Articles | Volume 24, issue 21
https://doi.org/10.5194/acp-24-12509-2024
https://doi.org/10.5194/acp-24-12509-2024
Research article
 | 
12 Nov 2024
Research article |  | 12 Nov 2024

Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model

Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig

Data sets

CNRM-CM global model outputs for Biomass Burning aerosols study Marc Mallet et al. https://doi.org/10.5281/zenodo.14002448

Download
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Altmetrics
Final-revised paper
Preprint