aerosols retrieved from CALIOP measurements
Andrew T. Prata, Stuart A. Young, Steven T. Siems, and Michael J. Manton
Atmos. Chem. Phys., 17, 8599–8618, https://doi.org/10.5194/acp-17-8599-2017,https://doi.org/10.5194/acp-17-8599-2017, 2017
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Correction of ERA5 temperature and relative humidity biases by bivariate quantile mapping for contrail formation analysis
Kevin Wolf, Nicolas Bellouin, Olivier Boucher, Susanne Rohs, and Yun Li
Atmos. Chem. Phys., 25, 157–181, https://doi.org/10.5194/acp-25-157-2025,https://doi.org/10.5194/acp-25-157-2025, 2025
Short summary
Can pollen affect precipitation?
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 25, 183–197, https://doi.org/10.5194/acp-25-183-2025,https://doi.org/10.5194/acp-25-183-2025, 2025
Short summary
Potential impacts of marine fuel regulations on an Arctic stratocumulus case and its radiative response
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
Atmos. Chem. Phys., 25, 119–142, https://doi.org/10.5194/acp-25-119-2025,https://doi.org/10.5194/acp-25-119-2025, 2025
Short summary
The impact of the mesh size and microphysics scheme on the representation of mid-level clouds in the ICON model in hilly and complex terrain
Nadja Omanovic, Brigitta Goger, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 14145–14175, https://doi.org/10.5194/acp-24-14145-2024,https://doi.org/10.5194/acp-24-14145-2024, 2024
Short summary
The role of ascent timescales for warm conveyor belt (WCB) moisture transport into the upper troposphere and lower stratosphere (UTLS)
Cornelis Schwenk and Annette Miltenberger
Atmos. Chem. Phys., 24, 14073–14099, https://doi.org/10.5194/acp-24-14073-2024,https://doi.org/10.5194/acp-24-14073-2024, 2024
Short summary

Cited articles

Albrecht, B. A.: A model study of downstream variations of the thermodynamic structure of the trade winds, Tellus A, 36, 187–202, 1984. 
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Australian Bureau of Meteorology, Daily Rainfall Data, http://www.bom.gov.au/climate/data/index.shtml (last access: 5 May 2024), 2024a. 
Australian Bureau of Meteorology: Himawari-8 Full Disk Observational Products, Australian Bureau of Meteorology [data set], https://dapds00.nci.org.au/thredds/catalogs/ra22/satellite-products/arc/obs/himawari-ahi/fldk/fldk.html (last access: 5 May 2024), 2024b. 
Bao, S., Letu, H., Zhao, J., Lei, Y., Zhao, C., Li, J., Tana, G., Liu, C., Guo, E., Zhang, J., He, J., and Bao, Y.: Spatiotemporal distributions of cloud radiative forcing and response to cloud parameters over the Mongolian Plateau during 2003–2017, Int. J. Climatol., 40, 4082–4101, https://doi.org/10.1002/joc.6444, 2020. 
Download
Short summary
We studied how shallow clouds and rain behave over the Great Barrier Reef (GBR) using a detailed weather model. We found that the shape of the land, especially mountains, and particles in the air play big roles in influencing these clouds. Surprisingly, the sea's temperature had a smaller effect. Our research helps us understand the GBR's climate and how various factors can influence it, where the importance of the local cloud in thermal coral bleaching has recently been identified.
Altmetrics
Final-revised paper
Preprint