Articles | Volume 23, issue 17
https://doi.org/10.5194/acp-23-9815-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-9815-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Stoichiometry of dissolved iron and aluminum as an indicator of the factors controlling the fractional solubility of aerosol iron – results of the annual observations of size-fractionated aerosol particles in Japan
Earth System Division, National Institute for Environmental Studies,
16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
Aya Sakaguchi
Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1
Tennodai, Tsukuba, Ibaraki 305-8577, Japan
Yoshiaki Yamakawa
Graduate School of Science, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo, 113-0033, Japan
Chihiro Miyamoto
Graduate School of Science, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo, 113-0033, Japan
Minako Kurisu
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology, 2-15Natsushima-cho, Yokosuka,
Kanagawa 237-0061, Japan
Yoshio Takahashi
Graduate School of Science, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo, 113-0033, Japan
Related authors
Kohei Sakata, Shotaro Takano, Atsushi Matsuki, Yasuo Takeichi, Hiroshi Tanimoto, Aya Sakaguchi, Minako Kurisu, and Yoshio Takahashi
Atmos. Chem. Phys., 25, 11087–11107, https://doi.org/10.5194/acp-25-11087-2025, https://doi.org/10.5194/acp-25-11087-2025, 2025
Short summary
Short summary
Deposition of aerosol iron (Fe) into the ocean stimulates primary production and influences the global carbon cycle, although the factors governing the aerosol Fe solubility remain uncertain. Our observations in Japan revealed that both mineral dust and anthropogenic aerosols are significant sources of dissolved Fe, and that atmospheric chemical weathering enhances their solubility. This finding is expected to play a crucial role in estimating the supply of dissolved iron to the ocean.
Kohei Sakata, Minako Kurisu, Yasuo Takeichi, Aya Sakaguchi, Hiroshi Tanimoto, Yusuke Tamenori, Atsushi Matsuki, and Yoshio Takahashi
Atmos. Chem. Phys., 22, 9461–9482, https://doi.org/10.5194/acp-22-9461-2022, https://doi.org/10.5194/acp-22-9461-2022, 2022
Short summary
Short summary
Iron (Fe) species in size-fractionated aerosol particles collected in the western Pacific Ocean were determined to identify factors controlling fractional Fe solubility. We found that labile Fe was mainly present in submicron aerosol particles, and the Fe species were ferric organic complexes combined with humic-like substances (Fe(III)-HULIS). The Fe(III)-HULIS was formed by atmospheric processes. Thus, atmospheric processes play a significant role in controlling Fe solubility.
Minako Kurisu, Kohei Sakata, Mitsuo Uematsu, Akinori Ito, and Yoshio Takahashi
Atmos. Chem. Phys., 21, 16027–16050, https://doi.org/10.5194/acp-21-16027-2021, https://doi.org/10.5194/acp-21-16027-2021, 2021
Short summary
Short summary
Aerosol iron (Fe) input can enhance oceanic primary production. We analyzed Fe isotope ratios of size-fractionated aerosols over the northwestern Pacific to evaluate the contribution of natural and combustion Fe. It was found that combustion Fe was an important soluble Fe source in marine aerosols and possibly in surface seawater when air masses were from East Asia. This study shows the applicability of Fe isotope ratios for a more quantitative understanding of the Fe cycle in the surface ocean.
Kohei Sakata, Shotaro Takano, Atsushi Matsuki, Yasuo Takeichi, Hiroshi Tanimoto, Aya Sakaguchi, Minako Kurisu, and Yoshio Takahashi
Atmos. Chem. Phys., 25, 11087–11107, https://doi.org/10.5194/acp-25-11087-2025, https://doi.org/10.5194/acp-25-11087-2025, 2025
Short summary
Short summary
Deposition of aerosol iron (Fe) into the ocean stimulates primary production and influences the global carbon cycle, although the factors governing the aerosol Fe solubility remain uncertain. Our observations in Japan revealed that both mineral dust and anthropogenic aerosols are significant sources of dissolved Fe, and that atmospheric chemical weathering enhances their solubility. This finding is expected to play a crucial role in estimating the supply of dissolved iron to the ocean.
Kohei Sakata, Minako Kurisu, Yasuo Takeichi, Aya Sakaguchi, Hiroshi Tanimoto, Yusuke Tamenori, Atsushi Matsuki, and Yoshio Takahashi
Atmos. Chem. Phys., 22, 9461–9482, https://doi.org/10.5194/acp-22-9461-2022, https://doi.org/10.5194/acp-22-9461-2022, 2022
Short summary
Short summary
Iron (Fe) species in size-fractionated aerosol particles collected in the western Pacific Ocean were determined to identify factors controlling fractional Fe solubility. We found that labile Fe was mainly present in submicron aerosol particles, and the Fe species were ferric organic complexes combined with humic-like substances (Fe(III)-HULIS). The Fe(III)-HULIS was formed by atmospheric processes. Thus, atmospheric processes play a significant role in controlling Fe solubility.
Minako Kurisu, Kohei Sakata, Mitsuo Uematsu, Akinori Ito, and Yoshio Takahashi
Atmos. Chem. Phys., 21, 16027–16050, https://doi.org/10.5194/acp-21-16027-2021, https://doi.org/10.5194/acp-21-16027-2021, 2021
Short summary
Short summary
Aerosol iron (Fe) input can enhance oceanic primary production. We analyzed Fe isotope ratios of size-fractionated aerosols over the northwestern Pacific to evaluate the contribution of natural and combustion Fe. It was found that combustion Fe was an important soluble Fe source in marine aerosols and possibly in surface seawater when air masses were from East Asia. This study shows the applicability of Fe isotope ratios for a more quantitative understanding of the Fe cycle in the surface ocean.
Cited articles
Acker, J. G. and Bricker, O. P.: The influence of pH on biotite dissolution
and alteration kinetics at low temperature, Geochim. Cosmochim. Ac., 56,
3073–3092, https://doi.org/10.1016/0016-7037(92)90290-Y, 1992.
Adachi, K. and Tainosho, Y.: Characterization of heavy metal particles
embedded in tire dust, Environ. Int., 30, 1009–1017,
https://doi.org/10.1016/j.envint.2004.04.004, 2004.
Akita, S., Maeda, T., and Takeuchi, H.: Recovery of vanadium and nickel in
fly ash from heavy oil, J. Chem., Tech. Biotechnol., 62, 345–350,
https://doi.org/10.1002/jctb.280620406, 1995.
Baker, A. R. and Jickells, T. D.: Atmospheric deposition of soluble trace
elements along the Atlantic Meridional Transect (AMT), Prog. Oceanogr., 158,
41–51, https://doi.org/10.1016/j.pocean.2016.10.002, 2017.
Baker, A. R. and Jickells, T. D.: Mineral particle size as a control on
aerosol iron solubility, Geophys. Res. Lett., 33, L17608,
https://doi.org/10.1029/2006GL026557, 2006.
Baker, A. R., Li, M., and Chance, R.: Trace metal fractional solubility in
size-segregated aerosols from the tropical eastern Atlantic Ocean, Global
Biogeochm. Cy., 34, e2019GB006510, https://doi.org/10.1029/2019GB006510,
2020.
Bibi, I., Singh, B., and Silvester, E.: Dissolution of illite in
saline-acidic solutions at 25 ∘C, Geochim. Cosmochim. Ac.,
75, 3237–3249, https://doi.org/10.1016/j.gca.2011.03.022, 2011.
Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler,
K. O., Coale, K. H., Cullen, J. J., de Beear, H. J. W., Follows, M., Harvey,
M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R.
B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A.,
Turner, S., and Watson, A. J.: Mesoscale iron enrichment experiments
1993–2005: Synthesis, and future directions, Science, 315, 612–617,
https://doi.org/10.1126/science.1131669, 2007.
Brantley, S. L., Kubicki, J. D., and White, A. F.: Kinetics of water-rock
interaction, Springer, New York, https://doi.org/10.1007/978-0-387-73563-4,
2008.
Bray, A. W., Oelkers, E. H., Bonneville, S., Wolff-Boenisch, D., Potts, N.
J., Fones, G., and Benning, L. G.: The effect of pH, grain size, and organic
ligands on biotite weathering rates, Geochim. Cosmochim. Ac., 164,
127–145, https://doi.org/10.1016/j.gca.2015.04.048, 2015.
Buck, C. S., Landing, W. M., and Resing, J.: Pacific Ocean aerosols:
Deposition and solubility of iron, aluminum, and other trace elements, Mar.
Chem., 157, 117–130, https://doi.org/10.1016/j.marchem.2013.09.005, 2013.
Buck, C. S., Landing, W. M., and Resing, J.: Particle size and aerosol iron
solubility: A high-resolution analysis of Atlantic aerosols, Mar. Chem.,
120, 14–24, https://doi.org/10.1016/j.marchem.2008.11.002, 2010a.
Buck, C. S., Landing, W. M., Resing, J. A. and Lebon, G. T.: Aerosol iron
and aluminum solubility in the northwest Pacific Ocean: Results from the
2002 IOC cruise, Geochem. Geophys. Geosyst., 7, 4, Q04M07,
https://doi.org/10.1029/2005GC000977, 2006.
Buck, C. S., Landing, W. M., Resing, J. A., and Measures, C. I.: The
solubility and deposition of aerosol Fe and other trace elements in the
North Atlantic Ocean: Observations from the A16N CLIVAR/CO2 repeat
hydrography section, Mar. Chem., 120, 57–70,
https://doi.org/10.1016/j.marchem.2008.08.003, 2010b.
Cao, J. J., Chow, J. C., Watson, J. G., Wu, F., Han, Y. M., Jin, Z. D.,
Shen, Z. X., and An, Z. S.: Size-differentiated source profiles for fugitive
dust in the Chinese Loess Plateau, Atmos. Environ., 42, 2261–2275,
https://doi.org/10.1016/j.atmosenv.2007.12.041, 2008.
Chance, R., Jickells, T. D., and Baker, A. R.: Atmospheric trace metal
concentrations, solubility and deposition fluxes in remote marine air over
the south-east Atlantic. Mar. Chem., 177, 45–56,
https://doi.org/10.1016/j.marchem.2015.06.028, 2015.
Chang, C. Y., Wang, C. F., Mui, D. T., and Chiang, H. L.: Application of
methods (sequential extraction procedures and high-pressure digestion
method) to fly ash particles to determine the element constituents: A case
study for BCR-176, J. Hazard. Mater., 163, 578–587,
https://doi.org/10.1016/j.jhazmat.2008.07.039, 2009.
Chen, H. and Grassian, V. H.: Iron dissolution of dust source materials
during simulated acidic processing: The effect of sulfuric, acetic, and
oxalic acids, Environ. Sci. Technol., 47, 1031210321,
https://doi.org/10.1021/es401285s, 2013.
Clegg, S. L., Pitzer, K. S., and Brimblecombe, P.: Thermodynamics of
multicomponent, miscible, ionic solutions. II. Mixtures including
unsymmetrical electrolyte. J. Phys. Chem., 96, 9470–9479,
https://doi.org/10.1021/j100202a074, 1992.
Conway, T. M., Hamilton D. S., Shelley, R. U., Aguilar-Islas, A. M.,
Landing, W. M., Mahowald, N., and John, S. G.: Tracing and constraining
anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron
isotopes, Nat. Commun., 10, 2628,
https://doi.org/10.1038/s41467-019-10457-w, 2019.
Czech, T.: Morphology and chemical composition of magnetic particles
separated from coal fly ash, Materials, 15, 528,
https://doi.org/10.3390/ma15020528, 2022.
Desboeufs, K. V., Losno, R., and Colin, J. L.: Factors influencing aerosol
solubility during cloud processes, Atmos. Environ., 35, 3529–3537,
https://doi.org/10.1016/S1352-2310(00)00472-6, 2001.
Ding, Z. L., Sun, J. M., Yang, S. L., and Liu, T. S.: Geochemistry of the
Pliocene red clay formation in the Chinese Loess Plateau and implications
for its origin, source provenance and paleoclimate change, Geochim. Cosmochim. Ac., 65, 901–913,
https://doi.org/10.1016/S0016-7037(00)00571-8, 2001.
Duvall, R. M., Majestic, B. J., Shafer, M. M., Chuang, P. Y., Simoneit, B.
R. T. and Schauer, J. J.: The water-soluble fraction of carbon, sulfur, and
crustal elements in Asian aerosols and Asian soils, Atmos. Environ., 42,
5872–5884, https://doi.org/10.1016/j.atmosenv.2008.03.028, 2008.
Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser,
J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. T.,
Moore, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., and
Steffen, W.: The global carbon cycle: A test of our knowledge of earth as a
system, Science, 290, 291–296,
https://doi.org/10.1126/science.290.5490.291, 2000.
Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., and Weber, R.: Highly
Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link
between Sulfate and Aerosol Toxicity, Environ. Sci. Technol., 51,
2611–2620, https://doi.org/10.1021/acs.est.6b06151, 2017.
Fitzgerald, E., Ault, A. P., Zauscher, M. D., Mayol-Bracero, O. L., and
Prather, K. A.: Comparison of the mixing state of long-range transported
Asian and African mineral dust, Atmos. Environ., 115, 19–25,
https://doi.org/10.1016/j.atmosenv.2015.04.031, 2015.
Fomenko, E. V., Anshits, N. N., Solovyov, L. A., Knyazev, Y. V., Semenov, S.
V., Bayukov, O. A., and Anshits, A. G.: Magnetic fractions of PM2.5,
PM2.5−10, PM10 from coal fly ash as environmental pollutants, ACS Omega, 6,
20076–20085, https://doi.org/10.1021/acsomega.1c03187, 2021.
Friese, E. and Ebel, A.: Temperature dependent thermodynamic model of the
system H+–NH4+–Na+–SO —NO3—Cl—H2O, J. Phys. Chem. A, 114,
11595–11631, https://doi.org/10.1021/jp101041j, 2010.
Furuya, K., Miyajima, Y., Chiba, T., and Kikuchi, T.: Elemental
characterization of particle size-density separated coal fly ash by
spectrophotometry, inductively coupled plasma emission spectrometry, and
scanning electron microscopy-energy dispersive X-ray analysis. Environ. Sci.
Technol., 21, 898–903, https://doi.org/10.1021/es00163a008, 1987.
Gao, Y., Marsay, C. M., Yu, S., Fan, S., Mukherjee, P., Buck, C. S., and
Landing, W. M.: Particle-size variability of aerosol iron and impact on iron
solubility and dry deposition fluxes to the Arctic Ocean, Sci. Rep., 9,
16653, https://doi.org/10.1038/s41598-019-52468-z, 2019.
Gietl, J. K., Lawrence, R., Thorpe, A. J., and Harrison, R. M.:
Identification of brake wear particles and derivation of a quantitative
tracer for brake dust at a major road. Atmos. Environ., 44, 141–146,
https://doi.org/10.1016/j.atmosenv.2009.10.016, 2010.
Gitari, W. M., Fatoba, O. O., Petrik, L. F., and Vadapalli, V. R. K.:
Leaching characteristics of selected south African fly ashes: Effect of pH
on the release of major and trace species, J. Environ. Sci. Health A, 44,
206–220, https://doi.org/10.1080/10934520802539897, 2009.
Guo, H., Nenes, A., and Weber, R. J.: The underappreciated role of nonvolatile cations in aerosol ammonium-sulfate molar ratios, Atmos. Chem. Phys., 18, 17307–17323, https://doi.org/10.5194/acp-18-17307-2018, 2018.
Halle, L. L., Palmqvist, A., Kampmann, K., Jensen, A., Hansen, T., and Khan,
F. R.: Tire wear particle and leachate exposures from a pristine and
road-worn tire to Hyalella azteca: Comparison of chemical content and
biological effects, Aquat. Toxicol., 232, 105769,
https://doi.org/10.1016/j.aquatox.2021.105769, 2021.
Hansen, L. D., Silberman, D., and Fisher, G. L.: Crystalline components of
stack-collected, size-fractionated coal fly ash, Environ. Sci. Technol., 15,
1057–1062, https://doi.org/10.1021/es00091a004, 1981.
Harrison, R. M., Allan, J., Carruthers, D., Heal, M. R., Lewis, A. C.,
Marner, B., Murrells, T., and Williams, A.: Non-exhaust vehicle emissions of
particulate matter and VOC from road traffic: A review, Atmos. Environ.,
262, 118592, https://doi.org/10.1016/j.atmosenv.2021.118592, 2021.
Hsieh, C. C., Chen, H. Y., and Ho, T. Y.: The effect of aerosol size on Fe
solubility and deposition flux: A case study in the East China Sea, Mar.
Chem., 241, 104106, https://doi.org/10.1016/j.marchem.2022.104106, 2022.
Huang, S. J., Chang, C. Y., Mui, D. T., Chang, F. C., Lee, M. Y., and Wang,
C. F.: Sequential extraction for evaluating the leaching behavior of
selected elements in municipal solid waste incineration fly ash, J. Hazard.
Mat., 149, 180–188, https://doi.org/10.1016/j.jhazmat.2007.03.067, 2007.
Iijima, A., Sato, K., Yano, K., Tago, H., Kato, M., Kimura, H., and Furuta,
N.: Particle size and composition distribution analysis of automotive brake
abrasion dusts for the evaluation of antimony sources of airborne
particulate matter, Atmos. Environ., 41, 4908–4919,
https://doi.org/10.1016/j.atmosenv.2007.02.005, 2007.
Ito, A., Myriokefalitakis, S., Kanakidou, M., Mahowald, N. M., Scanza, R.
A., Hamilton, D. S., Baker, A. R., Jickells, T., Sarin, M., Bikkina, S.,
Gao, Y., Shelley, R. U., Buck, C. S., Landing, W. M., Bowie, A. R., Perron,
M. M. G., GUieu, C., Meskhidze, N., Johnson, M. S., Feng, Y., Kok, J. F.,
Nenes, A., and Duce, R. A.: Pyrogenic iron: The missing link to high iron
solubility in aerosols, Sci. Adv., 5, eaau7671,
https://doi.org/10.1126/sciadv.aau7671, 2019.
Ito, A., Ye, Y., Baldo, C., and Shi, Z.: Ocean fertilization by pyrogenic
aerosol iron, npj Clim. Atmos. Sci., 4, 30,
https://doi.org/10.1038/s41612-021-00185-8, 2021.
Jeong, G. Y. and Achterberg, E. P.: Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans, Atmos. Chem. Phys., 14, 12415–12428, https://doi.org/10.5194/acp-14-12415-2014, 2014.
Jeong, G. Y. and Nousiainen, T.: TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling, Atmos. Chem. Phys., 14, 7233–7254, https://doi.org/10.5194/acp-14-7233-2014, 2014.
Jeong, G. Y.: Mineralogy and geochemistry of Asian dust: dependence on
migration path, fractionation, and reactions with polluted air, Atmos. Chem.
Phys., 20, 7411–7428, https://doi.org/10.5194/acp-20-7411-2020, 2020.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G.,
Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata,
H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M.,
Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron connections between
desert dust, ocean biogeochemistry, and climate, Science, 308, 67–71,
https://doi.org/10.1126/science.1105959, 2005.
Jickells, T. D., Baker, A. R., and Chance, R.: Atmospheric transport of
trace elements and nutrients to the oceans, Philos. T. Roy. Soc. A, 374,
20150286, https://doi.org/10.1098/rsta.2015.0286, 2016.
Journet, E., Desboeufs, K. V., Caquineau, S., and Colin, J. L.: Mineralogy
as a critical factor of dust iron solubility, Geophys. Res. Lett., 35,
L07805, https://doi.org/10.1029/2007GL031589, 2008.
Kajino, M., Hagino, H., Fujitani, Y., Morikawa, T., Fukui, T., Onishi, K.,
Okuda, T., Kajikawa, T., and Igarashi, Y.: Modeling transition metals in
East Asia and Japan and its emission sources, GeoHealth, 4, e2020GH00259,
https://doi.org/10.1029/2020GH000259, 2020.
Kakavas, S., Patoulias, D., Zakoura, M., Nenes, A., and Pandis, S. N.: Size-resolved aerosol pH over Europe during summer, Atmos. Chem. Phys., 21, 799–811, https://doi.org/10.5194/acp-21-799-2021, 2021.
Karydis, V. A., Tsimpidi, A. P., Pozzer, A., Astitha, M., and Lelieveld, J.: Effects of mineral dust on global atmospheric nitrate concentrations, Atmos. Chem. Phys., 16, 1491–1509, https://doi.org/10.5194/acp-16-1491-2016, 2016.
Kim, A. G., Kazonich, G., and Dahlberg, M.: Relative solubility of cations
in class F fly ash, Environ. Sci. Technol., 37, 4507–4511,
https://doi.org/10.1021/es0263691, 2003.
Kodama, H. and Schnitzer, M.: Dissolution of chlorite minerals by fulvic
acid, Can. J. Soil Sci., 53, 240–243, https://doi.org/10.4141/cjss73-036,
1973.
Komonweeraket, K., Cetin, B., Aydilek, A. H., Benson, C. H., and Edil, T.
B.: Effects of pH on the leaching mechanisms of elements from fly ash mixed
soils, Fuel, 140, 788–802, https://doi.org/10.1016/j.fuel.2014.09.068,
2015.
Kukier, U., Ishak, C. F., Sumner, M. E., and Miller, W. P.: Composition and
element solubility of magnetic and non-magnetic fly ash fractions, Environ.
Pollut., 123, 255–266, https://doi.org/10.1016/S0269-7491(02)00376-7, 2003.
Kurisu, M., Adachi, K., Sakata, K., and Takahashi, Y.: Stable isotope ratios
of combustion iron produced by evaporation in a steel plant, ACS Earth Space
Chem., 3, 588–598, https://doi.org/10.1021/acsearthspacechem.8b00171, 2019.
Kurisu, M., Sakata, K., Miyamoto, C., Takaku, Y., Iizuka, T., and Takahashi,
Y.: Variation of iron isotope ratios in anthropogenic materials emitted
through combustion processes, Chem. Lett., 45, 970–972,
https://doi.org/10.1246/cl.160451, 2016b.
Kurisu, M., Sakata, K., Uematsu, M., Ito, A., and Takahashi, Y.: Contribution of combustion Fe in marine aerosols over the northwestern Pacific estimated by Fe stable isotope ratios, Atmos. Chem. Phys., 21, 16027–16050, https://doi.org/10.5194/acp-21-16027-2021, 2021.
Kurisu, M., Takahashi, Y., Iizuka, T., and Uematsu, M.: Very low isotope
ratio of iron in fien aerosols related to its contribution to the surface
ocean, J. Geophys. Res.-Atmos., 121, 11119–11136,
https://doi.org/10.1002/2016JD024957, 2016a.
Li, R., Zhang, H., Wang, F., He, Y., Huang, C., Luo, L., Dong, S, Jia, X.,
and Tang, M.: Mass fractions, solubility, speciation and isotopic
compositions of iron in coal and municipal waste fly ash, Sci. Total
Environ., 838, 155974, https://doi.org/10.1016/j.scitotenv.2022.155974,
2022.
Li, S., Zhang, B., Wu, D., Li, Z., Chu, S. Q., Ding, X., Tang, X., Chen, J.,
and Li, Q.: Magnetic particles unintentionally emitted from anthropogenic
sources: Iron and steel plants, Environ. Sci. Technol., Lett., 8, 295–300,
https://doi.org/10.1021/acs.estlett.1c00164, 2021.
Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D.,
Chen, J., Wang, W., Harrison, R. M., Zhang, X., Shao, L., Fu, P., Nenes, A.,
and Shi, Z.: Air pollution-aerosol interactions produce more bioavailable
iron for ocean ecosystems, Sci. Adv., 3, e1601749,
https://doi.org/10.1126/sciadv.1601749, 2017.
Lin, Q., Bi, X., Zhang, G., Yang, Y., Peng, L., Lian, X., Fu, Y., Li, M., Chen, D., Miller, M., Ou, J., Tang, M., Wang, X., Peng, P., Sheng, G., and Zhou, Z.: In-cloud formation of secondary species in iron-containing particles, Atmos. Chem. Phys., 19, 1195–1206, https://doi.org/10.5194/acp-19-1195-2019, 2019.
Liu, L., Li, W., Lin, Q., Wang, Y., Zhang, J., Zhu, Y., Yuan, Q., Zhou, S.,
Zhang, D., Baldo, C., and Shi, Z.: Size-dependent aerosol iron solubility in
an urban atmosphere, NPJ Clim. Atmos. Sci., 5, 54,
https://doi.org/10.1038/s41612-022-00277-z, 2022.
Liu, L., Zhang, J., Xu, L., Yuan, Q., Huang, D., Chen, J., Shi, Z., Sun, Y., Fu, P., Wang, Z., Zhang, D., and Li, W.: Cloud scavenging of anthropogenic refractory particles at a mountain site in North China, Atmos. Chem. Phys., 18, 14681–14693, https://doi.org/10.5194/acp-18-14681-2018, 2018.
Liu, X., Turner, J. R., Hand, J. L., Schichtel, B. A., and Martin, R. V.: A
global-scale mineral dust equation, J. Geophys. Res.-Atmos., 127,
e2022JD036937, https://doi.org/10.1029/2022JD036937, 2022.
Lowson, R. T., Comarmond, J., Rajaratnam, G., and Brown, P. L.: The kinetics
of the dissolution of chlorite as a function of pH and at
25 ∘C, Geochim. Cosmochim. Ac., 69, 1687–1699,
https://doi.org/10.1016/j.gca.2004.09.028, 2005.
Mahowald, N. M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P.,
Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P. Y., Cohen, D. D.,
Dulac, F., Herut, B., Johansen, A. M., Kubilay, N., Losno, R., Maenhaut, W.,
Paytan, A., Prospero, J. M., Shank, L. M., and Siefert, R. L.: Atmospheric
iron deposition: Global distribution, variability and human perturbations.
Annu. Rev. Mar. Sci. 1, 245–278,
https://doi.org/10.1146/annurev.marine.010908.163727, 2009.
Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K., Baker, A.
R., Scanza, R. A. and Zhang, Y.: Aerosol trace metal leaching and impacts on
marine microorganisms, Nat. Commun., 9, 1–15,
https://doi.org/10.1038/s41467-018-04970-7, 2018.
Marcotte, A. R., Anbar, A. D., Majestic, B. J., and Herckes, P.: Mineral
dust and iron solubility: Effects of composition, particles size, and
surface area, Atmosphere, 11, 533, https://doi.org/10.3390/atmos11050533, 2020.
Martin, J. H. and Fitzwater, S. E.: Iron deficiency limits phytoplankton
growth in the north-west Pacific subarctic, Nature, 331, 341–343,
https://doi.org/10.1126/science.1105959, 1988.
Martin, J. H.: Glacial-interglacial CO2 change: The iron hypothesis,
Paleoceanogr., 5, 1, 1–13, https://doi.org/10.1029/PA005i001p00001, 1990.
Martínez-García, A., Rosell-Melé, A., Geibert, W., Gersonde,
R., Masqué, P., Gaspari, V., and Barbante, C.: Links between iron
supply, marine productivity, sea surface temperature, and CO2, over the last
1.1 Ma, Paleoceanogr., 24, PA1207, https://doi.org/10.1029/2008PA001657,
2009.
Martínez-García, A., Rosell-Melé, A., Jaccard, S. L., Geibert,
W., Sigman, D. M., and Haug, G. H.: Southern Ocean dust-climate coupling
over the past four million years, Nature, 476, 312–316,
https://doi.org/10.1038/nature10310, 2011.
Martínez-García, A., Sigman, D. M., Ren, H., Anderson, R. F.,
Straub, M., Hodell, D. A., Jaccard, S. L., Eglinton, T. I., and Haug, G. H.:
Iron fertilization of the subantarctic Ocean during the last ice age,
Science, 343, 1347–1350, https://doi.org/10.1126/science.1246848, 2014.
McDaniel, M. F. M., Ingall, E. D., Morton, Castorina, E., Weber, R. J.,
Shelley, R. U., Landing, W. M., Longo, A. F., Feng, Y., and Lai, B.:
Relationship between atmospheric aerosol mineral surface area and iron
solubility, ACS Earth Space Chem., 3, 2443–2451,
https://doi.org/10.1021/acsearthspacechem.9b00152, 2019.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingsted, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of
oceanic nutrient limitation, Nat. Geosci., 6, 701–710,
https://doi.org/10.1038/ngeo1765, 2013.
Nishikawa, M., Batdorj, D., Ukachi, M., Onishi, K., Nagano, K., Mori, I.,
Matsui, I., and Sano, T.: Preparation and chemical characterisation of an
Asian mineral dust certified reference material, Anal. Method., 5,
4088-4095, https://doi.org/10.1039/C3AY40435H, 2013.
Nozaki, Y.: Elemental Distribution, in: Encyclopedia of Ocean Sciences,
edited by: Steele, J. H., Thorpe, S. A., and Turekian, K. K., Academic, San
Diego, Enc. Ocean Sci., 840–845,
https://doi.org/10.1006/rwos.2001.0402, 2001.
Nriagu, J. O. and Pacyna, J. M.: Quantitative assessment of worldwide
contamination of air, water and soils by trace metals, Nature, 333,
134–139, https://doi.org/10.1038/333134a0, 1988.
Oakes, M., Ingall, E. D., Lai, B., Shafer, M. M., Hays, M. D., Liu, Z. G.,
Russell, A. G., and Weber, R. J.: Iron solubility related to particle sulfur
content in source emission and ambient fine particles, Environ. Sci.
Technol., 46, 6637–6644, https://doi.org/10.1021/es300701c, 2012.
Pacyna, J. M., and Pacyna, E.G.: An Assessment of Global and Regional
Emissions of Trace Metals to the Atmosphere from Anthropogenic Sources
Worldwide, Environ. Res., 9, 269–298,
https://doi.org/10.1139/a01-012, 2001.
Paris, R. and Desboeufs, K. V.: Effect of atmospheric organic complexation on iron-bearing dust solubility, Atmos. Chem. Phys., 13, 4895–4905, https://doi.org/10.5194/acp-13-4895-2013, 2013.
Praharaj, T., Powell, M. A., Hart, B. R., and Tripathy, S.: Leachability of
elements from sub-bituminous coal fly ash from India, Environ. Int., 27,
609–615, https://doi.org/10.1016/S0160-4120(01)00118-0, 2002.
Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A., and Zuend, A.: The acidity of atmospheric particles and clouds, Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, 2020.
Rivera. N., Kaur, N., Hesterberg, D., Ward, C. R., Austin, R. E., and
Duckworth, O. W.: Chemical composition, speciation and elemental
associations in coal fly ash samples related to the Kingston ash spill,
Energ. Fuels, 29, 954–967, https://doi.org/10.1021/ef501258m, 2015.
Sakata, K., Sakaguchi, A., Yokoyama, Y., Terada, Y., and Takahashi, Y.: Lead
speciation studies on coarse and fine aerosol particles by bulk and micro
X-ray absorption fine structure spectroscopy, Geochem. J., 51, 215–225,
https://doi.org/10.2343/geochemj.2.0456, 2017.
Sakata, K., Kurisu, M., Tanimoto, H., Sakaguchi, A., Uematsu, M., Miyamoto,
C., and Takahashi, Y.: Custom-made PTFE filters for ultra-clean
size-fractionated aerosol sampling for trace metals, Mar. Chem., 206,
100–108, https://doi.org/10.1016/j.marchem.2018.09.009, 2018.
Sakata, K., Sakaguhci, A., Tanimizu, M., Takaku, Y., Yokoyama, Y., and
Takahashi, Y.: Identification of sources of lead in the atmosphere using
X-ray absorption near-edge structure (XANES) spectroscopy, J. Environ. Sci.,
26, 343–352, https://doi.org/10.1016/S1001-0742(13)60430-1, 2014.
Sakata, M., Kurata, M., and Tanaka, N.: Estimating contribution from
municipal solid waste incineration to trace metal concentrations in Japanese
urban atmosphere using lead as a marker element, Geochem. J., 34, 23–32,
https://doi.org/10.2343/geochemj.34.23, 2000.
Sakata, K., Kurisu, M., Takeichi, Y., Sakaguchi, A., Tanimoto, H., Tamenori, Y., Matsuki, A., and Takahashi, Y.: Iron (Fe) speciation in size-fractionated aerosol particles in the Pacific Ocean: The role of organic complexation of Fe with humic-like substances in controlling Fe solubility, Atmos. Chem. Phys., 22, 9461–9482, https://doi.org/10.5194/acp-22-9461-2022, 2022.
Sakata, K., Sakaguchi, A., Yamakawa, Y., Miyamoto, C., Kurisu, M., and Takahashi Y.: Concentration data of major ions, metals and dissolved metals in size-fractionated (seven-fractions) aerosol particles collected in Higashi-Hiroshima, Japan, ERAN database in University of Tsukuba [data set], https://www.ied.tsukuba.ac.jp/database/00156.html (last access: 23 August, 2023), 2023.
Schlitzer, R.: Ocean Data View, https://odv.awi.de/ (last access: 4 November
2022), 2021.
Schroth, A. W., Crusius, J., Sholkovitz, E. R., and Bostick, B. C.: Iron
solubility driven by speciation in dust sources to the ocean, Nat.
Geosci., 2, 337–340, https://doi.org/10.1038/ngeo501, 2009.
Sedwick, P. N., SHolkovitz, E. R., and Church, T. M.: Impact of
anthropogenic combustion emissions on the fractional solubility of aerosol
iron: Evidence from the Sargasso Sea, Geochem. Geophys. Geosyst., 8, Q10Q06,
https://doi.org/10.1029/2007GC001586, 2007.
Seidel, A. and Zimmels, Y.: Mechanism and kinetics of aluminium and iron
leaching from coal fly ash by sulfuric acid, Chem. Eng. Sci., 53,
3535–3852, https://doi.org/10.1016/S0009-2509(98)00201-2, 1998.
Shah, V., Jacob, D. J., Moch, J. M., Wang, X., and Zhai, S.: Global modeling of cloud water acidity, precipitation acidity, and acid inputs to ecosystems, Atmos. Chem. Phys., 20, 12223–12245, https://doi.org/10.5194/acp-20-12223-2020, 2020.
Shelley, R. U., Landing, W. M., Ussher, S. J., Planquette, H., and Sarthou, G.: Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach, Biogeosciences, 15, 2271–2288, https://doi.org/10.5194/bg-15-2271-2018, 2018.
Shi, Z. B., Woodhouse, M. T., Carslaw, K. S., Krom, M. D., Mann, G. W., Baker, A. R., Savov, I., Fones, G. R., Brooks, B., Drake, N., Jickells, T. D., and Benning, L. G.: Minor effect of physical size sorting on iron solubility of transported mineral dust, Atmos. Chem. Phys., 11, 8459–8469, https://doi.org/10.5194/acp-11-8459-2011, 2011.
Sholkovitz, E. R., Sedwick, P. N., and Church, T. M.: Influence of
anthropogenic combustion emissions on the deposition of soluble aerosol iron
to the ocean: Empirical estimates for island sites in the North Atlantic,
Geochim. Csmochim. Ac., 73, 14, 3981–4003,
https://doi.org/10.1016/j.gca.2009.04.029, 2009.
Sholkovitz, E. R., Sedwick, P. N., Church, T. M., Baker, A. R., and Powell,
C. F.: Fractional solubility of aerosol iron: Synthesis of a global-scale
data set, Geochim. Cosmochim. Ac., 89, 173–189,
https://doi.org/10.1016/j.gca.2012.04.022, 2012.
Shupert, L. A., Ebbs, S. D., Lawrence, J., Gibson, D. J., and Filip, P.:
Dissolution of copper and iron from automotive brake pad wear debris
enhances growth and accumulation by the invasive macrophyte Salvinia molesta
Mitchell, Chemosphere, 92, 45–51,
https://doi.org/10.1016/j.chemosphere.2013.03.002, 2013.
Song, Q., and Osada, K.: Seasonal variation of aerosol acidity in Nagoya,
Japan and factors affecting it, Atmos. Environ., 5, 200062,
https://doi.org/10.1016/j.aeaoa.2020.100062, 2020.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: Noaa's hysplit atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., and Prather, K. A.: Direct observations of the atmospheric processing of Asian mineral dust, Atmos. Chem. Phys., 7, 1213–1236, https://doi.org/10.5194/acp-7-1213-2007, 2007.
Tagliabue, A., Bowie, A. R., Boyd, P. W., Buck, K. N., Johnson, K. S.,
Saito, and M. A.: The integral role of iron in ocean biogeochemistry,
Nature, 543, 51–59, https://doi.org/10.1038/nature21058, 2017.
Takahashi, Y., Furukawa, T., Kanai, Y., Uematsu, M., Zheng, G., and Marcus, M. A.: Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan, Atmos. Chem. Phys., 13, 7695–7710, https://doi.org/10.5194/acp-13-7695-2013, 2013.
Takahashi, Y., Higashi, M., Furukawa, T., and Mitsunobu, S.: Change of iron
species and iron solubility in Asian dust during the long-range transport
from western China to Japan, Atmos. Chem. Phys., 11, 11237–11252,
https://doi.org/10.5194/acp-11-11237-2011, 2011.
Tao, Y. and Murphy, J. G.: The sensitivity of PM2.5 acidity to meteorological parameters and chemical composition changes: 10-year records from six Canadian monitoring sites, Atmos. Chem. Phys., 19, 9309–9320, https://doi.org/10.5194/acp-19-9309-2019, 2019a.
Tao, Y. and Murphy, J. G.: The mechanisms responsible for the interactions
among oxalate, pH, and Fe dissolution in PM2.5, ACS Earth Space Chem., 3,
2259–2265, https://doi.org/10.1021/acsearthspacechem.9b00172, 2019b.
Taylor, S. R.: Abundance of chemical elements in the continental crust: a
new table, Geochim. Cosmochim. Ac., 28, 1273–1285,
https://doi.org/10.1016/0016-7037(64)90129-2, 1964.
Tian., S., Pan, Y., Liu, Z., Wen, T., and Wang, Y.: Size-resolved aerosol
chemical analysis of extreme haze pollution events during early 2013 in
urban Beijing, China, J. Hazard. Mat., 279, 452–460,
https://doi.org/10.1016/j.jhazmat.2014.07.023, 2014.
Uno, I., Stake, S., Carmichael, G. R., Tang, Y., Wang, Z., Takemura, T.,
Sugimoto, N., Shimizu, A., Murayama, T., Cahill, T. A., Cliff, S., Uematsu,
M., Ohta, S., Quinn, P. K., and Bates, T. S.: Numerical study of Asian dust
transport during the springtime of 2001 simulated with the Chemical Weather
Forecasting System (CFORS) model, J. Geophys. Res., 109, D19S24,
https://doi.org/10.1029/2003JD004222, 2004.
Wåhlin, P., Berkowicz, R., and Palmgren, F.: Characterisation of
traffic-generated particulate matter in Copenhagen, Atmos. Environ., 40,
2151–2159, https://doi.org/10.1016/j.atmosenv.2005.11.049, 2006.
Wang, Y. S., Yao, L., Wang, L. L., Liu, Z. R., Ji, D. S., Tang, G. Q., Zhang, J.,
Sun, Y., Hu, B., and Xin, J. Y.: Mechanism for the formation of the January
2013 heavy haze pollution episode over central and eastern China, Sci. China
Earth Sci., 57, 14–25, https://doi.org/10.1007/s11430-013-4773-4, 2014.
Wang, Z., Fu, H., Zhang, L., Song, W., and Chen, J.: Ligand-promoted
photoreductive dissolution of goethite by atmospheric low-molecular
dicarboxylates, J. Phys. Chem. A, 121, 16471656,
https://doi.org/10.1021/acs.jpca.6b09160, 2017.
Wang, Z., Wang, T., Fu, H., Zhang, L., Tang, M., George, C., Grassian, V. H., and Chen, J.: Enhanced heterogeneous uptake of sulfur dioxide on mineral particles through modification of iron speciation during simulated cloud processing, Atmos. Chem. Phys., 19, 12569–12585, https://doi.org/10.5194/acp-19-12569-2019, 2019.
Zhang, H., Li, R., Dong, S., Wang, F., Zhu, Y., Meng, H., Huang, C., Ren,
Y., Wang, X., Hu, X., Li, T., Peng, C., Zhang, G., Xue, L., Wang, X., and
Tang, M.: Abundance and fractional solubility of aerosol iron during winter
at a coastal city in Northern China: Similarities and contrasts between fine
and coarse particles J. Geophys. Res.-Atmos., 127, e2021JD036070,
https://doi.org/10.1029/2021JD036070, 2022.
Zhang, H., Li, R., Huang, C., Li, X., Dong, S., Wang, F., Li, T., Chen, Y., Zhang, G., Ren, Y., Chen, Q., Huang, R., Chen, S., Xue, T., Wang, X., and Tang, M.: Seasonal variation of aerosol iron solubility in coarse and fine particles at an inland city in northwestern China, Atmos. Chem. Phys., 23, 3543–3559, https://doi.org/10.5194/acp-23-3543-2023, 2023.
Zhang, L., Wang, Q., Sata, A., Ninomiya, Y., and Yamashita, T.: Interactions
among inherent minerals during coal combustion and their impacts on the
emission of PM10.2, Emission of submicrometer-sized particles, Energ.
Fuels, 21, 766–777, https://doi.org/10.1021/ef060308x, 2007.
Zhu, Q., Liu, Y., Shao, T., and Tang, Y.: Transport of Asian aerosols to the
Pacific Ocean, Atmos. Res., 234, 104735,
https://doi.org/10.1016/j.atmosres.2019.104735, 2020.
Zhu, Y., Li, W., Lin, Q., Yuan, Q., Liu, L., Zhang, J., Zhang, Y., Shao, L.,
Niu, H., Yang, S., and Shi, Z.: Iron solubility in fine particles associated
with secondary acidic aerosols in east China, Environ. Pollut., 264, 114769,
https://doi.org/10.1016/j.envpol.2020.114769, 2020.
Zhu, Y., Li, W., Wang, Y., Zhang, J., Liu, L., Xu, L., Xu, J., Shi, J., Shao, L., Fu, P., Zhang, D., and Shi, Z.: Sources and processes of iron aerosols in a megacity in Eastern China, Atmos. Chem. Phys., 22, 2191–2202, https://doi.org/10.5194/acp-22-2191-2022, 2022.
Zuo, P., Huang, Y., Liu, P., Zhang, J., Yang, H., Liu, L., Bi, J., Lu, D.,
Zhang, Q., Liu, Q., and Jiang, G.: Stable iron isotopic signature reveals
multiple sources of magnetic particulate matter in the 2021 Beijing
sandstorms, Environ. Sci. Tech. Lett., 9, 299–305,
https://doi.org/10.1021/acs.estlett.2c00144, 2022.
Short summary
Anthropogenic iron is the dominant source of dissolved Fe in aerosol particles, but its contribution to dissolved Fe in aerosol particles has not been quantitatively evaluated. We established the molar concentration ratio of dissolved Fe to dissolved Al as a new indicator to evaluate the contribution of anthropogenic iron. As a result, about 10 % of dissolved Fe in aerosol particles was derived from anthropogenic iron when aerosol particles were transported from East Asia to the Pacific Ocean.
Anthropogenic iron is the dominant source of dissolved Fe in aerosol particles, but its...
Altmetrics
Final-revised paper
Preprint