Articles | Volume 24, issue 23
https://doi.org/10.5194/acp-24-13811-2024
https://doi.org/10.5194/acp-24-13811-2024
Research article
 | 
12 Dec 2024
Research article |  | 12 Dec 2024

Observing convective activities in complex convective organizations and their contributions to precipitation and anvil cloud amounts

Zhenquan Wang and Jian Yuan

Related authors

Anvil–radiation diurnal interaction: shortwave radiative-heating destabilization driving the diurnal variation of convective anvil outflow and its modulation on the radiative cancellation
Zhenquan Wang
Atmos. Chem. Phys., 25, 5021–5039, https://doi.org/10.5194/acp-25-5021-2025,https://doi.org/10.5194/acp-25-5021-2025, 2025
Short summary
On the relationship between static stability and anvil clouds
Zhenquan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2347,https://doi.org/10.5194/egusphere-2024-2347, 2024
Preprint archived
Short summary
Profile-based estimated inversion strength
Zhenquan Wang, Jian Yuan, Robert Wood, Yifan Chen, and Tiancheng Tong
Atmos. Chem. Phys., 23, 3247–3266, https://doi.org/10.5194/acp-23-3247-2023,https://doi.org/10.5194/acp-23-3247-2023, 2023
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
How does the lifetime of detrained cirrus impact the high-cloud radiative effect in the tropics?
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 25, 5617–5631, https://doi.org/10.5194/acp-25-5617-2025,https://doi.org/10.5194/acp-25-5617-2025, 2025
Short summary
Anvil–radiation diurnal interaction: shortwave radiative-heating destabilization driving the diurnal variation of convective anvil outflow and its modulation on the radiative cancellation
Zhenquan Wang
Atmos. Chem. Phys., 25, 5021–5039, https://doi.org/10.5194/acp-25-5021-2025,https://doi.org/10.5194/acp-25-5021-2025, 2025
Short summary
Impact of wildfire smoke on Arctic cirrus formation – Part 1: Analysis of MOSAiC 2019–2020 observations
Albert Ansmann, Cristofer Jimenez, Johanna Roschke, Johannes Bühl, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Daniel A. Knopf, Sandro Dahlke, Tom Gaudek, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 25, 4847–4866, https://doi.org/10.5194/acp-25-4847-2025,https://doi.org/10.5194/acp-25-4847-2025, 2025
Short summary
A new aggregation and riming discrimination algorithm based on polarimetric weather radars
Armin Blanke, Mathias Gergely, and Silke Trömel
Atmos. Chem. Phys., 25, 4167–4184, https://doi.org/10.5194/acp-25-4167-2025,https://doi.org/10.5194/acp-25-4167-2025, 2025
Short summary
Study of optical scattering properties and direct radiative effects of high-altitude cirrus clouds in Barcelona, Spain, with 4 years of lidar measurements
Cristina Gil-Díaz, Michäel Sicard, Odran Sourdeval, Athulya Saiprakash, Constantino Muñoz-Porcar, Adolfo Comerón, Alejandro Rodríguez-Gómez, and Daniel Camilo Fortunato dos Santos Oliveira
Atmos. Chem. Phys., 25, 3445–3464, https://doi.org/10.5194/acp-25-3445-2025,https://doi.org/10.5194/acp-25-3445-2025, 2025
Short summary

Cited articles

Amidror, I.: Scattered data interpolation methods for electronic imaging systems: a survey, J. Electron. Imaging, 11, 157–176, https://doi.org/10.1117/1.1455013, 2002. 
Atlas, R. L., Bretherton, C. S., Sokol, A. B., Blossey, P. N., and Khairoutdinov, M. F.: Tropical Cirrus Are Highly Sensitive to Ice Microphysics Within a Nudged Global Storm-Resolving Model, Geophys. Res. Lett., 51, e2023GL105868, https://doi.org/10.1029/2023GL105868, 2024. 
Bao, J. and Sherwood, S. C.: The Role of Convective Self-Aggregation in Extreme Instantaneous Versus Daily Precipitation, J. Adv. Model. Earth Sy., 11, 19–33, https://doi.org/10.1029/2018MS001503, 2019. 
Berry, E. and Mace, G. G.: Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data, J. Geophys. Res.-Atmos., 119, 9492–9508, https://doi.org/10.1002/2014JD021458, 2014. 
Blackman, S. S.: Multiple hypothesis tracking for multiple target tracking, IEEE Aero. El. Sys. Mag., 19, 5–18, https://doi.org/10.1109/maes.2004.1263228, 2004. 
Download
Short summary
Tropical convection organizations are normally connected complexes of many convective activities. In this work, a novel variable-brightness-temperature segment tracking algorithm is established to partition the complex convective organizations into structural components of single cold cores for tracking separately. The duration, precipitation and anvil amount of the tracked organization segments have strong loglinear relationships with brightness temperature structures.
Share
Altmetrics
Final-revised paper
Preprint