Articles | Volume 24, issue 6
https://doi.org/10.5194/acp-24-3813-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-3813-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Powering aircraft with 100 % sustainable aviation fuel reduces ice crystals in contrails
Raphael Satoru Märkl
CORRESPONDING AUTHOR
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Institute of Atmospheric Physics, Johannes Gutenberg-Universität, Mainz, Germany
Christiane Voigt
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Institute of Atmospheric Physics, Johannes Gutenberg-Universität, Mainz, Germany
Daniel Sauer
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Rebecca Katharina Dischl
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Institute of Atmospheric Physics, Johannes Gutenberg-Universität, Mainz, Germany
Stefan Kaufmann
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Theresa Harlaß
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Valerian Hahn
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Institute of Atmospheric Physics, Johannes Gutenberg-Universität, Mainz, Germany
Anke Roiger
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Cornelius Weiß-Rehm
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Ulrike Burkhardt
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Ulrich Schumann
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Andreas Marsing
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Monika Scheibe
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Andreas Dörnbrack
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Charles Renard
Airbus Operations SAS, Toulouse, France
Maxime Gauthier
Airbus Operations SAS, Toulouse, France
Peter Swann
Rolls-Royce plc., Derby, UK
Paul Madden
Rolls-Royce plc., Derby, UK
Darren Luff
Rolls-Royce plc., Derby, UK
Reetu Sallinen
Neste Corporation, Innovation, Porvoo, Finland
Tobias Schripp
Institute of Combustion Technology, Deutsches Zentrum für Luft- und Raumfahrt, Stuttgart, Germany
Patrick Le Clercq
Institute of Combustion Technology, Deutsches Zentrum für Luft- und Raumfahrt, Stuttgart, Germany
Viewed
Total article views: 5,752 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Nov 2023)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,770 | 921 | 61 | 5,752 | 58 | 51 |
- HTML: 4,770
- PDF: 921
- XML: 61
- Total: 5,752
- BibTeX: 58
- EndNote: 51
Total article views: 4,828 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 27 Mar 2024)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,153 | 636 | 39 | 4,828 | 44 | 39 |
- HTML: 4,153
- PDF: 636
- XML: 39
- Total: 4,828
- BibTeX: 44
- EndNote: 39
Total article views: 924 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Nov 2023)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
617 | 285 | 22 | 924 | 14 | 12 |
- HTML: 617
- PDF: 285
- XML: 22
- Total: 924
- BibTeX: 14
- EndNote: 12
Viewed (geographical distribution)
Total article views: 5,752 (including HTML, PDF, and XML)
Thereof 5,698 with geography defined
and 54 with unknown origin.
Total article views: 4,828 (including HTML, PDF, and XML)
Thereof 4,819 with geography defined
and 9 with unknown origin.
Total article views: 924 (including HTML, PDF, and XML)
Thereof 879 with geography defined
and 45 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
14 citations as recorded by crossref.
- Segregated Supply of Sustainable Aviation Fuel to reduce Contrail Energy Forcing – Demonstration and Potentials G. Quante et al. 10.1016/j.jatrs.2024.100049
- Understanding the role of contrails and contrail cirrus in climate change: a global perspective D. Singh et al. 10.5194/acp-24-9219-2024
- Lightweight climate models could be useful for assessing aviation mitigation strategies and moving beyond the CO2-equivalence metrics debate S. Arriolabengoa et al. 10.1038/s43247-024-01888-5
- Towards drop-in sustainable aviation fuels in aero engine combustors: Fuel effects on combustion performance C. Ruan et al. 10.1016/j.paerosci.2024.101054
- Evaluation of Current and Future Aviation Fuels at High-Pressure Rich-Quench-Lean-Type Combustor Conditions P. Griebel et al. 10.1115/1.4066350
- Opinion: Eliminating aircraft soot emissions U. Trivanovic & S. Pratsinis 10.5194/ar-2-207-2024
- Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise R. Dischl et al. 10.5194/acp-24-11255-2024
- The effect of uncertainty in humidity and model parameters on the prediction of contrail energy forcing J. Platt et al. 10.1088/2515-7620/ad6ee5
- Aligning sustainable aviation fuel research with sustainable development goals: Trends and thematic analysis R. Raman et al. 10.1016/j.egyr.2024.08.076
- Investigating the oxidation characteristic of a hydro-processed bio-jet fuel: Experimental and modeling study Y. Liang et al. 10.1016/j.combustflame.2024.113778
- Transforming Aviation’s Impact on the Climate: Rethinking the Research Strategy S. Kallbekken et al. 10.1021/acs.est.4c08470
- The Optimization of Aviation Technologies and Design Strategies for a Carbon-Neutral Future Z. Xu et al. 10.3390/sym16091226
- Revisiting Contrail Ice Formation: Impact of Primary Soot Particle Sizes and Contribution of Volatile Particles F. Yu et al. 10.1021/acs.est.4c04340
- Measurement report: In-flight and ground-based measurements of nitrogen oxide emissions from latest-generation jet engines and 100 % sustainable aviation fuel T. Harlass et al. 10.5194/acp-24-11807-2024
13 citations as recorded by crossref.
- Segregated Supply of Sustainable Aviation Fuel to reduce Contrail Energy Forcing – Demonstration and Potentials G. Quante et al. 10.1016/j.jatrs.2024.100049
- Understanding the role of contrails and contrail cirrus in climate change: a global perspective D. Singh et al. 10.5194/acp-24-9219-2024
- Lightweight climate models could be useful for assessing aviation mitigation strategies and moving beyond the CO2-equivalence metrics debate S. Arriolabengoa et al. 10.1038/s43247-024-01888-5
- Towards drop-in sustainable aviation fuels in aero engine combustors: Fuel effects on combustion performance C. Ruan et al. 10.1016/j.paerosci.2024.101054
- Evaluation of Current and Future Aviation Fuels at High-Pressure Rich-Quench-Lean-Type Combustor Conditions P. Griebel et al. 10.1115/1.4066350
- Opinion: Eliminating aircraft soot emissions U. Trivanovic & S. Pratsinis 10.5194/ar-2-207-2024
- Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise R. Dischl et al. 10.5194/acp-24-11255-2024
- The effect of uncertainty in humidity and model parameters on the prediction of contrail energy forcing J. Platt et al. 10.1088/2515-7620/ad6ee5
- Aligning sustainable aviation fuel research with sustainable development goals: Trends and thematic analysis R. Raman et al. 10.1016/j.egyr.2024.08.076
- Investigating the oxidation characteristic of a hydro-processed bio-jet fuel: Experimental and modeling study Y. Liang et al. 10.1016/j.combustflame.2024.113778
- Transforming Aviation’s Impact on the Climate: Rethinking the Research Strategy S. Kallbekken et al. 10.1021/acs.est.4c08470
- The Optimization of Aviation Technologies and Design Strategies for a Carbon-Neutral Future Z. Xu et al. 10.3390/sym16091226
- Revisiting Contrail Ice Formation: Impact of Primary Soot Particle Sizes and Contribution of Volatile Particles F. Yu et al. 10.1021/acs.est.4c04340
Latest update: 13 Dec 2024
Short summary
In situ measurements of contrails from a large passenger aircraft burning 100 % sustainable aviation fuel (SAF) show a 56 % reduction in contrail ice crystal numbers compared to conventional Jet A-1. Results from a climate model initialized with the observations suggest a significant decrease in radiative forcing from contrails. Our study confirms that future increased use of low aromatic SAF can reduce the climate impact from aviation.
In situ measurements of contrails from a large passenger aircraft burning 100 % sustainable...
Altmetrics
Final-revised paper
Preprint