Articles | Volume 24, issue 17
https://doi.org/10.5194/acp-24-10073-2024
https://doi.org/10.5194/acp-24-10073-2024
Research article
 | 
12 Sep 2024
Research article |  | 12 Sep 2024

Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign

Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt

Data sets

Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment Data ACTIVATE Science Team https://doi.org/10.5067/SUBORBITAL/ACTIVATE/DATA001

ERA5 hourly data on pressure levels from 1940 to present H. Hersbach et al. https://doi.org/10.24381/cds.bd0915c6

ERA5 hourly data on single levels from 1940 to present H. Hersbach et al. https://doi.org/10.24381/cds.adbb2d47

Model code and software

Energy Exascale Earth System Model v2.0 E3SM Project https://doi.org/10.11578/E3SM/dc.20210927.1

WRF–LES model code LASSO Team https://code.arm.gov/lasso/lasso-wrf

Download
Short summary
We examined marine boundary layer clouds and their interactions with aerosols in the E3SM single-column model (SCM) for a case study. The SCM shows good agreement when simulating the clouds with high-resolution models. It reproduces the relationship between cloud droplet and aerosol particle number concentrations as produced in global models. However, the relationship between cloud liquid water and droplet number concentration is different, warranting further investigation.
Altmetrics
Final-revised paper
Preprint