Articles | Volume 24, issue 19
https://doi.org/10.5194/acp-24-11133-2024
https://doi.org/10.5194/acp-24-11133-2024
Research article
 | Highlight paper
 | 
10 Oct 2024
Research article | Highlight paper |  | 10 Oct 2024

Stable and unstable fall motions of plate-like ice crystal analogues

Jennifer R. Stout, Christopher D. Westbrook, Thorwald H. M. Stein, and Mark W. McCorquodale

Related authors

Estimating Ice Water Content and Snowfall Rate from radar measurements in the G-band
Karina McCusker, Chris Westbrook, Alessandro Battaglia, Kamil Mroz, Benjamin M. Courtier, Peter G. Huggard, Hui Wang, Richard Reeves, Christopher J. Walden, Richard Cotton, Stuart Fox, and Anthony J. Baran
EGUsphere, https://doi.org/10.5194/egusphere-2025-3974,https://doi.org/10.5194/egusphere-2025-3974, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
The first microwave and submillimetre closure study using particle models of oriented ice hydrometeors to simulate polarimetric measurements of ice clouds
Karina McCusker, Anthony J. Baran, Chris Westbrook, Stuart Fox, Patrick Eriksson, Richard Cotton, Julien Delanoë, and Florian Ewald
Atmos. Meas. Tech., 17, 3533–3552, https://doi.org/10.5194/amt-17-3533-2024,https://doi.org/10.5194/amt-17-3533-2024, 2024
Short summary
Retrieving microphysical properties of concurrent pristine ice and snow using polarimetric radar observations
Nicholas J. Kedzuf, J. Christine Chiu, V. Chandrasekar, Sounak Biswas, Shashank S. Joshil, Yinghui Lu, Peter Jan van Leeuwen, Christopher Westbrook, Yann Blanchard, and Sebastian O'Shea
Atmos. Meas. Tech., 14, 6885–6904, https://doi.org/10.5194/amt-14-6885-2021,https://doi.org/10.5194/amt-14-6885-2021, 2021
Short summary
Characterising optical array particle imaging probes: implications for small-ice-crystal observations
Sebastian O'Shea, Jonathan Crosier, James Dorsey, Louis Gallagher, Waldemar Schledewitz, Keith Bower, Oliver Schlenczek, Stephan Borrmann, Richard Cotton, Christopher Westbrook, and Zbigniew Ulanowski
Atmos. Meas. Tech., 14, 1917–1939, https://doi.org/10.5194/amt-14-1917-2021,https://doi.org/10.5194/amt-14-1917-2021, 2021
Short summary

Cited articles

Borovoi, A. and Kustova, N.: Display of ice crystal flutter in atmospheric light pillars, Geophys. Res. Lett., 36, L04804, https://doi.org/10.1029/2008GL036413, 2009. a
Brath, M., Ekelund, R., Eriksson, P., Lemke, O., and Buehler, S. A.: Microwave and submillimeter wave scattering of oriented ice particles, Atmos. Meas. Tech., 13, 2309–2333, https://doi.org/10.5194/amt-13-2309-2020, 2020. a
Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler Weather Radar, Cambridge University Press, ISBN 9780521623841, https://doi.org/10.1017/CBO9780511541094, 2001. a
Cheng, K. Y., Wang, P. K., and Hashino, T.: A numerical study on the attitudes and aerodynamics of freely falling hexagonal ice plates, J. Atmos. Sci., 72, 3685–3698, https://doi.org/10.1175/JAS-D-15-0059.1, 2015. a, b, c, d
Cho, H. R., Iribarne, V., and Richards, W. G.: On the Orientation of Ice Crystals in a Cumulonimbus Cloud, American Meteorological Society, 38, 1111–1114, 1981. a
Download
Executive editor
Among the most important atmospheric processes to humans is precipitation, which may take the liquid phase (rainfall) or ice phase (snowfall) at the Earth's surface. However, the great majority of precipitation reaching the Earth's surface passes through an ice phase before melting, and thus descends some distance through the atmosphere at a rate that is commonly understood to depend on ice particle shape. While it is colloquially said that no two snowflakes are exactly alike, their shapes do fall into a range of categories. In this work, a common diversity of ice crystal shapes are reproduced via 3D printing and their shapes are found to lead to a range of stable and unstable patterns of motion, such as zigzagging or spiraling. These motions are systematically investigated and characterized. Such advances in understanding the variability of ice fall speeds bear on a wide range of disciplines including climate forecasting and a variety of approaches to remote sensing of atmospheric conditions. [Videos are recommended accompaniment.]
Short summary
This study uses 3D-printed ice crystal analogues falling in a water–glycerine mix and observed with multi-view cameras, simulating atmospheric conditions. Four types of motion are observed: stable, zigzag, transitional, and spiralling. Particle shape strongly influences motion; complex shapes have a wider range of conditions where they fall steadily compared to simple plates. The most common orientation of unstable particles is non-horizontal, contrary to prior assumptions of always horizontal.
Share
Altmetrics
Final-revised paper
Preprint