Articles | Volume 24, issue 19
https://doi.org/10.5194/acp-24-11133-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-11133-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stable and unstable fall motions of plate-like ice crystal analogues
Jennifer R. Stout
CORRESPONDING AUTHOR
Department of Meteorology, University of Reading, Reading, UK
Christopher D. Westbrook
Department of Meteorology, University of Reading, Reading, UK
Thorwald H. M. Stein
Department of Meteorology, University of Reading, Reading, UK
Mark W. McCorquodale
Department of Civil Engineering, University of Nottingham, Nottingham, UK
Related authors
No articles found.
Karina McCusker, Chris Westbrook, Alessandro Battaglia, Kamil Mroz, Benjamin M. Courtier, Peter G. Huggard, Hui Wang, Richard Reeves, Christopher J. Walden, Richard Cotton, Stuart Fox, and Anthony J. Baran
EGUsphere, https://doi.org/10.5194/egusphere-2025-3974, https://doi.org/10.5194/egusphere-2025-3974, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This work presents the first known retrievals of ice cloud and snowfall properties using G-band radar, representing a major step forward in the use of high-frequency radar for atmospheric remote sensing. We present theory and simulations to show that ice water content (IWC) and snowfall rate (S) can be retrieved efficiently with a single frequency G-band radar if the mass of a wavelength-sized particle is known or can be assumed, while details of the particle size distribution are not required.
Karina McCusker, Anthony J. Baran, Chris Westbrook, Stuart Fox, Patrick Eriksson, Richard Cotton, Julien Delanoë, and Florian Ewald
Atmos. Meas. Tech., 17, 3533–3552, https://doi.org/10.5194/amt-17-3533-2024, https://doi.org/10.5194/amt-17-3533-2024, 2024
Short summary
Short summary
Polarised radiative transfer simulations are performed using an atmospheric model based on in situ measurements. These are compared to large polarisation measurements to explore whether such measurements can provide information on cloud ice, e.g. particle shape and orientation. We find that using oriented particle models with shapes based on imagery generally allows for accurate simulations. However, results are sensitive to shape assumptions such as the choice of single crystals or aggregates.
Nicholas J. Kedzuf, J. Christine Chiu, V. Chandrasekar, Sounak Biswas, Shashank S. Joshil, Yinghui Lu, Peter Jan van Leeuwen, Christopher Westbrook, Yann Blanchard, and Sebastian O'Shea
Atmos. Meas. Tech., 14, 6885–6904, https://doi.org/10.5194/amt-14-6885-2021, https://doi.org/10.5194/amt-14-6885-2021, 2021
Short summary
Short summary
Ice clouds play a key role in our climate system due to their strong controls on precipitation and the radiation budget. However, it is difficult to characterize co-existing ice species using radar observations. We present a new method that separates the radar signals of pristine ice embedded in snow aggregates and retrieves their respective abundances and sizes for the first time. The ability to provide their quantitative microphysical properties will open up many research opportunities.
Sebastian O'Shea, Jonathan Crosier, James Dorsey, Louis Gallagher, Waldemar Schledewitz, Keith Bower, Oliver Schlenczek, Stephan Borrmann, Richard Cotton, Christopher Westbrook, and Zbigniew Ulanowski
Atmos. Meas. Tech., 14, 1917–1939, https://doi.org/10.5194/amt-14-1917-2021, https://doi.org/10.5194/amt-14-1917-2021, 2021
Short summary
Short summary
The number, shape, and size of ice crystals in clouds are important properties that influence the Earth's radiation budget, cloud evolution, and precipitation formation. This work suggests that one of the most widely used methods for in situ measurements of these properties has significant uncertainties and biases. We suggest methods that dramatically improve these measurements, which can be applied to past and future datasets from these instruments.
Cited articles
Borovoi, A. and Kustova, N.: Display of ice crystal flutter in atmospheric light pillars, Geophys. Res. Lett., 36, L04804, https://doi.org/10.1029/2008GL036413, 2009. a
Brath, M., Ekelund, R., Eriksson, P., Lemke, O., and Buehler, S. A.: Microwave and submillimeter wave scattering of oriented ice particles, Atmos. Meas. Tech., 13, 2309–2333, https://doi.org/10.5194/amt-13-2309-2020, 2020. a
Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler Weather Radar, Cambridge University Press, ISBN 9780521623841, https://doi.org/10.1017/CBO9780511541094, 2001. a
Cheng, K. Y., Wang, P. K., and Hashino, T.: A numerical study on the attitudes and aerodynamics of freely falling hexagonal ice plates, J. Atmos. Sci., 72, 3685–3698, https://doi.org/10.1175/JAS-D-15-0059.1, 2015. a, b, c, d
Cho, H. R., Iribarne, V., and Richards, W. G.: On the Orientation of Ice Crystals in a Cumulonimbus Cloud, American Meteorological Society, 38, 1111–1114, 1981. a
Curry, J. A. and Ebert, E. E.: Annual Cycle of Radiation Fluxes over the Arctic Ocean: Sensitivity to Cloud Optical Properties, J. Climate, 5, 1267–1280, https://doi.org/10.1175/1520-0442(1992)005<1267:ACORFO>2.0.CO;2, 1992. a
Dunnavan, E. L. and Jiang, Z.: A General Method for Estimating Bulk 2D Projections of Ice Particle Shape: Theory and Applications, J. Atmos. Sci., 76, 305–332, https://doi.org/10.1175/JAS-D-18-0177.1, 2019. a
Ern, P., Risso, F., Fabre, D., and Magnaudet, J.: Wake-induced oscillatory paths of bodies freely rising or falling in fluids, Annu. Rev. Fluid Mech., 44, 97–121, https://doi.org/10.1146/annurev-fluid-120710-101250, 2011. a
Esteban, L. B.: Dynamics of Non-Spherical Particles in Turbulence, in: Springer Theses, Springer Cham, PhD thesis, https://doi.org/10.1007/978-3-030-28136-6, 2019. a
Esteban, L. B., Shrimpton, J., and Ganapathisubramani, B.: Edge effects on the fluttering characteristics of freely falling planar particles, Phys. Rev. Fluids, 3, 064302, https://doi.org/10.1103/PhysRevFluids.3.064302, 2018. a, b, c, d
Esteban, L. B., Shrimpton, J. S., and Ganapathisubramani, B.: Disks settling in turbulence, J. Fluid Mech., 883, A58, https://doi.org/10.1017/jfm.2019.922, 2019. a, b
Feist, M. M., Westbrook, C. D., Clark, P. A., Stein, T. H., Lean, H. W., and Stirling, A. J.: Statistics of convective cloud turbulence from a comprehensive turbulence retrieval method for radar observations, Q. J. Roy. Meteor. Soc., 145, 727–744, https://doi.org/10.1002/qj.3462, 2019. a
Fitch, K. E., Hang, C., Talaei, A., and Garrett, T. J.: Arctic observations and numerical simulations of surface wind effects on Multi-Angle Snowflake Camera measurements, Atmos. Meas. Tech., 14, 1127–1142, https://doi.org/10.5194/amt-14-1127-2021, 2021. a, b, c
Garrett, T. J., Yuter, S. E., Fallgatter, C., Shkurko, K., Rhodes, S. R., and Endries, J. L.: Orientations and aspect ratios of falling snow, Geophys. Res. Lett., 42, 4617–4622, https://doi.org/10.1002/2015GL064040, 2015. a, b, c
Gibson, A., Thomas, L., and Bhattacharyya, S.: Some characteristics of cirrus clouds deduced from laser-radar observations at different elevation angles, J. Atmos. Terr. Phys., 39, 657–660, https://doi.org/10.1016/0021-9169(77)90079-4, 1977. a
Gregory, R. D.: Classical Mechanics, Cambridge University Press, 2006. a
Helt, G.: A Rose By Any Other Name, Tessellations Publishing, http://archive.bridgesmathart.org/2016/bridges2016-445.html (last access: 24 January 2024), 2016. a
Hirakata, M., Okamoto, H., Hagihara, Y., Hayasaka, T., and Oki, R.: Comparison of Global and Seasonal Characteristics of Cloud Phase and Horizontal Ice Plates Derived from CALIPSO with MODIS and ECMWF, J. Atmos. Ocean. Tech., 31, 2114–2130, https://doi.org/10.1175/JTECH-D-13-00245.1, 2014. a
Hogan, R. J. and Illingworth, A. J.: The effect of specular reflection on spaceborne lidar measurements of ice clouds, Tech. rep., Department of Meteorology, University of Reading, https://www.met.reading.ac.uk/~swrhgnrj/publications/specular.pdf (last access: 21 January 2024), 2003. a
Ishimoto, H., Masuda, K., Mano, Y., Orikasa, N., and Uchiyama, A.: Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds, J. Quant. Spectrosc. Ra., 113, 632–643, https://doi.org/10.1016/j.jqsrt.2012.01.017, 2012. a
Jiang, Z., Oue, M., Verlinde, J., Clothiaux, E. E., Aydin, K., Botta, G., and Lu, Y.: What can we conclude about the real aspect ratios of ice particle aggregates from two-dimensional images?, J. Appl. Meteorol. Clim., 56, 725–734, https://doi.org/10.1175/JAMC-D-16-0248.1, 2017. a
Köbschall, K., Breitenbach, J., Roisman, I. V., Tropea, C., and Hussong, J.: Geometric descriptors for the prediction of snowflake drag, Exp. Fluids, 64, 4, https://doi.org/10.1007/s00348-022-03539-x, 2023. a, b
List, R. and Schemenauer, R. S.: Free-Fall Behavior of Planar Snow Crystals, Conical Graupel and Small Hail, J. Atmos. Sci., 28, 110115, https://doi.org/10.1175/1520-0469(1971)028<0110:FFBOPS>2.0.CO;2, 1971. a, b, c
Locatelli, J. D. and Hobbs, P. V.: Fall speeds and masses of solid precipitation particles, J. Geophys. Res., 79, 2185–2197, https://doi.org/10.1029/jc079i015p02185, 1974. a
Maahn, M., Moisseev, D., Steinke, I., Maherndl, N., and Shupe, M. D.: Introducing the Video In Situ Snowfall Sensor (VISSS), Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024, 2024. a, b
Magono, C. and Lee, C. W.: Meteorological Classification of Natural Snow Crystals, Journal of the Faculty of Science, 2, 321–335, 1966. a
Marshak, A., Várnai, T., and Kostinski, A.: Terrestrial glint seen from deep space: Oriented ice crystals detected from the Lagrangian point, Geophys. Res. Lett., 44, 5197–5202, https://doi.org/10.1002/2017GL073248, 2017. a
Masuda, K. and Ishimoto, H.: Influence of particle orientation on retrieving cirrus cloud properties by use of total and polarized reflectances from satellite measurements, J. Quant. Spectrosc. Ra., 85, 183–193, https://doi.org/10.1016/S0022-4073(03)00224-3, 2004. a
Matrosov, S. Y.: Feasibility of using radar differential Doppler velocity and dual-frequency ratio for sizing particles in thick ice clouds, J. Geophys. Res.-Atmos., 116, D17202, https://doi.org/10.1029/2011JD015857, 2011. a
McCorquodale, M. W. and Westbrook, C. D.: The stable orientation of aggregate ice particles in free-fall, 3rd International Summer Snowfall Workshop (ISSW3), 31 August–3 September 2021, virtual conference, https://www.met.reading.ac.uk/~sws04cdw/issw3_programme.html (last access: 31 September 2021), 2021c. a
Melnikov, V. and Straka, J. M.: Axis ratios and flutter angles of cloud ice particles: Retrievals from radar data, J. Atmos. Ocean. Tech., 30, 1691–1703, https://doi.org/10.1175/JTECH-D-12-00212.1, 2013. a, b
Moilanen, J. and Gritsevich, M.: Light scattering by airborne ice crystals – An inventory of atmospheric halos, J. Quant. Spectrosc. Ra., 290, 108313, https://doi.org/10.1016/j.jqsrt.2022.108313, 2022. a
Nettesheim, J. J. and Wang, P. K.: A numerical study on the aerodynamics of freely falling planar Ice Crystals, J. Atmos. Sci., 75, 2849–2865, https://doi.org/10.1175/JAS-D-18-0041.1, 2018. a, b, c, d
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in {P}ython, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Platt, C. M. R.: Lidar Observation of a Mixed-Phase Altostratus Cloud, J. Appl. Meteorol., 16, 339–345, https://doi.org/10.1175/1520-0450(1977)016<0339:LOOAMP>2.0.CO;2, 1977. a, b
Pruppacher, H. and Klett, J.: Microphysics of Clouds and Precipitation, Springer Netherlands, ISBN 978-0-7923-4211-3, https://doi.org/10.1007/978-0-306-48100-0, 1997. a
Reiter, C. A.: A local cellular model for snow crystal growth, Chaos, Solitons and Fractals, 23, 1111–1119, https://doi.org/10.1016/j.chaos.2004.06.071, 2005. a
Ryzhkov, A. V., Snyder, J., Carlin, J. T., Khain, A., and Pinsky, M.: What polarimetric weather radars offer to cloud modelers: Forward radar operators and microphysical/thermodynamic retrievals, Atmosphere, 11, 362, https://doi.org/10.3390/atmos11040362, 2020. a
Sassen, K.: Ice Crystal Habit Discrimination with the Optical Backscatter Depolarization Technique, J. Appl. Meteorol., 16, 425–431, https://doi.org/10.1175/1520-0450(1977)016<0425:ICHDWT>2.0.CO;2, 1977. a
Sassen, K.: Remote Sensing of Planar Ice Crystal Fall Attitudes, J. Meteorol. Soc. Jpn., 58, 422–429, 1980. a
Sassen, K.: Polarization and Brewster angle properties of light pillars, J. Opt. Soc. Am. A, 4, 570–580, https://doi.org/10.1364/JOSAA.4.000570, 1987. a
Schrom, R. S., Munchak, S. J., and Adams, I. S.: The Polarimetric Radar Scattering Properties of Oriented Aggregates, J. Atmos. Sci., 80, 1145–1161, https://doi.org/10.1175/JAS-D-22-0149.1, 2023. a
Stillwell, R. A., Neely, R. R., Thayer, J. P., Walden, V. P., Shupe, M. D., and Miller, N. B.: Radiative Influence of Horizontally Oriented Ice Crystals over Summit, Greenland, J. Geophys. Res.-Atmos., 124, 12141–12156, https://doi.org/10.1029/2018JD028963, 2019. a
Tagliavini, G., McCorquodale, M., Westbrook, C., Corso, P., Krol, Q., and Holzner, M.: Drag coefficient prediction of complex-shaped snow particles falling in air beyond the Stokes regime, Int. J. Multiphas. Flow, 140, 103652, https://doi.org/10.1016/j.ijmultiphaseflow.2021.103652, 2021a. a, b, c
Tagliavini, G., McCorquodale, M., Westbrook, C., and Holzner, M.: Numerical analysis of the wake of complex-shaped snow particles at moderate Reynolds number, Phys. Fluids, 33, 105103, https://doi.org/10.1063/5.0064902, 2021b. a
Tagliavini, G., Khan, M. H., McCorquodale, M., Westbrook, C., and Holzner, M.: Wake characteristics of complex-shaped snow particles: Comparison of numerical simulations with fixed snowflakes to time-resolved particle tracking velocimetry experiments with free-falling analogs, Phys. Fluids, 34, 055112, https://doi.org/10.1063/5.0089759, 2022. a
Takano, Y. and Liou, K.-N.: Solar Radiative Transfer in Cirrus Clouds. Part I: Single-Scattering and Optical Properties of Hexagonal Ice Crystals, J. Atmos. Sci., 46, 3–19, https://doi.org/10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2, 1989. a
Tränkle, E. and Riikonen, M.: Elliptical halos, Bottlinger’s rings, and the ice-plate snow-star transition, Appl. Optics, 35, 4871, https://doi.org/10.1364/AO.35.004871, 1996. a
Tuleja, S., Gazovic, B., Tomori, A., and Hanc, J.: Feynman’s wobbling plate, Am. J. Phys., 75, 240–244, https://doi.org/10.1119/1.2402156, 2007. a, b
Varnai, T., Kostinski, A. B., and Marshak, A.: Deep Space Observations of Sun Glints from Marine Ice Clouds, IEEE Geosci. Remote S., 17, 735–739, https://doi.org/10.1109/LGRS.2019.2930866, 2020. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., İlhan Polat, Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A., Ingold, G.-L., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich, J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J., Harrington, J., Rodríguez, J. L. C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones, T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y. O., and Vázquez-Baeza, Y.: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a, b
von Lerber, A., Moisseev, D., Bliven, L. F., Petersen, W., Harri, A.-M., and Chandrasekar, V.: Microphysical Properties of Snow and Their Link to Ze–S Relations during BAECC 2014, J. Appl. Meteorol. Clim., 56, 1561–1582, https://doi.org/10.1175/JAMC-D-16-0379.1, 2017. a
Wang, P. K.: Motions of Ice Hydrometeors in the Atmosphere Numerical Studies and Implications, Springer, 1 edn., ISBN 978-981-33-4431-0, https://doi.org/10.1007/978-981-33-4431-0, 2021. a, b
Westbrook, C. D. and Sephton, E. K.: Using 3-D-printed analogues to investigate the fall speeds and orientations of complex ice particles, Geophy. Res. Lett., 44, 7994–8001, https://doi.org/10.1002/2017GL074130, 2017. a, b
Westbrook, C. D., Illingworth, A. J., O'Connor, E. J., and Hogan, R. J.: Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds, Q. J. Roy. Meteor. Soc., 136, 260–276, https://doi.org/10.1002/qj.528, 2010. a, b
Zhong, H., Lee, C., Su, Z., Chen, S., Zhou, M., and Wu, J.: Experimental investigation of freely falling thin disks. Part 1. the flow structures and Reynolds number effects on the zigzag motion, J. Fluid Mech., 716, 228–250, https://doi.org/10.1017/jfm.2012.543, 2013. a, b, c
Zhou, T., Huang, J., Huang, Z., Liu, J., Wang, W., and Lin, L.: The depolarization–attenuated backscatter relationship for dust plumes, Opt. Express, 21, 15195, https://doi.org/10.1364/OE.21.015195, 2013. a
Zikmunda, J.: Fall velocities of Spatial Crystals and Aggregates, J. Atmos. Sci., 29, 1511–1515, 1972. a
Executive editor
Among the most important atmospheric processes to humans is precipitation, which may take the liquid phase (rainfall) or ice phase (snowfall) at the Earth's surface. However, the great majority of precipitation reaching the Earth's surface passes through an ice phase before melting, and thus descends some distance through the atmosphere at a rate that is commonly understood to depend on ice particle shape. While it is colloquially said that no two snowflakes are exactly alike, their shapes do fall into a range of categories. In this work, a common diversity of ice crystal shapes are reproduced via 3D printing and their shapes are found to lead to a range of stable and unstable patterns of motion, such as zigzagging or spiraling. These motions are systematically investigated and characterized. Such advances in understanding the variability of ice fall speeds bear on a wide range of disciplines including climate forecasting and a variety of approaches to remote sensing of atmospheric conditions. [Videos are recommended accompaniment.]
Among the most important atmospheric processes to humans is precipitation, which may take the...
Short summary
This study uses 3D-printed ice crystal analogues falling in a water–glycerine mix and observed with multi-view cameras, simulating atmospheric conditions. Four types of motion are observed: stable, zigzag, transitional, and spiralling. Particle shape strongly influences motion; complex shapes have a wider range of conditions where they fall steadily compared to simple plates. The most common orientation of unstable particles is non-horizontal, contrary to prior assumptions of always horizontal.
This study uses 3D-printed ice crystal analogues falling in a water–glycerine mix and observed...
Altmetrics
Final-revised paper
Preprint