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1. Supplemental Note: Major ion concentration
1.1. Major ion concentrations
1.1.1. Cations

Sodium ion, Mg?*, and Ca?* were mainly distributed in coarse aerosol particles, accounting for 88.3 %, 84.8 %, and
79.3 % of the ions in TSP, respectively (Figs. 2a—2c). Sodium ion in aerosol particles was mainly associated with sea spray
aerosol (SSA). Magnesium ion was mainly derived from SSA considering that nss-Mg?* accounted for 26.2 + 22.4 % of the
total Mg?*. By contrast, almost all Ca?* (90.8 + 9.45 %) was present in the form of nss-Ca?*. Calcium ion concentration was
higher in spring (March to May) than in other seasons and during Asian dust events (Fig. 2b). A large amount of Asian dust
is transported from the Gobi or Taklamakan Deserts in spring (Uematsu et al., 1983; Sullivan et al., 2007a). Therefore, the
high Ca?* concentration in spring was attributed to Asian dust. Potassium ion and NH4* were mainly distributed in fine aerosol
particles, which accounted for 68.2 + 9.69 % and 83.0 + 3.49 % of the ions in TSP, respectively (Figs. 2d and 2e). More than
90 % of K* in fine aerosol particles (annual average: 94.5 + 14.8 %) was present in the form of nss-K*. The nss-K* in fine
aerosol particles is mainly derived from either biomass burning or coal combustion (Echalar et al., 1995; Simoneit et al., 2002;
Yu et al., 2018). The discussion on the size and seasonal variation of NHs* with NOs~ and SO4* is provided in the next

section.

1.1.2.  Anions

Chloride ion dominated in coarse aerosol particles, which contributed 79.5 £+ 14.1 % of Cl~ in TSP (Fig. 2f). SSA is the
dominant source of CI~ in aerosol particles. However, the CI7/Na* mass ratio of aerosol particles was not identical to that of
seawater (Fig. S3a). Chloride ion concentration in coarse aerosol particles was depleted relative to the expected ClI-
concentration in non-aged SSA (= Na*aerosol X [Cl7/Na*]seawater), and the depletion ratio of CI™ in coarse aerosol particles to CI~
in non-aged SSA was 34.7% * 28.2%. CI~ depletion was caused by the chemical reaction of NaCl with HNO3 and H2SO. as
follows (Finlayson-Pitts, 2003):

NaCl + HNOs; — NaNOs + HCI(g), (R1)
2NaCl + H2SO4 — NazS04 + 2HCI (g). (R2)

The frequent enrichment of CI~ in fine aerosol particles relative to that in non-aged SSA (Fig. S3a) and in contrast to
that in coarse aerosol particles indicated that emission sources other than SSA contributed to CI~ in fine aerosol particles. Cl~
enrichment was observed in aerosol samples collected in winter and spring when air masses mainly originated from East Asia
(Fig. S1 and S3a). Previous studies have reported that anthropogenic emissions (e.g., coal combustion, industrial processes,
and MSWI) and biomass burning are the dominant sources of HCI and CI~ in fine aerosol particles in East Asia (Fu et al.,
2018; Liu et al., 2018). Indeed, the correlation of excess Cl~ concentration (= —1 x CI~ loss) with nss-K* is a tracer of biomass
burning and coal combustion (r: 0.570). In addition, pre-existing particles, including CaCOg3 in mineral dust, act as the sink
of Cl species (Sullivan et al., 2007b; Tobo et al., 2010). Therefore, the enrichment of ClI~ in fine aerosol particles was caused
by the uptake of anthropogenic CI~ by pre-existing particles.

Sulfate ions and NH4* were mainly distributed in fine aerosol particles (Figs. 2e and 2g) and accounted for 75.8 + 11.1 %
and 88.8 + 7.68 % of the total anions and cations in fine aerosol particles, respectively. The average fraction of nss-SO.>" to
total SO4% (nss-SO4>/total SO4>7) in coarse and fine aerosol particles were 70.1 + 23.1 % and 99.3 + 1.44 %, respectively.
Thus, nss-SO4>~ was dominant in coarse and fine aerosol particles. Ammonium ion concentration had a good correlation with
but was higher than nss-SO4>~ concentration (Fig. S3b). This result indicated that ammonium salts other than (NH4)2SO4 and

NHsHSO. were present in fine aerosol particles. Ammonium ion concentration was found to have an excellent correlation
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with 2 x [nss-SO4*>7] + [NO3] in fine aerosol particles (Fig. S3c). The slope of the regression line was 0.965, indicating that
(NH4)2S04 and NH4NOs were the dominant major ion components in fine aerosol particles.

Nitrate ion had concentration peaks not only in fine aerosol particles but also in coarse aerosol particles (Fig. 2h). The
average fractions of NO3™ in coarse and fine aerosol particles in TSP were 61.3 + 12.3 % and 36.9 + 10.5 %, respectively. As
previously mentioned, NO3~ in coarse aerosol particles was derived from CI~ depletion as described in R1. Assuming that
NOs~ caused the depletion of all Cl from SSA in coarse aerosol particles, SSA-associated NO3;~ accounted for only 35.1 +
25.1 % of NOs™ in coarse aerosol particles. Therefore, NOs™ ions were mainly present in coarse aerosol particles other than
SSA (non-SSA-NO3"). Previous studies have reported that mineral dust is the dominant driver of NO3™ concentration in coarse
aerosol particles (Karydis et al., 2016, Kakavas et al., 2021). In fact, the good correlation between nss-Ca?* and non-SSA-
NOs~ (= total NO3~— Cl depletion) found in our coarse aerosol particles (Fig. S3d) indicated that non-SSA-NOs~ was present
in coarse aerosol particles in the form of Ca(NOs).. However, our previous study identified gypsum (CaSO4-2H,0) rather
than Ca(NOz3), as the dominant secondary Ca species in coarse aerosol particles collected in January, November, and the
Asian dust event (Miyamoto et al., 2020). Recent studies have demonstrated that hygroscopic Ca(NOs3), on the surfaces of
mineral dust reacted with (NH.)2SOs, resulting in the formation of NHsNO3 and CaSO4-2H,0 (Wu et al., 2019, 2020). Thus,
NOs™ taken up in the reaction with CaCOgs is considered to exist in the form of NH4sNOs instead of Ca(NO3)..
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Supplemental Figures
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Figure S1: Backward trajectories of sampling periods of (a) December 2012, (b-m) January to December 2013.
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Figure S2: Backward trajectories of sampling periods of (a) Haze and (b) Asian dust events.
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Figure S3: Monthly variations and size distributions of (a) Na*,
(h) SO42—
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— 1. (b and c) scatter plots of [NH4*] concentration with [nss-SO4>] and [nss-SO42]+[NO37].
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Figure S9: Relative abundance of pyrogenic Fe to d-Fe in (a) TSP and (b) fine aerosol particles when [d-Fe]/[d-Al] ratio of
non-crustal Fe is 4.67. (c) crustal Fe and (d) pyrogenic Fe when [d-Fe]/[d-Al] ratio of pyrogenic Fe.
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Table S1 Sampling information for each sapling period.

Sample name

December 2012
January 2013
February 2013

March 2013
April 2013
May 2013
June 2013
July 2013

August 2013

September 2013
October 2013

November 2013

December 2013

Haze
Dust

Sampling period

Start

End

Non-dust event

11:30, 25 Dec. 2012
10:40, 21 Jan. 2013
10:31 4 Feb. 2013
17:20, 21 Mar. 2013
11:38, 8 Apr. 2013
13:45, 13 May, 2013
15:00, 11 Jun. 2013
14:25, 8 Jul. 2013
11:45, 6 Aug. 2013
16:25, 17 Sep. 2013
14:40, 15 Oct. 2013
10:45, 12 Nov. 2013
9:30, 7 Dec. 2013

Dust events

14:19, 31 Jan. 2013
10:30, 4 Mar. 2013

9:20, 7 Jan. 2013
13:29, 30 Jan. 2013
10:52, 18 Feb. 2013
17:20, 21 Mar. 2013
14:30, 20 Apr. 2013
14:52, 24 May, 2013
12:16, 24 Jun. 2013
13:00, 22 Jul. 2013
11:25, 19 Aug. 2013
12:40, 30 Sep. 2013
13:10, 28 Oct. 2013
11:05, 25 Nov. 2013
14:40, 21 Dec. 2013

17:09, 1 Feb. 2013
14:30, 9 Mar. 2013

Total flow
m3

11699.5
7624.5
11740.6
9850.1
9494.7
9282.3
11477.6
11461.2
11490.1
11386.3
11544.3
11698.3
11838.8

936.8
4840.2
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Table S2. Pearson’s correlation matrix of non-crustal Fe with trace metal concentrations in coarse aerosol particles.

non-crust Fe \V Cu Zn Cd Sb Pb

non-crust Fe 1.000

\Y 0.387 1.000

Cu 0.747 0.553 1.000

Zn 0.586 0.692 0.794 1.000

Cd 0.383 0.489 0.548 0.721 1.000

Sh 0.563 0.449 0.858 0.759 0.700 1.000

Pb 0.457 0.568 0.677 0.813 0.929 0.820 1.000
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Table S3 Pearson's correlation matrix of non-crustal Fe with trace etals in fine aerosol particles.

non-crustal Fe \Y Cu Zn Cd Sh Pb

non-crustal Fe 1.000

\Y 0.601 1.000

Cu 0.725 0.649 1.000

Zn 0.795 0.555 0.911 1.000

Cd 0.850 0.596 0.853 0.923 1.000

Sb 0.807 0.741 0.799 0.821 0.887 1.000

Pb 0.765 0.555 0.880 0.947 0.956 0.827 1.000
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