Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9347-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-9347-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of radiation interaction and aerosol processes on ventilation and aerosol concentrations in a real urban neighbourhood in Helsinki
Jani Strömberg
CORRESPONDING AUTHOR
Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
Xiaoyu Li
Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
Mona Kurppa
Kjeller Vindteknikk, Espoo, Finland
Heino Kuuluvainen
Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
Liisa Pirjola
Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
Department of Automotive and Mechanical Engineering, Metropolia University of Applied Sciences, Vantaa, Finland
Leena Järvi
Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki, Finland
Related authors
Mona Kurppa, Pontus Roldin, Jani Strömberg, Anna Balling, Sasu Karttunen, Heino Kuuluvainen, Jarkko V. Niemi, Liisa Pirjola, Topi Rönkkö, Hilkka Timonen, Antti Hellsten, and Leena Järvi
Geosci. Model Dev., 13, 5663–5685, https://doi.org/10.5194/gmd-13-5663-2020, https://doi.org/10.5194/gmd-13-5663-2020, 2020
Short summary
Short summary
High-resolution modelling is needed to solve the aerosol concentrations in a complex urban area. Here, the performance of an aerosol module within the PALM model to simulate the detailed horizontal and vertical distribution of aerosol particles is studied. Further, sensitivity to the meteorological and aerosol boundary conditions is assessed using both model and observation data. The horizontal distribution is sensitive to the wind speed and stability, and the vertical to the wind direction.
Sasu Karttunen, Matthias Sühring, Ewan O'Connor, and Leena Järvi
Geosci. Model Dev., 18, 5725–5757, https://doi.org/10.5194/gmd-18-5725-2025, https://doi.org/10.5194/gmd-18-5725-2025, 2025
Short summary
Short summary
This paper presents PALM-SLUrb, a single-layer urban canopy model for the PALM model system, designed to simulate urban–atmosphere interactions without resolving flow around individual buildings. The model is described in detail and evaluated against grid-resolved urban canopy simulations, demonstrating its ability to model urban surfaces accurately. By bridging the gap between computational efficiency and physical detail, PALM-SLUrb broadens PALM's potential for urban climate research.
Kuisma Vesisenaho, Heino Kuuluvainen, Ukko-Ville Mäkinen, Miska Olin, and Panu Karjalainen
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-17, https://doi.org/10.5194/ar-2025-17, 2025
Revised manuscript under review for AR
Short summary
Short summary
This study investigates the decay of particle lung-deposited surface area (LDSA) concentrations following indoor particle emissions with a focus on cooking activities. Two decay functions were derived and validated using measurement data. Applying the functions, it is shown that from 66.5 to 82.9 % of the exposure to cooking-generated particles occurred during the decay phase following the active cooking event. This highlights both the applicability and importance of the derived decay functions.
Kimmo Teinilä, Sanna Saarikoski, Henna Lintusaari, Teemu Lepistö, Petteri Marjanen, Minna Aurela, Heidi Hellén, Toni Tykkä, Markus Lampimäki, Janne Lampilahti, Luis Barreira, Timo Mäkelä, Leena Kangas, Juha Hatakka, Sami Harni, Joel Kuula, Jarkko V. Niemi, Harri Portin, Jaakko Yli-Ojanperä, Ville Niemelä, Milja Jäppi, Katrianne Lehtipalo, Joonas Vanhanen, Liisa Pirjola, Hanna E. Manninen, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 25, 4907–4928, https://doi.org/10.5194/acp-25-4907-2025, https://doi.org/10.5194/acp-25-4907-2025, 2025
Short summary
Short summary
Physical and chemical properties of particulate matter and concentrations of trace gases were measured in a street canyon in Helsinki, Finland, and an urban background site in January–February 2022 to investigate the effect of wintertime conditions on pollutants. State-of-the-art instruments and a mobile laboratory were used, and the measurement data were analysed further with modelling tools like positive matrix factorization and the Pollution Detection Algorithm.
Stavros Stagakis, Dominik Brunner, Junwei Li, Leif Backman, Anni Karvonen, Lionel Constantin, Leena Järvi, Minttu Havu, Jia Chen, Sophie Emberger, and Liisa Kulmala
Biogeosciences, 22, 2133–2161, https://doi.org/10.5194/bg-22-2133-2025, https://doi.org/10.5194/bg-22-2133-2025, 2025
Short summary
Short summary
The balance between CO2 uptake and emissions from urban green areas is still not well understood. This study evaluated for the first time the urban park CO2 exchange simulations with four different types of biosphere model by comparing them with observations. Even though some advantages and disadvantages of the different model types were identified, there was no strong evidence that more complex models performed better than simple ones.
Laura Thölix, Leif Backman, Minttu Havu, Esko Karvinen, Jesse Soininen, Justine Trémeau, Olli Nevalainen, Joyson Ahongshangbam, Leena Järvi, and Liisa Kulmala
Biogeosciences, 22, 725–749, https://doi.org/10.5194/bg-22-725-2025, https://doi.org/10.5194/bg-22-725-2025, 2025
Short summary
Short summary
Cities aim for carbon neutrality and seek to understand urban vegetation's role as a carbon sink. Direct measurements are challenging, so models are used to estimate the urban carbon cycle. We evaluated model performance at estimating carbon sequestration in lawns, park trees, and urban forests in Helsinki, Finland. Models captured seasonal and annual variations well. Trees had higher sequestration rates than lawns, and irrigation often enhanced carbon sinks.
Esko Karvinen, Leif Backman, Leena Järvi, and Liisa Kulmala
SOIL, 10, 381–406, https://doi.org/10.5194/soil-10-381-2024, https://doi.org/10.5194/soil-10-381-2024, 2024
Short summary
Short summary
We measured and modelled soil respiration, a key part of the biogenic carbon cycle, in different urban green space types to assess its dynamics in urban areas. We discovered surprisingly similar soil respiration across the green space types despite differences in some of its drivers and that irrigation of green spaces notably elevates soil respiration. Our results encourage further research on the topic and especially on the role of irrigation in controlling urban soil respiration.
Joyson Ahongshangbam, Liisa Kulmala, Jesse Soininen, Yasmin Frühauf, Esko Karvinen, Yann Salmon, Anna Lintunen, Anni Karvonen, and Leena Järvi
Biogeosciences, 20, 4455–4475, https://doi.org/10.5194/bg-20-4455-2023, https://doi.org/10.5194/bg-20-4455-2023, 2023
Short summary
Short summary
Urban vegetation is important for removing urban CO2 emissions and cooling. We studied the response of urban trees' functions (photosynthesis and transpiration) to a heatwave and drought at four urban green areas in the city of Helsinki. We found that tree water use was increased during heatwave and drought periods, but there was no change in the photosynthesis rates. The heat and drought conditions were severe at the local scale but were not excessive enough to restrict urban trees' functions.
Magdalena Okuljar, Olga Garmash, Miska Olin, Joni Kalliokoski, Hilkka Timonen, Jarkko V. Niemi, Pauli Paasonen, Jenni Kontkanen, Yanjun Zhang, Heidi Hellén, Heino Kuuluvainen, Minna Aurela, Hanna E. Manninen, Mikko Sipilä, Topi Rönkkö, Tuukka Petäjä, Markku Kulmala, Miikka Dal Maso, and Mikael Ehn
Atmos. Chem. Phys., 23, 12965–12983, https://doi.org/10.5194/acp-23-12965-2023, https://doi.org/10.5194/acp-23-12965-2023, 2023
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) form secondary organic aerosol that affects air quality and health. In this study, we demonstrate that in a moderately polluted city with abundant vegetation, the composition of HOMs is largely controlled by the effect of NOx on the biogenic volatile organic compound oxidation. Comparing the results from two nearby stations, we show that HOM composition and formation pathways can change considerably within small distances in urban environments.
Yingqi Zheng, Minttu Havu, Huizhi Liu, Xueling Cheng, Yifan Wen, Hei Shing Lee, Joyson Ahongshangbam, and Leena Järvi
Geosci. Model Dev., 16, 4551–4579, https://doi.org/10.5194/gmd-16-4551-2023, https://doi.org/10.5194/gmd-16-4551-2023, 2023
Short summary
Short summary
The performance of the Surface Urban Energy and Water Balance Scheme (SUEWS) is evaluated against the observed surface exchanges (fluxes) of heat and carbon dioxide in a densely built neighborhood in Beijing. The heat flux modeling is noticeably improved by using the observed maximum conductance and by optimizing the vegetation phenology modeling. SUEWS also performs well in simulating carbon dioxide flux.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
Minttu Havu, Liisa Kulmala, Pasi Kolari, Timo Vesala, Anu Riikonen, and Leena Järvi
Biogeosciences, 19, 2121–2143, https://doi.org/10.5194/bg-19-2121-2022, https://doi.org/10.5194/bg-19-2121-2022, 2022
Short summary
Short summary
The carbon sequestration potential of two street tree species and the soil beneath them was quantified with the urban land surface model SUEWS and the soil carbon model Yasso. The street tree plantings turned into a modest sink of carbon from the atmosphere after 14 years. Overall, the results indicate the importance of soil in urban carbon sequestration estimations, as soil respiration exceeded the carbon uptake in the early phase, due to the high initial carbon loss from the soil.
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432, https://doi.org/10.5194/amt-15-2417-2022, https://doi.org/10.5194/amt-15-2417-2022, 2022
Short summary
Short summary
To study the complex structure of the lowest tens of metres of atmosphere in urban areas, measurement methods with great spatial and temporal coverage are needed. In our study, we analyse measurements with a promising and relatively new method, distributed temperature sensing, capable of providing detailed information on the near-surface atmosphere. We present multiple ways to utilise these kinds of measurements, as well as important considerations for planning new studies using the method.
Miska Olin, David Patoulias, Heino Kuuluvainen, Jarkko V. Niemi, Topi Rönkkö, Spyros N. Pandis, Ilona Riipinen, and Miikka Dal Maso
Atmos. Chem. Phys., 22, 1131–1148, https://doi.org/10.5194/acp-22-1131-2022, https://doi.org/10.5194/acp-22-1131-2022, 2022
Short summary
Short summary
An emission factor particle size distribution was determined from the measurements at an urban traffic site. It was used in updating a pre-existing emission inventory, and regional modeling was performed after the update. Emission inventories typically underestimate nanoparticle emissions due to challenges in determining them with high certainty. This update reveals that the simulated aerosol levels have previously been underestimated especially for urban areas and for sub-50 nm particles.
Moritz Lange, Henri Suominen, Mona Kurppa, Leena Järvi, Emilia Oikarinen, Rafael Savvides, and Kai Puolamäki
Geosci. Model Dev., 14, 7411–7424, https://doi.org/10.5194/gmd-14-7411-2021, https://doi.org/10.5194/gmd-14-7411-2021, 2021
Short summary
Short summary
This study aims to replicate computationally expensive high-resolution large-eddy simulations (LESs) with regression models to simulate urban air quality and pollutant dispersion. The model development, including feature selection, model training and cross-validation, and detection of concept drift, has been described in detail. Of the models applied, log-linear regression shows the best performance. A regression model can replace LES unless high accuracy is needed.
Magdalena Okuljar, Heino Kuuluvainen, Jenni Kontkanen, Olga Garmash, Miska Olin, Jarkko V. Niemi, Hilkka Timonen, Juha Kangasluoma, Yee Jun Tham, Rima Baalbaki, Mikko Sipilä, Laura Salo, Henna Lintusaari, Harri Portin, Kimmo Teinilä, Minna Aurela, Miikka Dal Maso, Topi Rönkkö, Tuukka Petäjä, and Pauli Paasonen
Atmos. Chem. Phys., 21, 9931–9953, https://doi.org/10.5194/acp-21-9931-2021, https://doi.org/10.5194/acp-21-9931-2021, 2021
Short summary
Short summary
To estimate the relative contribution of different sources to the particle population in an urban environment, we conducted simultaneous measurements at a street canyon and an urban background station in Helsinki. We investigated the contribution of traffic and new particle formation to particles with a diameter between 1 and 800 nm. We found that during spring traffic does not dominate the particles smaller than 3 nm at either of the stations.
Mona Kurppa, Pontus Roldin, Jani Strömberg, Anna Balling, Sasu Karttunen, Heino Kuuluvainen, Jarkko V. Niemi, Liisa Pirjola, Topi Rönkkö, Hilkka Timonen, Antti Hellsten, and Leena Järvi
Geosci. Model Dev., 13, 5663–5685, https://doi.org/10.5194/gmd-13-5663-2020, https://doi.org/10.5194/gmd-13-5663-2020, 2020
Short summary
Short summary
High-resolution modelling is needed to solve the aerosol concentrations in a complex urban area. Here, the performance of an aerosol module within the PALM model to simulate the detailed horizontal and vertical distribution of aerosol particles is studied. Further, sensitivity to the meteorological and aerosol boundary conditions is assessed using both model and observation data. The horizontal distribution is sensitive to the wind speed and stability, and the vertical to the wind direction.
Cited articles
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W.,
Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.-I.,
Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L.,
Samuelsson, P., Muñoz, D. S., Subias, A., Tijm, S., Toll, V., Yang, X., and
Øegaard Køltzow, M.: The HARMONIE–AROME Model Configuration in the
ALADIN–HIRLAM NWP System, Mon. Weather Rev., 145, 1919–1935,
https://doi.org/10.1175/MWR-D-16-0417.1, 2017. a
Bottillo, S., De Lieto Vollaro, A., Galli, G., and Vallati, A.: CFD
modeling of the impact of solar radiation in a tridimensional urban canyon at
different wind conditions, Sol. Energy, 102, 212–222,
https://doi.org/10.1016/j.solener.2014.01.029, 2014. a, b
Branford, S., Coceal, O., Thomas, T. G., and Belcher, S. E.: Dispersion of a
Point-Source Release of a Passive Scalar Through an Urban-Like Array for
Different Wind Directions, Bound.-Lay. Meteorol., 139, 367–394,
https://doi.org/10.1007/s10546-011-9589-1, 2011. a
Buccolieri, R., Salim, S. M., Leo, L. S., Di Sabatino, S., Chan, A., Ielpo, P.,
de Gennaro, G., and Gromke, C.: Analysis of local scale tree–atmosphere
interaction on pollutant concentration in idealized street canyons and
application to a real urban junction, Atmos. Environ., 45,
1702–1713, https://doi.org/10.1016/j.atmosenv.2010.12.058, 2011. a
Cai, X.: Effects of differential wall heating in street canyons on dispersion
and ventilation characteristics of a passive scalar, Atmos. Environ.,
51, 268–277, https://doi.org/10.1016/j.atmosenv.2012.01.010, 2012. a
Chen, G., Yang, X., Yang, H., Hang, J., Lin, Y., Wang, X., Wang, Q., and Liu,
Y.: The influence of aspect ratios and solar heating on flow and ventilation
in 2D street canyons by scaled outdoor experiments, Build.
Environ., 185, 107–159, https://doi.org/10.1016/j.buildenv.2020.107159, 2020. a
Cheng, W. C. and Liu, C.-H.: Large-eddy simulation of turbulent transports in
urban street canyons in different thermal stabilities, J. Wind
Eng. Ind. Aerod., 99, 434–442,
https://doi.org/10.1016/j.jweia.2010.12.009, 2011. a
Crameri, F.: Scientific colour maps (7.0.1), Zenodo [data set], https://doi.org/10.5281/zenodo.5501399, 2021. a
Dal Maso, M., Liao, L., Wildt, J., Kiendler-Scharr, A., Kleist, E., Tillmann, R., Sipilä, M., Hakala, J., Lehtipalo, K., Ehn, M., Kerminen, V.-M., Kulmala, M., Worsnop, D., and Mentel, T.: A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations, Atmos. Chem. Phys., 16, 1955–1970, https://doi.org/10.5194/acp-16-1955-2016, 2016. a, b
Dimitrova, R., Sini, J.-F., Richards, K., Schatzmann, M., Weeks, M.,
Perez García, E., and Borrego, C.: Influence of Thermal Effects on the Wind
Field Within the Urban Environment, Bound.-Lay. Meteorol., 131,
223–243, https://doi.org/10.1007/s10546-009-9368-4, 2009. a
FMI: Finnish Meteorological Institute open data,
https://www.ilmatieteenlaitos.fi/havaintojen-lataus (last access:
5 March 2021), 2017. a
Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C.,
Andreae, M. O., Lang-Yona, N., Burrows, S. M., Gunthe, S. S., Elbert, W., Su,
H., Hoor, P., Thines, E., Hoffmann, T., Després, V. R., and Pöschl, U.:
Bioaerosols in the Earth system: Climate, health, and ecosystem interactions,
Atmos. Res., 182, 346–376, https://doi.org/10.1016/j.atmosres.2016.07.018,
2016. a
García-Sánchez, C., van Beeck, J., and Gorlé, C.: Predictive large
eddy simulations for urban flows: Challenges and opportunities, Build.
Environ., 139, 146–156, https://doi.org/10.1016/j.buildenv.2018.05.007, 2018. a
Gehrke, K. F., Sühring, M., and Maronga, B.: Modeling of land–surface interactions in the PALM model system 6.0: land surface model description, first evaluation, and sensitivity to model parameters, Geosci. Model Dev., 14, 5307–5329, https://doi.org/10.5194/gmd-14-5307-2021, 2021. a, b, c
Gousseau, P., Blocken, B., Stathopoulos, T., and van Heijst, G.: CFD
simulation of near-field pollutant dispersion on a high-resolution grid: A
case study by LES and RANS for a building group in downtown Montreal,
Atmos. Environ., 45, 428–438, https://doi.org/10.1016/j.atmosenv.2010.09.065,
2011. a
GTK: Maaperä: Karttatasot WFS-rajapinnassa – Geological Survey of Finland,
https://www.gtk.fi/palvelut/aineistot-ja-verkkopalvelut/rajapintapalvelut/maapera-karttatasot-wfs-rajapinnassa/
(last access: 28 August 2020), 2018. a
Guo, D., Zhao, P., Wang, R., Yao, R., and Hu, J.: Numerical simulations of the
flow field and pollutant dispersion in an idealized urban area under
different atmospheric stability conditions, Process Saf. Environ., 136, 310–323, https://doi.org/10.1016/j.psep.2020.01.031, 2020. a
Hellsten, A., Ketelsen, K., Sühring, M., Auvinen, M., Maronga, B., Knigge, C., Barmpas, F., Tsegas, G., Moussiopoulos, N., and Raasch, S.: A nested multi-scale system implemented in the large-eddy simulation model PALM model system 6.0, Geosci. Model Dev., 14, 3185–3214, https://doi.org/10.5194/gmd-14-3185-2021, 2021. a
HRI: Helsingin rakennukset – Helsinki Region Infoshare,
https://hri.fi/data/dataset/helsingin-rakennukset
(last access: 28 August 2020), 2018. a
Jiang, G. and Yoshie, R.: Large-eddy simulation of flow and pollutant
dispersion in a 3D urban street model located in an unstable boundary layer,
Build. Environ., 142, 47–57, https://doi.org/10.1016/j.buildenv.2018.06.015,
2018. a, b, c
Järvi, L., Kuuluvainen, H., Rönkkö, T., Karttunen, S., Balling, A., Timonen,
H., Niemi, J. V., and Pirjola, L.: Determinants of spatial variability of air
pollutant concentrations in a street canyon network measured using a mobile
laboratory and a drone, Sci. Total Environ., 856, 158–974,
https://doi.org/10.1016/j.scitotenv.2022.158974, 2023. a, b, c
Karttunen, S., Kurppa, M., Auvinen, M., Hellsten, A., and Järvi, L.:
Large-eddy simulation of the optimal street-tree layout for pedestrian-level
aerosol particle concentrations – A case study from a city-boulevard,
Atmos. Environ. X, 6, 100 073,
https://doi.org/10.1016/j.aeaoa.2020.100073, 2020. a, b, c, d
Kokkola, H., Korhonen, H., Lehtinen, K. E. J., Makkonen, R., Asmi, A., Järvenoja, S., Anttila, T., Partanen, A.-I., Kulmala, M., Järvinen, H., Laaksonen, A., and Kerminen, V.-M.: SALSA – a Sectional Aerosol module for Large Scale Applications, Atmos. Chem. Phys., 8, 2469–2483, https://doi.org/10.5194/acp-8-2469-2008, 2008. a
Kokkola, H., Kühn, T., Laakso, A., Bergman, T., Lehtinen, K. E. J., Mielonen, T., Arola, A., Stadtler, S., Korhonen, H., Ferrachat, S., Lohmann, U., Neubauer, D., Tegen, I., Siegenthaler-Le Drian, C., Schultz, M. G., Bey, I., Stier, P., Daskalakis, N., Heald, C. L., and Romakkaniemi, S.: SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0, Geosci. Model Dev., 11, 3833–3863, https://doi.org/10.5194/gmd-11-3833-2018, 2018. a
Kurppa, M., Hellsten, A., Roldin, P., Kokkola, H., Tonttila, J., Auvinen, M., Kent, C., Kumar, P., Maronga, B., and Järvi, L.: Implementation of the sectional aerosol module SALSA2.0 into the PALM model system 6.0: model development and first evaluation, Geosci. Model Dev., 12, 1403–1422, https://doi.org/10.5194/gmd-12-1403-2019, 2019. a, b, c, d, e
Kurppa, M., Roldin, P., Strömberg, J., Balling, A., Karttunen, S., Kuuluvainen, H., Niemi, J. V., Pirjola, L., Rönkkö, T., Timonen, H., Hellsten, A., and Järvi, L.: Sensitivity of spatial aerosol particle distributions to the boundary conditions in the PALM model system 6.0, Geosci. Model Dev., 13, 5663–5685, https://doi.org/10.5194/gmd-13-5663-2020, 2020. a, b, c, d, e, f, g, h, i, j, k
Kuula, J., Kuuluvainen, H., Niemi, J. V., Saukko, E., Portin, H., Kousa, A.,
Aurela, M., Rönkkö, T., and Timonen, H.: Long-term sensor measurements of
lung deposited surface area of particulate matter emitted from local
vehicular and residential wood combustion sources, Aerosol Sci.
Tech., 54, 190–202, https://doi.org/10.1080/02786826.2019.1668909, 2020. a
Kuuluvainen, H., Poikkimäki,, M., Järvinen,, A., Kuula, J., Irjala, M., Dal
Maso, M., Keskinen, J., Timonen, H., Niemi, J. V., and Rönkkö, T.:
Vertical profiles of lung deposited surface area concentration of particulate
matter measured with a drone in a street canyon, Environ. Pollut.,
241, 96–105, https://doi.org/10.1016/j.envpol.2018.04.100, 2018. a
Kwak, K.-H., Baik, J.-J., Ryu, Y.-H., and Lee, S.-H.: Urban air quality
simulation in a high-rise building area using a CFD model coupled with
mesoscale meteorological and chemistry-transport models, Atmos. Environ.,
100, 167–177, https://doi.org/10.1016/j.atmosenv.2014.10.059, 2015. a
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015. a
Lelieveld, J., Klingmüller,, K., Pozzer, A., Pöchl, U., Fnais, M., Daiber,
A., and Münzel, T.: Cardiovascular disease burden from ambient air
pollution in Europe reassessed using novel hazard ratio functions, Eur.
Heart J., 40, 1590–1596, https://doi.org/10.1093/eurheartj/ehz135, 2019. a
Letzel, M. O., Helmke, C., Ng, E., An, X., Lai, A., and Raasch, S.: LES case
study on pedestrian level ventilation in two neighbourhoods in Hong Kong,
Meteorol. Z., 21, 575–589, https://doi.org/10.1127/0941-2948/2012/0356, 2012. a
Li, X.-X., Britter, R. E., Koh, T. Y., Norford, L. K., Liu, C.-H., Entekhabi,
D., and Leung, D. Y. C.: Large-Eddy Simulation of Flow and Pollutant
Transport in Urban Street Canyons with Ground Heating, Bound.-Lay.
Meteorol., 137, 187–204, https://doi.org/10.1007/s10546-010-9534-8, 2010. a
Li, X.-X., Britter, R. E., Norford, L. K., Koh, T.-Y., and Entekhabi, D.: Flow
and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios
with Ground Heating: Large-Eddy Simulation, Bound.-Lay.
Meteorol.,
142, 289–304, https://doi.org/10.1007/s10546-011-9670-9, 2012. a, b
Li, X.-X., Britter, R. E., and Norford, L. K.: Transport processes in and
above two-dimensional urban street canyons under different stratification
conditions: results from numerical simulation, ENVIRONMENTAL FLUID
MECHANICS, 1st
Symposium on Urban Fluid Mechanics (UFM), ASME Conf, Chicago, IL, AUG, 2014, 3–7 August 2014, 15, 399–417, https://doi.org/10.1007/s10652-014-9347-2,
2015. a
Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C., Knoop, H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S., Russo, E., Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schubert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha, B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, 2020. a, b, c
Mei, D., Wang, Y., and Deng, Q.: Modeling the Airflow and Particle Dispersion
in Street Canyons under Unsteady Thermal Environment with Sinusoidal
Variation, Aerosol Air Qual. Res., 17, 1021–1032,
https://doi.org/10.4209/aaqr.2016.12.0559, 2017. a
Mei, S.-J., Liu, C.-W., Liu, D., Zhao, F.-Y., Wang, H.-Q., and Li, X.-H.: Fluid
mechanical dispersion of airborne pollutants inside urban street canyons
subjecting to multi-component ventilation and unstable thermal
stratifications, Sci. Total Environ., 565, 1102–1115,
https://doi.org/10.1016/j.scitotenv.2016.05.150, 2016. a, b, c, d
Müller, M., Homleid, M., Ivarsson, K.-I., Køltzow, M. A. Ø., Lindskog, M.,
Midtbø, K. H., Andrae, U., Aspelien, T., Berggren, L., Bjørge, D.,
Dahlgren, P., Kristiansen, J., Randriamampianina, R., Ridal, M., and Vignes,
O.: AROME-MetCoOp: A Nordic Convective-Scale Operational Weather Prediction
Model, Weather Forecast., 32, 609–627, https://doi.org/10.1175/WAF-D-16-0099.1,
2017. a
Nazarian, N. and Kleissl, J.: Realistic solar heating in urban areas: Air
exchange and street-canyon ventilation, Build. Environ., 95, 75–93,
https://doi.org/10.1016/j.buildenv.2015.08.021, 2016. a, b, c
Nazarian, N., Martilli, A., and Kleissl, J.: Impacts of Realistic Urban
Heating, Part I: Spatial Variability of Mean Flow, Turbulent Exchange and
Pollutant Dispersion, Bound.-Lay. Meteorol., 166, 367–393,
https://doi.org/10.1007/s10546-017-0311-9, 2018. a, b
Offerle, B., Eliasson, I., Grimmond, C. S. B., and Holmer, B.: Surface heating
in relation to air temperature, wind and turbulence in an urban street
canyon, Bound.-Lay. Meteorol., 122, 273–292,
https://doi.org/10.1007/s10546-006-9099-8, 2007. a
Oke, T.: The urban energy balance, Prog. Phys. Geog.: Earth and
Environment, 12, 471–508, https://doi.org/10.1177/030913338801200401, 1988. a
PALM Model System: PALM Changes since last svn-revision r4901, https://gitlab.palm-model.org/releases/palm_model_system/-/releases/v21.10 (last access: 10 November 2021), 2021. a
PALM model system development team:
Source code of the PALM model system (revision 4734),
Zenodo [code],
https://doi.org/10.5281/zenodo.8113087, 2020. a
Park, C., Ha, J., and Lee, S.: Association between Three-Dimensional Built
Environment and Urban Air Temperature: Seasonal and Temporal Differences,
Sustainability, 9, 1338, https://doi.org/10.3390/su9081338, 2017. a
Park, S.-B. and Baik, J.-J.: A Large-Eddy Simulation Study of Thermal Effects
on Turbulence Coherent Structures in and above a Building Array, J.
Appl. Meteorol. Clim., 52, 1348–1365,
https://doi.org/10.1175/JAMC-D-12-0162.1, 2013. a, b
Pirjola, L., Parviainen, H., M, L., Hussein, T., and Hämeri, K.: A novel
mobile laboratory for chasing city traffic, SAE Transactions, 113 1258–1264, http://www.jstor.org/stable/44740844 (last access: July 2022), 2004. a
Resler, J., Krč, P., Belda, M., Juruš, P., Benešová, N., Lopata, J., Vlček, O., Damašková, D., Eben, K., Derbek, P., Maronga, B., and Kanani-Sühring, F.: PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model, Geosci. Model Dev., 10, 3635–3659, https://doi.org/10.5194/gmd-10-3635-2017, 2017. a, b, c, d, e, f
Rivas, I., Kumar, P., Hagen-Zanker, A., de Fatima Andrade, M., Slovic, A. D.,
Pritchard, J. P., and Geurs, K. T.: Determinants of black carbon, particle
mass and number concentrations in London transport microenvironments,
Atmos. Environ., 161, 247–262, https://doi.org/10.1016/j.atmosenv.2017.05.004,
2017. a
Saarikoski, S., Hellén, H., Praplan, A. P., Schallhart, S., Clusius, P., Niemi, J. V., Kousa, A., Tykkä, T., Kouznetsov, R., Aurela, M., Salo, L., Rönkkö, T., Barreira, L. M. F., Pirjola, L., and Timonen, H.: Characterization of volatile organic compounds and submicron organic aerosol in a traffic environment, Atmos. Chem. Phys., 23, 2963–2982, https://doi.org/10.5194/acp-23-2963-2023, 2023. a
Salim, M. H., Schubert, S., Resler, J., Krč, P., Maronga, B., Kanani-Sühring, F., Sühring, M., and Schneider, C.: Importance of radiative transfer processes in urban climate models: a study based on the PALM 6.0 model system, Geosci. Model Dev., 15, 145–171, https://doi.org/10.5194/gmd-15-145-2022, 2022. a, b
Salim, S. M., Buccolieri, R., Chan, A., and Sabatino, S. D.: Numerical
simulation of atmospheric pollutant dispersion in an urban street canyon:
Comparison between RANS and LES, J. Wind Eng. Ind. Aerod., 99, 103–113,
https://doi.org/10.1016/j.jweia.2010.12.002, 2011. a, b
Schobesberger, S., Junninen, H., Bianchi, F., Lönn, G., Ehn, M., Lehtipalo,
K., Dommen, J., Ehrhart, S., Ortega, I., Franchin, A., Nieminen, T.,
Riccobono, F., Hutterli, M., Duplissy, J., Almeida, J., Amorim, A.,
Breitenlechner, M., Downard, A., Dunne, E., and Worsnop, D.: Molecular
understanding of atmospheric particle formation from sulfuric acid and large
oxidized organic molecules, P. Natl. Acad. Sci. USA, 110,
17223–17228, https://doi.org/10.1073/pnas.1306973110, 2013. a
Sini, J., Anquetin, S., and Mestayer, P.: Pollutant dispersion and thermal
effects in urban street canyons, Atmos. Environ., 30,
2659–2677, https://doi.org/10.1016/1352-2310(95)00321-5, 1996. a
Steffens, J. T., Heist, D. K., Perry, S. G., and Zhang, K. M.: Modeling the
effects of a solid barrier on pollutant dispersion under various atmospheric
stability conditions, Atmos. Environ., 69, 76–85,
https://doi.org/10.1016/j.atmosenv.2012.11.051, 2013.
a
Strömberg, J. and Kurppa, M.:
Input files and scripts for creating PALM simulation input files on Mäkelänkatu in Helsinki, Finland, Zenodo [data set],
https://doi.org/10.5281/zenodo.3839684, 2020. a
Strömberg, J. and Kurppa, M.: Mäkelänkatu Simulations 2022,
Zenodo [data set], https://doi.org/10.5281/zenodo.7115705
2022. a
Strömberg, J. and Kurppa, M.: Mäkelänkatu Scripts 2022 Finalized Mäkelänkatu in Helsinki, Finland, Zenodo [data set],
https://doi.org/10.5281/zenodo.8112867, 2023. a
Tominaga, Y. and Stathopoulos, T.: CFD simulation of near-field pollutant
dispersion in the urban environment: A review of current modeling techniques,
Atmos. Environ., 79, 716–730, https://doi.org/10.1016/j.atmosenv.2013.07.028,
2013. a, b
United Nations: World Urbanization Prospects: The 2018 Revision
(ST/ESA/SER.A/420), New York: United Nations,
https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (last access: 21 October 2021),
2019. a
WHO: Ambient air pollution: A global assessment of exposure and burden of
disease, 121 pp., ISBN 9789241511353, 2016. a
Xie, X., Huang, Z., Wang, J., and Xie, Z.: The impact of solar radiation and
street layout on pollutant dispersion in street canyon, Build.
Environ., 40, 201–212, https://doi.org/10.1016/j.buildenv.2004.07.013,
2005. a, b, c
Xie, X., Liu, C.-H., and Leung, D.: Impact of building facades and ground
heating on wind flow and pollutant transport in street canyons, Atmos.
Environ., 41, 9030–9049, https://doi.org/10.1016/j.atmosenv.2007.08.027, 2007. a, b
Zhong, J., Nikolova, I., Cai, X., MacKenzie, A. R., Alam, M. S., Xu, R., Singh,
A., and Harrison, R. M.: Traffic-induced multicomponent ultrafine particle
microphysics in the WRF v3.6.1 large eddy simulation model: General
behaviour from idealised scenarios at the neighbourhood-scale, Atmos.
Environ., 223, 117213, https://doi.org/10.1016/j.atmosenv.2019.117213, 2020. a
Short summary
We conclude that with low wind speeds, solar radiation has a larger decreasing effect (53 %) on pollutant concentrations than aerosol processes (18 %). Additionally, our results showed that with solar radiation included, pollutant concentrations were closer to observations (−13 %) than with only aerosol processes (+98 %). This has implications when planning simulations under calm conditions such as in our case and when deciding whether or not simulations need to include these processes.
We conclude that with low wind speeds, solar radiation has a larger decreasing effect (53 %) on...
Altmetrics
Final-revised paper
Preprint