Articles | Volume 23, issue 17
https://doi.org/10.5194/acp-23-9815-2023
https://doi.org/10.5194/acp-23-9815-2023
Measurement report
 | 
05 Sep 2023
Measurement report |  | 05 Sep 2023

Measurement report: Stoichiometry of dissolved iron and aluminum as an indicator of the factors controlling the fractional solubility of aerosol iron – results of the annual observations of size-fractionated aerosol particles in Japan

Kohei Sakata, Aya Sakaguchi, Yoshiaki Yamakawa, Chihiro Miyamoto, Minako Kurisu, and Yoshio Takahashi

Related authors

Atmospheric chemistry in East Asia determines the iron solubility of aerosol particles supplied to the North Pacific Ocean
Kohei Sakata, Shotaro Takano, Atsushi Matsuki, Yasuo Takeichi, Hiroshi Tanimoto, Aya Sakaguchi, Minako Kurisu, and Yoshio Takahashi
Atmos. Chem. Phys., 25, 11087–11107, https://doi.org/10.5194/acp-25-11087-2025,https://doi.org/10.5194/acp-25-11087-2025, 2025
Short summary
Iron (Fe) speciation in size-fractionated aerosol particles in the Pacific Ocean: The role of organic complexation of Fe with humic-like substances in controlling Fe solubility
Kohei Sakata, Minako Kurisu, Yasuo Takeichi, Aya Sakaguchi, Hiroshi Tanimoto, Yusuke Tamenori, Atsushi Matsuki, and Yoshio Takahashi
Atmos. Chem. Phys., 22, 9461–9482, https://doi.org/10.5194/acp-22-9461-2022,https://doi.org/10.5194/acp-22-9461-2022, 2022
Short summary
Contribution of combustion Fe in marine aerosols over the northwestern Pacific estimated by Fe stable isotope ratios
Minako Kurisu, Kohei Sakata, Mitsuo Uematsu, Akinori Ito, and Yoshio Takahashi
Atmos. Chem. Phys., 21, 16027–16050, https://doi.org/10.5194/acp-21-16027-2021,https://doi.org/10.5194/acp-21-16027-2021, 2021
Short summary

Cited articles

Acker, J. G. and Bricker, O. P.: The influence of pH on biotite dissolution and alteration kinetics at low temperature, Geochim. Cosmochim. Ac., 56, 3073–3092, https://doi.org/10.1016/0016-7037(92)90290-Y, 1992. 
Adachi, K. and Tainosho, Y.: Characterization of heavy metal particles embedded in tire dust, Environ. Int., 30, 1009–1017, https://doi.org/10.1016/j.envint.2004.04.004, 2004. 
Akita, S., Maeda, T., and Takeuchi, H.: Recovery of vanadium and nickel in fly ash from heavy oil, J. Chem., Tech. Biotechnol., 62, 345–350, https://doi.org/10.1002/jctb.280620406, 1995. 
Baker, A. R. and Jickells, T. D.: Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT), Prog. Oceanogr., 158, 41–51, https://doi.org/10.1016/j.pocean.2016.10.002, 2017. 
Baker, A. R. and Jickells, T. D.: Mineral particle size as a control on aerosol iron solubility, Geophys. Res. Lett., 33, L17608, https://doi.org/10.1029/2006GL026557, 2006. 
Download
Short summary
Anthropogenic iron is the dominant source of dissolved Fe in aerosol particles, but its contribution to dissolved Fe in aerosol particles has not been quantitatively evaluated. We established the molar concentration ratio of dissolved Fe to dissolved Al as a new indicator to evaluate the contribution of anthropogenic iron. As a result, about 10 % of dissolved Fe in aerosol particles was derived from anthropogenic iron when aerosol particles were transported from East Asia to the Pacific Ocean.
Share
Altmetrics
Final-revised paper
Preprint