Articles | Volume 24, issue 24
https://doi.org/10.5194/acp-24-14029-2024
https://doi.org/10.5194/acp-24-14029-2024
Research article
 | Highlight paper
 | 
17 Dec 2024
Research article | Highlight paper |  | 17 Dec 2024

Lidar measurements of noctilucent clouds at Río Grande, Tierra del Fuego, Argentina

Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea

Viewed

Total article views: 599 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
220 70 309 599 7 10
  • HTML: 220
  • PDF: 70
  • XML: 309
  • Total: 599
  • BibTeX: 7
  • EndNote: 10
Views and downloads (calculated since 01 Aug 2024)
Cumulative views and downloads (calculated since 01 Aug 2024)

Viewed (geographical distribution)

Total article views: 599 (including HTML, PDF, and XML) Thereof 582 with geography defined and 17 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 17 Dec 2024
Download
Executive editor
Noctilucent clouds form in the extremely cold temperatures in the high-latitude summer mesosphere (altitudes of 75-85km). Their formation requires the right combination of water vapour concentrations and temperatures. It has been speculated for example, that increasing frequency of occurrence of such clouds might result from increases in methane concentrations, with the methane being converted into water vapour in the upper stratosphere and mesosphere. This paper reports observations of noctilucent clouds, made using an automated lidar system in southern Argentina, at unexpectedly low latitudes compared to previous Southern Hemisphere observations. Possible explanations, including systematic moistening of the mesosphere by space traffic, are discussed.
Short summary
Noctilucent clouds (NLCs) are silvery clouds that can be viewed during twilight and indicate atmospheric conditions like temperature and water vapor in the upper mesosphere. High-resolution measurements from a remote sensing laser instrument provide NLC height, brightness, and occurrence rate since 2017. Most observations occur in the morning hours, likely caused by strong tidal winds, and NLC ice particles are thus transported from elsewhere to the observing location in the Southern Hemisphere.
Altmetrics
Final-revised paper
Preprint