Articles | Volume 23, issue 17
https://doi.org/10.5194/acp-23-9815-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-9815-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Stoichiometry of dissolved iron and aluminum as an indicator of the factors controlling the fractional solubility of aerosol iron – results of the annual observations of size-fractionated aerosol particles in Japan
Earth System Division, National Institute for Environmental Studies,
16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
Aya Sakaguchi
Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1
Tennodai, Tsukuba, Ibaraki 305-8577, Japan
Yoshiaki Yamakawa
Graduate School of Science, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo, 113-0033, Japan
Chihiro Miyamoto
Graduate School of Science, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo, 113-0033, Japan
Minako Kurisu
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology, 2-15Natsushima-cho, Yokosuka,
Kanagawa 237-0061, Japan
Yoshio Takahashi
Graduate School of Science, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo, 113-0033, Japan
Related authors
Kohei Sakata, Shotaro Takano, Atsushi Matsuki, Yasuo Takeichi, Hiroshi Tanimoto, Aya Sakaguchi, Minako Kurisu, and Yoshio Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-161, https://doi.org/10.5194/egusphere-2025-161, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Deposition of aerosol iron (Fe) into the ocean stimulates primary production and influences the global carbon cycle, although the factors governing the aerosol Fe solubility remain uncertain. Our observations in Japan revealed that both mineral dust and anthropogenic aerosols are significant sources of dissolved Fe, and that atmospheric chemical weathering enhances their solubility. This finding is expected to play a crucial role in estimating the supply of dissolved iron to the ocean.
Kohei Sakata, Minako Kurisu, Yasuo Takeichi, Aya Sakaguchi, Hiroshi Tanimoto, Yusuke Tamenori, Atsushi Matsuki, and Yoshio Takahashi
Atmos. Chem. Phys., 22, 9461–9482, https://doi.org/10.5194/acp-22-9461-2022, https://doi.org/10.5194/acp-22-9461-2022, 2022
Short summary
Short summary
Iron (Fe) species in size-fractionated aerosol particles collected in the western Pacific Ocean were determined to identify factors controlling fractional Fe solubility. We found that labile Fe was mainly present in submicron aerosol particles, and the Fe species were ferric organic complexes combined with humic-like substances (Fe(III)-HULIS). The Fe(III)-HULIS was formed by atmospheric processes. Thus, atmospheric processes play a significant role in controlling Fe solubility.
Minako Kurisu, Kohei Sakata, Mitsuo Uematsu, Akinori Ito, and Yoshio Takahashi
Atmos. Chem. Phys., 21, 16027–16050, https://doi.org/10.5194/acp-21-16027-2021, https://doi.org/10.5194/acp-21-16027-2021, 2021
Short summary
Short summary
Aerosol iron (Fe) input can enhance oceanic primary production. We analyzed Fe isotope ratios of size-fractionated aerosols over the northwestern Pacific to evaluate the contribution of natural and combustion Fe. It was found that combustion Fe was an important soluble Fe source in marine aerosols and possibly in surface seawater when air masses were from East Asia. This study shows the applicability of Fe isotope ratios for a more quantitative understanding of the Fe cycle in the surface ocean.
Kohei Sakata, Shotaro Takano, Atsushi Matsuki, Yasuo Takeichi, Hiroshi Tanimoto, Aya Sakaguchi, Minako Kurisu, and Yoshio Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-161, https://doi.org/10.5194/egusphere-2025-161, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Deposition of aerosol iron (Fe) into the ocean stimulates primary production and influences the global carbon cycle, although the factors governing the aerosol Fe solubility remain uncertain. Our observations in Japan revealed that both mineral dust and anthropogenic aerosols are significant sources of dissolved Fe, and that atmospheric chemical weathering enhances their solubility. This finding is expected to play a crucial role in estimating the supply of dissolved iron to the ocean.
Kohei Sakata, Minako Kurisu, Yasuo Takeichi, Aya Sakaguchi, Hiroshi Tanimoto, Yusuke Tamenori, Atsushi Matsuki, and Yoshio Takahashi
Atmos. Chem. Phys., 22, 9461–9482, https://doi.org/10.5194/acp-22-9461-2022, https://doi.org/10.5194/acp-22-9461-2022, 2022
Short summary
Short summary
Iron (Fe) species in size-fractionated aerosol particles collected in the western Pacific Ocean were determined to identify factors controlling fractional Fe solubility. We found that labile Fe was mainly present in submicron aerosol particles, and the Fe species were ferric organic complexes combined with humic-like substances (Fe(III)-HULIS). The Fe(III)-HULIS was formed by atmospheric processes. Thus, atmospheric processes play a significant role in controlling Fe solubility.
Minako Kurisu, Kohei Sakata, Mitsuo Uematsu, Akinori Ito, and Yoshio Takahashi
Atmos. Chem. Phys., 21, 16027–16050, https://doi.org/10.5194/acp-21-16027-2021, https://doi.org/10.5194/acp-21-16027-2021, 2021
Short summary
Short summary
Aerosol iron (Fe) input can enhance oceanic primary production. We analyzed Fe isotope ratios of size-fractionated aerosols over the northwestern Pacific to evaluate the contribution of natural and combustion Fe. It was found that combustion Fe was an important soluble Fe source in marine aerosols and possibly in surface seawater when air masses were from East Asia. This study shows the applicability of Fe isotope ratios for a more quantitative understanding of the Fe cycle in the surface ocean.
Y. Takahashi, T. Furukawa, Y. Kanai, M. Uematsu, G. Zheng, and M. A. Marcus
Atmos. Chem. Phys., 13, 7695–7710, https://doi.org/10.5194/acp-13-7695-2013, https://doi.org/10.5194/acp-13-7695-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
Seasonal investigation of ultrafine-particle organic composition in an eastern Amazonian rainforest
High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 2: Seasonal and temporal trends in refractory black carbon originated from fossil fuel combustion and biomass burning
Significant role of biomass burning in heavy haze formation in Nanjing, a megacity in China: molecular-level insights from intensive PM2.5 sampling on winter hazy days
Widespread trace bromine and iodine in remote tropospheric non-sea-salt aerosols
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Non biogenic source is an important but overlooked contributor to aerosol isoprene-derived organosulfates during winter in northern China
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Measurement Report: Vertically resolved Atmospheric Properties Observed over the Southern Great Plains with Uncrewed Aerial System – ArcticShark
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
The Critical Role of Aqueous-Phase Processes in Aromatic-Derived Nitrogen-Containing Organic Aerosol Formation in Cities with Different Energy Consumption Patterns
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Marine Organic Aerosols at Mace Head: Effects from Phytoplankton and Source Region Variability
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Formation of Highly Absorptive Secondary Brown Carbon Through Nighttime Multiphase Chemistry of Biomass Burning Emissions
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Characterization of atmospheric water-soluble brown carbon in the Athabasca Oil Sands Region, Canada
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Source apportionment and ecotoxicity of particulate pollution events in a Major Southern Hemisphere Megacity: influence of biomass burning and a biofuel impacted fleet
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Measurement report: Sources and meteorology influencing highly-time resolved PM2.5 trace elements at 3 urban sites in extremely polluted Indo Gangetic Plain in India
James Brean, David C. S. Beddows, Eija Asmi, Aki Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Rolf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall'Osto
Atmos. Chem. Phys., 25, 1145–1162, https://doi.org/10.5194/acp-25-1145-2025, https://doi.org/10.5194/acp-25-1145-2025, 2025
Short summary
Short summary
Our results emphasise how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 25, 959–977, https://doi.org/10.5194/acp-25-959-2025, https://doi.org/10.5194/acp-25-959-2025, 2025
Short summary
Short summary
We present measurements of the organic composition of ultrafine particles collected from the eastern Amazon, an understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant for ultrafine-particle growth throughout the year, compounds related to other sources, such as biological-spore emissions and biomass burning, exhibit striking seasonal differences, implying extensive variation in regional ultrafine-particle sources.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025, https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Short summary
Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
Atmos. Chem. Phys., 25, 45–71, https://doi.org/10.5194/acp-25-45-2025, https://doi.org/10.5194/acp-25-45-2025, 2025
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Ting Yang, Yu Xu, Yu-Chen Wang, Yi-Jia Ma, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3823, https://doi.org/10.5194/egusphere-2024-3823, 2024
Short summary
Short summary
Previous measurement-model comparisons of atmospheric isoprene levels showed a significant unidentified source of isoprene in some northern Chinese cities during winter. Here, the first combination of large-scale observations and field combustion experiments provides novel insights into biomass burning emissions as a significant source of isoprene-derived organosulfates during winter in northern cities, China.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024, https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Short summary
We characterized water-soluble oxidative potential (OP) levels in wintertime PM2.5 in the south and north of Beijing. Our results show that the volume-normalized dithiothreitol (DTTv) in the north was comparable to that in the south, while the mass-normalized dithiothreitol (DTTm) in the north was almost twice that in the south. Traffic-related emissions and biomass burning were the main sources of DTTv in the south, and traffic-related emissions contributed the most to DTTv in the north.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Fan Mei, Qi Zhang, Damao Zhang, Jerome Fast, Gourihar Kulkarni, Mikhail Pekour, Christopher Niedek, Susanne Glienke, Isarel Silber, Beat Schmid, Jason Tomlinson, Hardeep Mehta, Xena Mansoura, Zezhen Cheng, Gregory Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3089, https://doi.org/10.5194/egusphere-2024-3089, 2024
Short summary
Short summary
This study highlights the unique capability of the ArcticShark UAS in measuring vertically resolved atmospheric properties over the Southern Great Plains. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Yi-Jia Ma, Yu Xu, Ting Yang, Lin Gui, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2602, https://doi.org/10.5194/egusphere-2024-2602, 2024
Short summary
Short summary
The abundance, potential precursors, and main formation mechanisms of NOCs in PM2.5 during winter were compared among cities with different energy consumption. We found that the aerosol NOC pollution during winter is closely associated with the intensity of precursor emissions and the efficiency of aqueous-phase processes in converting these emissions into NOCs. The overall results highlight the importance of emission reduction strategies in controlling aerosol NOCs pollution during winter.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Emmanuel Chevassus, Kirsten N. Fossum, Darius Ceburnis, Lu Lei, Chunshui Lin, Wei Xu, Colin D. O’ Dowd, and Jurgita Ovadnevaite
EGUsphere, https://doi.org/10.5194/egusphere-2024-2890, https://doi.org/10.5194/egusphere-2024-2890, 2024
Short summary
Short summary
This study presents the first source apportionment of OA at Mace Head via high-resolution mass spectrometry. Introducing transfer entropy as a novel method reveals that aged OA originate from open ocean ozonolysis and local peat burning oxidation. Methanesulphonic acid OA and primary marine OA both mirror phytoplankton activity as observed with their chemical makeup, with MSA-OA closely tied to coccolithophore blooms and PMOA linked to diatoms, chlorophytes, and cyanobacteria.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2743, https://doi.org/10.5194/egusphere-2024-2743, 2024
Short summary
Short summary
In-situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below cloud base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Ye Kuang, Biao Luo, Shan Huang, Junwen Liu, Weiwei Hu, Yuweng Peng, Duohong Chen, Dingli Yue, Wanyun Xu, Bin Yuan, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2654, https://doi.org/10.5194/egusphere-2024-2654, 2024
Short summary
Short summary
This research reveals the potential importance of nighttime NO3 radical chemistry and aerosol water in the rapid formation of secondary brown carbon from biomass burning emissions. The findings enhance our understanding of nighttime biomass burning evolution and its implications for climate and regional air quality, especially regarding interactions with aerosol water and water-rich fogs and clouds.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
EGUsphere, https://doi.org/10.5194/egusphere-2024-2584, https://doi.org/10.5194/egusphere-2024-2584, 2024
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca Oil Sands Region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (summer 2021) found that oil sands operations were a measurable source of brown carbon. Industrial aerosol emissions may impact atmospheric reaction chemistry and albedo. These findings demonstrate that fluorescence spectroscopy can be applied to monitor brown carbon in the ASOR.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Guilherme Martins Pereira, Leonardo Yoshiaki Kamigauti, Rubens Fabio Pereira, Djacinto Monteiro dos Santos, Thayná da Silva Santos, José Vinicius Martins, Célia Alves, Cátia Gonçalves, Ismael Casotti Rienda, Nora Kováts, Thiago Nogueira, Luciana Rizzo, Paulo Artaxo, Regina Maura de Miranda, Marcia Akemi Yamasoe, Edmilson Dias de Freitas, Pérola de Castro Vasconcellos, and Maria de Fatima Andrade
EGUsphere, https://doi.org/10.5194/egusphere-2024-2212, https://doi.org/10.5194/egusphere-2024-2212, 2024
Short summary
Short summary
The chemical composition of fine particulate matter was studied in the megacity of São Paulo (Brazil) during a polluted period. Vehicular-related sources were dominant; however, a high contribution of biomass burning was observed and correlated with sample ecotoxicity. Emerging biomass burning sources, such as forest fires and sugarcane bagasse-based power plants, highlight the need for additional control measures alongside stricter rules concerning vehicular emissions.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Ashutosh Kumar Shukla, Sachchida Nand Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and Andre Stephan Henry Prevot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1385, https://doi.org/10.5194/egusphere-2024-1385, 2024
Short summary
Short summary
Our study delves into the elemental composition of aerosols across the Indo-Gangetic Plain (IGP), revealing distinct patterns during pollution episodes. We found significant increases in Cl-rich and SFC1 sources, indicating dynamic emissions and agricultural burning impacts. Surges in Cl-rich particles during cold periods highlight their role in particle growth under specific conditions.
Cited articles
Acker, J. G. and Bricker, O. P.: The influence of pH on biotite dissolution
and alteration kinetics at low temperature, Geochim. Cosmochim. Ac., 56,
3073–3092, https://doi.org/10.1016/0016-7037(92)90290-Y, 1992.
Adachi, K. and Tainosho, Y.: Characterization of heavy metal particles
embedded in tire dust, Environ. Int., 30, 1009–1017,
https://doi.org/10.1016/j.envint.2004.04.004, 2004.
Akita, S., Maeda, T., and Takeuchi, H.: Recovery of vanadium and nickel in
fly ash from heavy oil, J. Chem., Tech. Biotechnol., 62, 345–350,
https://doi.org/10.1002/jctb.280620406, 1995.
Baker, A. R. and Jickells, T. D.: Atmospheric deposition of soluble trace
elements along the Atlantic Meridional Transect (AMT), Prog. Oceanogr., 158,
41–51, https://doi.org/10.1016/j.pocean.2016.10.002, 2017.
Baker, A. R. and Jickells, T. D.: Mineral particle size as a control on
aerosol iron solubility, Geophys. Res. Lett., 33, L17608,
https://doi.org/10.1029/2006GL026557, 2006.
Baker, A. R., Li, M., and Chance, R.: Trace metal fractional solubility in
size-segregated aerosols from the tropical eastern Atlantic Ocean, Global
Biogeochm. Cy., 34, e2019GB006510, https://doi.org/10.1029/2019GB006510,
2020.
Bibi, I., Singh, B., and Silvester, E.: Dissolution of illite in
saline-acidic solutions at 25 ∘C, Geochim. Cosmochim. Ac.,
75, 3237–3249, https://doi.org/10.1016/j.gca.2011.03.022, 2011.
Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler,
K. O., Coale, K. H., Cullen, J. J., de Beear, H. J. W., Follows, M., Harvey,
M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R.
B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A.,
Turner, S., and Watson, A. J.: Mesoscale iron enrichment experiments
1993–2005: Synthesis, and future directions, Science, 315, 612–617,
https://doi.org/10.1126/science.1131669, 2007.
Brantley, S. L., Kubicki, J. D., and White, A. F.: Kinetics of water-rock
interaction, Springer, New York, https://doi.org/10.1007/978-0-387-73563-4,
2008.
Bray, A. W., Oelkers, E. H., Bonneville, S., Wolff-Boenisch, D., Potts, N.
J., Fones, G., and Benning, L. G.: The effect of pH, grain size, and organic
ligands on biotite weathering rates, Geochim. Cosmochim. Ac., 164,
127–145, https://doi.org/10.1016/j.gca.2015.04.048, 2015.
Buck, C. S., Landing, W. M., and Resing, J.: Pacific Ocean aerosols:
Deposition and solubility of iron, aluminum, and other trace elements, Mar.
Chem., 157, 117–130, https://doi.org/10.1016/j.marchem.2013.09.005, 2013.
Buck, C. S., Landing, W. M., and Resing, J.: Particle size and aerosol iron
solubility: A high-resolution analysis of Atlantic aerosols, Mar. Chem.,
120, 14–24, https://doi.org/10.1016/j.marchem.2008.11.002, 2010a.
Buck, C. S., Landing, W. M., Resing, J. A. and Lebon, G. T.: Aerosol iron
and aluminum solubility in the northwest Pacific Ocean: Results from the
2002 IOC cruise, Geochem. Geophys. Geosyst., 7, 4, Q04M07,
https://doi.org/10.1029/2005GC000977, 2006.
Buck, C. S., Landing, W. M., Resing, J. A., and Measures, C. I.: The
solubility and deposition of aerosol Fe and other trace elements in the
North Atlantic Ocean: Observations from the A16N CLIVAR/CO2 repeat
hydrography section, Mar. Chem., 120, 57–70,
https://doi.org/10.1016/j.marchem.2008.08.003, 2010b.
Cao, J. J., Chow, J. C., Watson, J. G., Wu, F., Han, Y. M., Jin, Z. D.,
Shen, Z. X., and An, Z. S.: Size-differentiated source profiles for fugitive
dust in the Chinese Loess Plateau, Atmos. Environ., 42, 2261–2275,
https://doi.org/10.1016/j.atmosenv.2007.12.041, 2008.
Chance, R., Jickells, T. D., and Baker, A. R.: Atmospheric trace metal
concentrations, solubility and deposition fluxes in remote marine air over
the south-east Atlantic. Mar. Chem., 177, 45–56,
https://doi.org/10.1016/j.marchem.2015.06.028, 2015.
Chang, C. Y., Wang, C. F., Mui, D. T., and Chiang, H. L.: Application of
methods (sequential extraction procedures and high-pressure digestion
method) to fly ash particles to determine the element constituents: A case
study for BCR-176, J. Hazard. Mater., 163, 578–587,
https://doi.org/10.1016/j.jhazmat.2008.07.039, 2009.
Chen, H. and Grassian, V. H.: Iron dissolution of dust source materials
during simulated acidic processing: The effect of sulfuric, acetic, and
oxalic acids, Environ. Sci. Technol., 47, 1031210321,
https://doi.org/10.1021/es401285s, 2013.
Clegg, S. L., Pitzer, K. S., and Brimblecombe, P.: Thermodynamics of
multicomponent, miscible, ionic solutions. II. Mixtures including
unsymmetrical electrolyte. J. Phys. Chem., 96, 9470–9479,
https://doi.org/10.1021/j100202a074, 1992.
Conway, T. M., Hamilton D. S., Shelley, R. U., Aguilar-Islas, A. M.,
Landing, W. M., Mahowald, N., and John, S. G.: Tracing and constraining
anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron
isotopes, Nat. Commun., 10, 2628,
https://doi.org/10.1038/s41467-019-10457-w, 2019.
Czech, T.: Morphology and chemical composition of magnetic particles
separated from coal fly ash, Materials, 15, 528,
https://doi.org/10.3390/ma15020528, 2022.
Desboeufs, K. V., Losno, R., and Colin, J. L.: Factors influencing aerosol
solubility during cloud processes, Atmos. Environ., 35, 3529–3537,
https://doi.org/10.1016/S1352-2310(00)00472-6, 2001.
Ding, Z. L., Sun, J. M., Yang, S. L., and Liu, T. S.: Geochemistry of the
Pliocene red clay formation in the Chinese Loess Plateau and implications
for its origin, source provenance and paleoclimate change, Geochim. Cosmochim. Ac., 65, 901–913,
https://doi.org/10.1016/S0016-7037(00)00571-8, 2001.
Duvall, R. M., Majestic, B. J., Shafer, M. M., Chuang, P. Y., Simoneit, B.
R. T. and Schauer, J. J.: The water-soluble fraction of carbon, sulfur, and
crustal elements in Asian aerosols and Asian soils, Atmos. Environ., 42,
5872–5884, https://doi.org/10.1016/j.atmosenv.2008.03.028, 2008.
Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser,
J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. T.,
Moore, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., and
Steffen, W.: The global carbon cycle: A test of our knowledge of earth as a
system, Science, 290, 291–296,
https://doi.org/10.1126/science.290.5490.291, 2000.
Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., and Weber, R.: Highly
Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link
between Sulfate and Aerosol Toxicity, Environ. Sci. Technol., 51,
2611–2620, https://doi.org/10.1021/acs.est.6b06151, 2017.
Fitzgerald, E., Ault, A. P., Zauscher, M. D., Mayol-Bracero, O. L., and
Prather, K. A.: Comparison of the mixing state of long-range transported
Asian and African mineral dust, Atmos. Environ., 115, 19–25,
https://doi.org/10.1016/j.atmosenv.2015.04.031, 2015.
Fomenko, E. V., Anshits, N. N., Solovyov, L. A., Knyazev, Y. V., Semenov, S.
V., Bayukov, O. A., and Anshits, A. G.: Magnetic fractions of PM2.5,
PM2.5−10, PM10 from coal fly ash as environmental pollutants, ACS Omega, 6,
20076–20085, https://doi.org/10.1021/acsomega.1c03187, 2021.
Friese, E. and Ebel, A.: Temperature dependent thermodynamic model of the
system H+–NH4+–Na+–SO —NO3—Cl—H2O, J. Phys. Chem. A, 114,
11595–11631, https://doi.org/10.1021/jp101041j, 2010.
Furuya, K., Miyajima, Y., Chiba, T., and Kikuchi, T.: Elemental
characterization of particle size-density separated coal fly ash by
spectrophotometry, inductively coupled plasma emission spectrometry, and
scanning electron microscopy-energy dispersive X-ray analysis. Environ. Sci.
Technol., 21, 898–903, https://doi.org/10.1021/es00163a008, 1987.
Gao, Y., Marsay, C. M., Yu, S., Fan, S., Mukherjee, P., Buck, C. S., and
Landing, W. M.: Particle-size variability of aerosol iron and impact on iron
solubility and dry deposition fluxes to the Arctic Ocean, Sci. Rep., 9,
16653, https://doi.org/10.1038/s41598-019-52468-z, 2019.
Gietl, J. K., Lawrence, R., Thorpe, A. J., and Harrison, R. M.:
Identification of brake wear particles and derivation of a quantitative
tracer for brake dust at a major road. Atmos. Environ., 44, 141–146,
https://doi.org/10.1016/j.atmosenv.2009.10.016, 2010.
Gitari, W. M., Fatoba, O. O., Petrik, L. F., and Vadapalli, V. R. K.:
Leaching characteristics of selected south African fly ashes: Effect of pH
on the release of major and trace species, J. Environ. Sci. Health A, 44,
206–220, https://doi.org/10.1080/10934520802539897, 2009.
Guo, H., Nenes, A., and Weber, R. J.: The underappreciated role of nonvolatile cations in aerosol ammonium-sulfate molar ratios, Atmos. Chem. Phys., 18, 17307–17323, https://doi.org/10.5194/acp-18-17307-2018, 2018.
Halle, L. L., Palmqvist, A., Kampmann, K., Jensen, A., Hansen, T., and Khan,
F. R.: Tire wear particle and leachate exposures from a pristine and
road-worn tire to Hyalella azteca: Comparison of chemical content and
biological effects, Aquat. Toxicol., 232, 105769,
https://doi.org/10.1016/j.aquatox.2021.105769, 2021.
Hansen, L. D., Silberman, D., and Fisher, G. L.: Crystalline components of
stack-collected, size-fractionated coal fly ash, Environ. Sci. Technol., 15,
1057–1062, https://doi.org/10.1021/es00091a004, 1981.
Harrison, R. M., Allan, J., Carruthers, D., Heal, M. R., Lewis, A. C.,
Marner, B., Murrells, T., and Williams, A.: Non-exhaust vehicle emissions of
particulate matter and VOC from road traffic: A review, Atmos. Environ.,
262, 118592, https://doi.org/10.1016/j.atmosenv.2021.118592, 2021.
Hsieh, C. C., Chen, H. Y., and Ho, T. Y.: The effect of aerosol size on Fe
solubility and deposition flux: A case study in the East China Sea, Mar.
Chem., 241, 104106, https://doi.org/10.1016/j.marchem.2022.104106, 2022.
Huang, S. J., Chang, C. Y., Mui, D. T., Chang, F. C., Lee, M. Y., and Wang,
C. F.: Sequential extraction for evaluating the leaching behavior of
selected elements in municipal solid waste incineration fly ash, J. Hazard.
Mat., 149, 180–188, https://doi.org/10.1016/j.jhazmat.2007.03.067, 2007.
Iijima, A., Sato, K., Yano, K., Tago, H., Kato, M., Kimura, H., and Furuta,
N.: Particle size and composition distribution analysis of automotive brake
abrasion dusts for the evaluation of antimony sources of airborne
particulate matter, Atmos. Environ., 41, 4908–4919,
https://doi.org/10.1016/j.atmosenv.2007.02.005, 2007.
Ito, A., Myriokefalitakis, S., Kanakidou, M., Mahowald, N. M., Scanza, R.
A., Hamilton, D. S., Baker, A. R., Jickells, T., Sarin, M., Bikkina, S.,
Gao, Y., Shelley, R. U., Buck, C. S., Landing, W. M., Bowie, A. R., Perron,
M. M. G., GUieu, C., Meskhidze, N., Johnson, M. S., Feng, Y., Kok, J. F.,
Nenes, A., and Duce, R. A.: Pyrogenic iron: The missing link to high iron
solubility in aerosols, Sci. Adv., 5, eaau7671,
https://doi.org/10.1126/sciadv.aau7671, 2019.
Ito, A., Ye, Y., Baldo, C., and Shi, Z.: Ocean fertilization by pyrogenic
aerosol iron, npj Clim. Atmos. Sci., 4, 30,
https://doi.org/10.1038/s41612-021-00185-8, 2021.
Jeong, G. Y. and Achterberg, E. P.: Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans, Atmos. Chem. Phys., 14, 12415–12428, https://doi.org/10.5194/acp-14-12415-2014, 2014.
Jeong, G. Y. and Nousiainen, T.: TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling, Atmos. Chem. Phys., 14, 7233–7254, https://doi.org/10.5194/acp-14-7233-2014, 2014.
Jeong, G. Y.: Mineralogy and geochemistry of Asian dust: dependence on
migration path, fractionation, and reactions with polluted air, Atmos. Chem.
Phys., 20, 7411–7428, https://doi.org/10.5194/acp-20-7411-2020, 2020.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G.,
Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata,
H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M.,
Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron connections between
desert dust, ocean biogeochemistry, and climate, Science, 308, 67–71,
https://doi.org/10.1126/science.1105959, 2005.
Jickells, T. D., Baker, A. R., and Chance, R.: Atmospheric transport of
trace elements and nutrients to the oceans, Philos. T. Roy. Soc. A, 374,
20150286, https://doi.org/10.1098/rsta.2015.0286, 2016.
Journet, E., Desboeufs, K. V., Caquineau, S., and Colin, J. L.: Mineralogy
as a critical factor of dust iron solubility, Geophys. Res. Lett., 35,
L07805, https://doi.org/10.1029/2007GL031589, 2008.
Kajino, M., Hagino, H., Fujitani, Y., Morikawa, T., Fukui, T., Onishi, K.,
Okuda, T., Kajikawa, T., and Igarashi, Y.: Modeling transition metals in
East Asia and Japan and its emission sources, GeoHealth, 4, e2020GH00259,
https://doi.org/10.1029/2020GH000259, 2020.
Kakavas, S., Patoulias, D., Zakoura, M., Nenes, A., and Pandis, S. N.: Size-resolved aerosol pH over Europe during summer, Atmos. Chem. Phys., 21, 799–811, https://doi.org/10.5194/acp-21-799-2021, 2021.
Karydis, V. A., Tsimpidi, A. P., Pozzer, A., Astitha, M., and Lelieveld, J.: Effects of mineral dust on global atmospheric nitrate concentrations, Atmos. Chem. Phys., 16, 1491–1509, https://doi.org/10.5194/acp-16-1491-2016, 2016.
Kim, A. G., Kazonich, G., and Dahlberg, M.: Relative solubility of cations
in class F fly ash, Environ. Sci. Technol., 37, 4507–4511,
https://doi.org/10.1021/es0263691, 2003.
Kodama, H. and Schnitzer, M.: Dissolution of chlorite minerals by fulvic
acid, Can. J. Soil Sci., 53, 240–243, https://doi.org/10.4141/cjss73-036,
1973.
Komonweeraket, K., Cetin, B., Aydilek, A. H., Benson, C. H., and Edil, T.
B.: Effects of pH on the leaching mechanisms of elements from fly ash mixed
soils, Fuel, 140, 788–802, https://doi.org/10.1016/j.fuel.2014.09.068,
2015.
Kukier, U., Ishak, C. F., Sumner, M. E., and Miller, W. P.: Composition and
element solubility of magnetic and non-magnetic fly ash fractions, Environ.
Pollut., 123, 255–266, https://doi.org/10.1016/S0269-7491(02)00376-7, 2003.
Kurisu, M., Adachi, K., Sakata, K., and Takahashi, Y.: Stable isotope ratios
of combustion iron produced by evaporation in a steel plant, ACS Earth Space
Chem., 3, 588–598, https://doi.org/10.1021/acsearthspacechem.8b00171, 2019.
Kurisu, M., Sakata, K., Miyamoto, C., Takaku, Y., Iizuka, T., and Takahashi,
Y.: Variation of iron isotope ratios in anthropogenic materials emitted
through combustion processes, Chem. Lett., 45, 970–972,
https://doi.org/10.1246/cl.160451, 2016b.
Kurisu, M., Sakata, K., Uematsu, M., Ito, A., and Takahashi, Y.: Contribution of combustion Fe in marine aerosols over the northwestern Pacific estimated by Fe stable isotope ratios, Atmos. Chem. Phys., 21, 16027–16050, https://doi.org/10.5194/acp-21-16027-2021, 2021.
Kurisu, M., Takahashi, Y., Iizuka, T., and Uematsu, M.: Very low isotope
ratio of iron in fien aerosols related to its contribution to the surface
ocean, J. Geophys. Res.-Atmos., 121, 11119–11136,
https://doi.org/10.1002/2016JD024957, 2016a.
Li, R., Zhang, H., Wang, F., He, Y., Huang, C., Luo, L., Dong, S, Jia, X.,
and Tang, M.: Mass fractions, solubility, speciation and isotopic
compositions of iron in coal and municipal waste fly ash, Sci. Total
Environ., 838, 155974, https://doi.org/10.1016/j.scitotenv.2022.155974,
2022.
Li, S., Zhang, B., Wu, D., Li, Z., Chu, S. Q., Ding, X., Tang, X., Chen, J.,
and Li, Q.: Magnetic particles unintentionally emitted from anthropogenic
sources: Iron and steel plants, Environ. Sci. Technol., Lett., 8, 295–300,
https://doi.org/10.1021/acs.estlett.1c00164, 2021.
Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D.,
Chen, J., Wang, W., Harrison, R. M., Zhang, X., Shao, L., Fu, P., Nenes, A.,
and Shi, Z.: Air pollution-aerosol interactions produce more bioavailable
iron for ocean ecosystems, Sci. Adv., 3, e1601749,
https://doi.org/10.1126/sciadv.1601749, 2017.
Lin, Q., Bi, X., Zhang, G., Yang, Y., Peng, L., Lian, X., Fu, Y., Li, M., Chen, D., Miller, M., Ou, J., Tang, M., Wang, X., Peng, P., Sheng, G., and Zhou, Z.: In-cloud formation of secondary species in iron-containing particles, Atmos. Chem. Phys., 19, 1195–1206, https://doi.org/10.5194/acp-19-1195-2019, 2019.
Liu, L., Li, W., Lin, Q., Wang, Y., Zhang, J., Zhu, Y., Yuan, Q., Zhou, S.,
Zhang, D., Baldo, C., and Shi, Z.: Size-dependent aerosol iron solubility in
an urban atmosphere, NPJ Clim. Atmos. Sci., 5, 54,
https://doi.org/10.1038/s41612-022-00277-z, 2022.
Liu, L., Zhang, J., Xu, L., Yuan, Q., Huang, D., Chen, J., Shi, Z., Sun, Y., Fu, P., Wang, Z., Zhang, D., and Li, W.: Cloud scavenging of anthropogenic refractory particles at a mountain site in North China, Atmos. Chem. Phys., 18, 14681–14693, https://doi.org/10.5194/acp-18-14681-2018, 2018.
Liu, X., Turner, J. R., Hand, J. L., Schichtel, B. A., and Martin, R. V.: A
global-scale mineral dust equation, J. Geophys. Res.-Atmos., 127,
e2022JD036937, https://doi.org/10.1029/2022JD036937, 2022.
Lowson, R. T., Comarmond, J., Rajaratnam, G., and Brown, P. L.: The kinetics
of the dissolution of chlorite as a function of pH and at
25 ∘C, Geochim. Cosmochim. Ac., 69, 1687–1699,
https://doi.org/10.1016/j.gca.2004.09.028, 2005.
Mahowald, N. M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P.,
Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P. Y., Cohen, D. D.,
Dulac, F., Herut, B., Johansen, A. M., Kubilay, N., Losno, R., Maenhaut, W.,
Paytan, A., Prospero, J. M., Shank, L. M., and Siefert, R. L.: Atmospheric
iron deposition: Global distribution, variability and human perturbations.
Annu. Rev. Mar. Sci. 1, 245–278,
https://doi.org/10.1146/annurev.marine.010908.163727, 2009.
Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K., Baker, A.
R., Scanza, R. A. and Zhang, Y.: Aerosol trace metal leaching and impacts on
marine microorganisms, Nat. Commun., 9, 1–15,
https://doi.org/10.1038/s41467-018-04970-7, 2018.
Marcotte, A. R., Anbar, A. D., Majestic, B. J., and Herckes, P.: Mineral
dust and iron solubility: Effects of composition, particles size, and
surface area, Atmosphere, 11, 533, https://doi.org/10.3390/atmos11050533, 2020.
Martin, J. H. and Fitzwater, S. E.: Iron deficiency limits phytoplankton
growth in the north-west Pacific subarctic, Nature, 331, 341–343,
https://doi.org/10.1126/science.1105959, 1988.
Martin, J. H.: Glacial-interglacial CO2 change: The iron hypothesis,
Paleoceanogr., 5, 1, 1–13, https://doi.org/10.1029/PA005i001p00001, 1990.
Martínez-García, A., Rosell-Melé, A., Geibert, W., Gersonde,
R., Masqué, P., Gaspari, V., and Barbante, C.: Links between iron
supply, marine productivity, sea surface temperature, and CO2, over the last
1.1 Ma, Paleoceanogr., 24, PA1207, https://doi.org/10.1029/2008PA001657,
2009.
Martínez-García, A., Rosell-Melé, A., Jaccard, S. L., Geibert,
W., Sigman, D. M., and Haug, G. H.: Southern Ocean dust-climate coupling
over the past four million years, Nature, 476, 312–316,
https://doi.org/10.1038/nature10310, 2011.
Martínez-García, A., Sigman, D. M., Ren, H., Anderson, R. F.,
Straub, M., Hodell, D. A., Jaccard, S. L., Eglinton, T. I., and Haug, G. H.:
Iron fertilization of the subantarctic Ocean during the last ice age,
Science, 343, 1347–1350, https://doi.org/10.1126/science.1246848, 2014.
McDaniel, M. F. M., Ingall, E. D., Morton, Castorina, E., Weber, R. J.,
Shelley, R. U., Landing, W. M., Longo, A. F., Feng, Y., and Lai, B.:
Relationship between atmospheric aerosol mineral surface area and iron
solubility, ACS Earth Space Chem., 3, 2443–2451,
https://doi.org/10.1021/acsearthspacechem.9b00152, 2019.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingsted, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of
oceanic nutrient limitation, Nat. Geosci., 6, 701–710,
https://doi.org/10.1038/ngeo1765, 2013.
Nishikawa, M., Batdorj, D., Ukachi, M., Onishi, K., Nagano, K., Mori, I.,
Matsui, I., and Sano, T.: Preparation and chemical characterisation of an
Asian mineral dust certified reference material, Anal. Method., 5,
4088-4095, https://doi.org/10.1039/C3AY40435H, 2013.
Nozaki, Y.: Elemental Distribution, in: Encyclopedia of Ocean Sciences,
edited by: Steele, J. H., Thorpe, S. A., and Turekian, K. K., Academic, San
Diego, Enc. Ocean Sci., 840–845,
https://doi.org/10.1006/rwos.2001.0402, 2001.
Nriagu, J. O. and Pacyna, J. M.: Quantitative assessment of worldwide
contamination of air, water and soils by trace metals, Nature, 333,
134–139, https://doi.org/10.1038/333134a0, 1988.
Oakes, M., Ingall, E. D., Lai, B., Shafer, M. M., Hays, M. D., Liu, Z. G.,
Russell, A. G., and Weber, R. J.: Iron solubility related to particle sulfur
content in source emission and ambient fine particles, Environ. Sci.
Technol., 46, 6637–6644, https://doi.org/10.1021/es300701c, 2012.
Pacyna, J. M., and Pacyna, E.G.: An Assessment of Global and Regional
Emissions of Trace Metals to the Atmosphere from Anthropogenic Sources
Worldwide, Environ. Res., 9, 269–298,
https://doi.org/10.1139/a01-012, 2001.
Paris, R. and Desboeufs, K. V.: Effect of atmospheric organic complexation on iron-bearing dust solubility, Atmos. Chem. Phys., 13, 4895–4905, https://doi.org/10.5194/acp-13-4895-2013, 2013.
Praharaj, T., Powell, M. A., Hart, B. R., and Tripathy, S.: Leachability of
elements from sub-bituminous coal fly ash from India, Environ. Int., 27,
609–615, https://doi.org/10.1016/S0160-4120(01)00118-0, 2002.
Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A., and Zuend, A.: The acidity of atmospheric particles and clouds, Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, 2020.
Rivera. N., Kaur, N., Hesterberg, D., Ward, C. R., Austin, R. E., and
Duckworth, O. W.: Chemical composition, speciation and elemental
associations in coal fly ash samples related to the Kingston ash spill,
Energ. Fuels, 29, 954–967, https://doi.org/10.1021/ef501258m, 2015.
Sakata, K., Sakaguchi, A., Yokoyama, Y., Terada, Y., and Takahashi, Y.: Lead
speciation studies on coarse and fine aerosol particles by bulk and micro
X-ray absorption fine structure spectroscopy, Geochem. J., 51, 215–225,
https://doi.org/10.2343/geochemj.2.0456, 2017.
Sakata, K., Kurisu, M., Tanimoto, H., Sakaguchi, A., Uematsu, M., Miyamoto,
C., and Takahashi, Y.: Custom-made PTFE filters for ultra-clean
size-fractionated aerosol sampling for trace metals, Mar. Chem., 206,
100–108, https://doi.org/10.1016/j.marchem.2018.09.009, 2018.
Sakata, K., Sakaguhci, A., Tanimizu, M., Takaku, Y., Yokoyama, Y., and
Takahashi, Y.: Identification of sources of lead in the atmosphere using
X-ray absorption near-edge structure (XANES) spectroscopy, J. Environ. Sci.,
26, 343–352, https://doi.org/10.1016/S1001-0742(13)60430-1, 2014.
Sakata, M., Kurata, M., and Tanaka, N.: Estimating contribution from
municipal solid waste incineration to trace metal concentrations in Japanese
urban atmosphere using lead as a marker element, Geochem. J., 34, 23–32,
https://doi.org/10.2343/geochemj.34.23, 2000.
Sakata, K., Kurisu, M., Takeichi, Y., Sakaguchi, A., Tanimoto, H., Tamenori, Y., Matsuki, A., and Takahashi, Y.: Iron (Fe) speciation in size-fractionated aerosol particles in the Pacific Ocean: The role of organic complexation of Fe with humic-like substances in controlling Fe solubility, Atmos. Chem. Phys., 22, 9461–9482, https://doi.org/10.5194/acp-22-9461-2022, 2022.
Sakata, K., Sakaguchi, A., Yamakawa, Y., Miyamoto, C., Kurisu, M., and Takahashi Y.: Concentration data of major ions, metals and dissolved metals in size-fractionated (seven-fractions) aerosol particles collected in Higashi-Hiroshima, Japan, ERAN database in University of Tsukuba [data set], https://www.ied.tsukuba.ac.jp/database/00156.html (last access: 23 August, 2023), 2023.
Schlitzer, R.: Ocean Data View, https://odv.awi.de/ (last access: 4 November
2022), 2021.
Schroth, A. W., Crusius, J., Sholkovitz, E. R., and Bostick, B. C.: Iron
solubility driven by speciation in dust sources to the ocean, Nat.
Geosci., 2, 337–340, https://doi.org/10.1038/ngeo501, 2009.
Sedwick, P. N., SHolkovitz, E. R., and Church, T. M.: Impact of
anthropogenic combustion emissions on the fractional solubility of aerosol
iron: Evidence from the Sargasso Sea, Geochem. Geophys. Geosyst., 8, Q10Q06,
https://doi.org/10.1029/2007GC001586, 2007.
Seidel, A. and Zimmels, Y.: Mechanism and kinetics of aluminium and iron
leaching from coal fly ash by sulfuric acid, Chem. Eng. Sci., 53,
3535–3852, https://doi.org/10.1016/S0009-2509(98)00201-2, 1998.
Shah, V., Jacob, D. J., Moch, J. M., Wang, X., and Zhai, S.: Global modeling of cloud water acidity, precipitation acidity, and acid inputs to ecosystems, Atmos. Chem. Phys., 20, 12223–12245, https://doi.org/10.5194/acp-20-12223-2020, 2020.
Shelley, R. U., Landing, W. M., Ussher, S. J., Planquette, H., and Sarthou, G.: Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach, Biogeosciences, 15, 2271–2288, https://doi.org/10.5194/bg-15-2271-2018, 2018.
Shi, Z. B., Woodhouse, M. T., Carslaw, K. S., Krom, M. D., Mann, G. W., Baker, A. R., Savov, I., Fones, G. R., Brooks, B., Drake, N., Jickells, T. D., and Benning, L. G.: Minor effect of physical size sorting on iron solubility of transported mineral dust, Atmos. Chem. Phys., 11, 8459–8469, https://doi.org/10.5194/acp-11-8459-2011, 2011.
Sholkovitz, E. R., Sedwick, P. N., and Church, T. M.: Influence of
anthropogenic combustion emissions on the deposition of soluble aerosol iron
to the ocean: Empirical estimates for island sites in the North Atlantic,
Geochim. Csmochim. Ac., 73, 14, 3981–4003,
https://doi.org/10.1016/j.gca.2009.04.029, 2009.
Sholkovitz, E. R., Sedwick, P. N., Church, T. M., Baker, A. R., and Powell,
C. F.: Fractional solubility of aerosol iron: Synthesis of a global-scale
data set, Geochim. Cosmochim. Ac., 89, 173–189,
https://doi.org/10.1016/j.gca.2012.04.022, 2012.
Shupert, L. A., Ebbs, S. D., Lawrence, J., Gibson, D. J., and Filip, P.:
Dissolution of copper and iron from automotive brake pad wear debris
enhances growth and accumulation by the invasive macrophyte Salvinia molesta
Mitchell, Chemosphere, 92, 45–51,
https://doi.org/10.1016/j.chemosphere.2013.03.002, 2013.
Song, Q., and Osada, K.: Seasonal variation of aerosol acidity in Nagoya,
Japan and factors affecting it, Atmos. Environ., 5, 200062,
https://doi.org/10.1016/j.aeaoa.2020.100062, 2020.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: Noaa's hysplit atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., and Prather, K. A.: Direct observations of the atmospheric processing of Asian mineral dust, Atmos. Chem. Phys., 7, 1213–1236, https://doi.org/10.5194/acp-7-1213-2007, 2007.
Tagliabue, A., Bowie, A. R., Boyd, P. W., Buck, K. N., Johnson, K. S.,
Saito, and M. A.: The integral role of iron in ocean biogeochemistry,
Nature, 543, 51–59, https://doi.org/10.1038/nature21058, 2017.
Takahashi, Y., Furukawa, T., Kanai, Y., Uematsu, M., Zheng, G., and Marcus, M. A.: Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan, Atmos. Chem. Phys., 13, 7695–7710, https://doi.org/10.5194/acp-13-7695-2013, 2013.
Takahashi, Y., Higashi, M., Furukawa, T., and Mitsunobu, S.: Change of iron
species and iron solubility in Asian dust during the long-range transport
from western China to Japan, Atmos. Chem. Phys., 11, 11237–11252,
https://doi.org/10.5194/acp-11-11237-2011, 2011.
Tao, Y. and Murphy, J. G.: The sensitivity of PM2.5 acidity to meteorological parameters and chemical composition changes: 10-year records from six Canadian monitoring sites, Atmos. Chem. Phys., 19, 9309–9320, https://doi.org/10.5194/acp-19-9309-2019, 2019a.
Tao, Y. and Murphy, J. G.: The mechanisms responsible for the interactions
among oxalate, pH, and Fe dissolution in PM2.5, ACS Earth Space Chem., 3,
2259–2265, https://doi.org/10.1021/acsearthspacechem.9b00172, 2019b.
Taylor, S. R.: Abundance of chemical elements in the continental crust: a
new table, Geochim. Cosmochim. Ac., 28, 1273–1285,
https://doi.org/10.1016/0016-7037(64)90129-2, 1964.
Tian., S., Pan, Y., Liu, Z., Wen, T., and Wang, Y.: Size-resolved aerosol
chemical analysis of extreme haze pollution events during early 2013 in
urban Beijing, China, J. Hazard. Mat., 279, 452–460,
https://doi.org/10.1016/j.jhazmat.2014.07.023, 2014.
Uno, I., Stake, S., Carmichael, G. R., Tang, Y., Wang, Z., Takemura, T.,
Sugimoto, N., Shimizu, A., Murayama, T., Cahill, T. A., Cliff, S., Uematsu,
M., Ohta, S., Quinn, P. K., and Bates, T. S.: Numerical study of Asian dust
transport during the springtime of 2001 simulated with the Chemical Weather
Forecasting System (CFORS) model, J. Geophys. Res., 109, D19S24,
https://doi.org/10.1029/2003JD004222, 2004.
Wåhlin, P., Berkowicz, R., and Palmgren, F.: Characterisation of
traffic-generated particulate matter in Copenhagen, Atmos. Environ., 40,
2151–2159, https://doi.org/10.1016/j.atmosenv.2005.11.049, 2006.
Wang, Y. S., Yao, L., Wang, L. L., Liu, Z. R., Ji, D. S., Tang, G. Q., Zhang, J.,
Sun, Y., Hu, B., and Xin, J. Y.: Mechanism for the formation of the January
2013 heavy haze pollution episode over central and eastern China, Sci. China
Earth Sci., 57, 14–25, https://doi.org/10.1007/s11430-013-4773-4, 2014.
Wang, Z., Fu, H., Zhang, L., Song, W., and Chen, J.: Ligand-promoted
photoreductive dissolution of goethite by atmospheric low-molecular
dicarboxylates, J. Phys. Chem. A, 121, 16471656,
https://doi.org/10.1021/acs.jpca.6b09160, 2017.
Wang, Z., Wang, T., Fu, H., Zhang, L., Tang, M., George, C., Grassian, V. H., and Chen, J.: Enhanced heterogeneous uptake of sulfur dioxide on mineral particles through modification of iron speciation during simulated cloud processing, Atmos. Chem. Phys., 19, 12569–12585, https://doi.org/10.5194/acp-19-12569-2019, 2019.
Zhang, H., Li, R., Dong, S., Wang, F., Zhu, Y., Meng, H., Huang, C., Ren,
Y., Wang, X., Hu, X., Li, T., Peng, C., Zhang, G., Xue, L., Wang, X., and
Tang, M.: Abundance and fractional solubility of aerosol iron during winter
at a coastal city in Northern China: Similarities and contrasts between fine
and coarse particles J. Geophys. Res.-Atmos., 127, e2021JD036070,
https://doi.org/10.1029/2021JD036070, 2022.
Zhang, H., Li, R., Huang, C., Li, X., Dong, S., Wang, F., Li, T., Chen, Y., Zhang, G., Ren, Y., Chen, Q., Huang, R., Chen, S., Xue, T., Wang, X., and Tang, M.: Seasonal variation of aerosol iron solubility in coarse and fine particles at an inland city in northwestern China, Atmos. Chem. Phys., 23, 3543–3559, https://doi.org/10.5194/acp-23-3543-2023, 2023.
Zhang, L., Wang, Q., Sata, A., Ninomiya, Y., and Yamashita, T.: Interactions
among inherent minerals during coal combustion and their impacts on the
emission of PM10.2, Emission of submicrometer-sized particles, Energ.
Fuels, 21, 766–777, https://doi.org/10.1021/ef060308x, 2007.
Zhu, Q., Liu, Y., Shao, T., and Tang, Y.: Transport of Asian aerosols to the
Pacific Ocean, Atmos. Res., 234, 104735,
https://doi.org/10.1016/j.atmosres.2019.104735, 2020.
Zhu, Y., Li, W., Lin, Q., Yuan, Q., Liu, L., Zhang, J., Zhang, Y., Shao, L.,
Niu, H., Yang, S., and Shi, Z.: Iron solubility in fine particles associated
with secondary acidic aerosols in east China, Environ. Pollut., 264, 114769,
https://doi.org/10.1016/j.envpol.2020.114769, 2020.
Zhu, Y., Li, W., Wang, Y., Zhang, J., Liu, L., Xu, L., Xu, J., Shi, J., Shao, L., Fu, P., Zhang, D., and Shi, Z.: Sources and processes of iron aerosols in a megacity in Eastern China, Atmos. Chem. Phys., 22, 2191–2202, https://doi.org/10.5194/acp-22-2191-2022, 2022.
Zuo, P., Huang, Y., Liu, P., Zhang, J., Yang, H., Liu, L., Bi, J., Lu, D.,
Zhang, Q., Liu, Q., and Jiang, G.: Stable iron isotopic signature reveals
multiple sources of magnetic particulate matter in the 2021 Beijing
sandstorms, Environ. Sci. Tech. Lett., 9, 299–305,
https://doi.org/10.1021/acs.estlett.2c00144, 2022.
Short summary
Anthropogenic iron is the dominant source of dissolved Fe in aerosol particles, but its contribution to dissolved Fe in aerosol particles has not been quantitatively evaluated. We established the molar concentration ratio of dissolved Fe to dissolved Al as a new indicator to evaluate the contribution of anthropogenic iron. As a result, about 10 % of dissolved Fe in aerosol particles was derived from anthropogenic iron when aerosol particles were transported from East Asia to the Pacific Ocean.
Anthropogenic iron is the dominant source of dissolved Fe in aerosol particles, but its...
Altmetrics
Final-revised paper
Preprint