Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9265-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-9265-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of 1 km downwelling shortwave radiation over the Tibetan Plateau under all-sky conditions
Peizhen Li
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei 230026, China
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei 230026, China
CAS Center for Excellence in Comparative Planetology, Hefei 230026,
China
Jiangsu Collaborative Innovation Center of Climate Change, Nanjing
210023, China
Frontiers Science Center for Planetary Exploration and Emerging
Technologies, University of Science and Technology of China, Hefei 230026,
China
Yaoming Ma
Land-Atmosphere Interaction and its Climatic Effects Group, State Key
Laboratory of Tibetan Plateau Earth System, Resources and Environment
(TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing 100101, China
College of Earth and Planetary Sciences, University of Chinese Academy
of Sciences, Beijing 100049, China
College of Atmospheric Science, Lanzhou University, Lanzhou 730000,
China
National Observation and Research Station for Qomolongma Special
Atmospheric Processes and Environmental Changes, Dingri 858200, China
Kathmandu Center for Research and Education, Chinese Academy of
Sciences, Beijing 100101, China
China-Pakistan Joint Research Center on Earth Sciences, Chinese
Academy of Sciences, Islamabad 45320, Pakistan
Yunfei Fu
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei 230026, China
Meilin Cheng
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei 230026, China
Xian Wang
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei 230026, China
Yuting Qi
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei 230026, China
Zixin Wang
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei 230026, China
Related authors
No articles found.
Haipeng Yu, Guantian Wang, Zeyong Hu, Yaoming Ma, Maoshan Li, Weiqiang Ma, Lianglei Gu, Fanglin Sun, Hongchun Gao, Shujin Wang, and Fuquan Lu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-356, https://doi.org/10.5194/essd-2025-356, 2025
Preprint under review for ESSD
Short summary
Short summary
The Nagqu Observation Network, located in Central Tibetan Plateau (CTP), has functioned as the primary source of land-atmosphere interaction observations and published a near-surface meteorological observational dataset which spans a period of nine years (2014–2022) with hourly temporal resolution. This dataset will contribute to the understanding of the mechanism of land-atmosphere interactions on the TP and support comprehensive research of the energy-water cycle and climate change.
Binbin Wang, Yaoming Ma, Zeyong Hu, Weiqiang Ma, Xuelong Chen, Cunbo Han, Zhipeng Xie, Yuyang Wang, Maoshan Li, Bin Ma, Xingdong Shi, Weimo Li, and Zhengling Cai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-195, https://doi.org/10.5194/essd-2025-195, 2025
Preprint under review for ESSD
Short summary
Short summary
This study reveals distinct patterns in water, heat, and carbon exchange over the Tibetan Plateau. Heat transfer peaks in spring, while water vapor release is highest in summer. Most stations act as carbon sinks, but one in a forested valley is a carbon source, likely due to vegetation loss and human activity. The findings highlight the strong connections between water, heat, and carbon fluxes, offering valuable insights into climate change and weather forecasting.
Minqiang Zhou, Yilong Wang, Minzheng Duan, Xiangjun Tian, Jinzhi Ding, Jianrong Bi, Yaoming Ma, Weiqiang Ma, and Zhenhua Xi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1293, https://doi.org/10.5194/egusphere-2025-1293, 2025
Short summary
Short summary
The Qinghai-Tibetan Plateau is a key system that impacts the global carbon balance. This study presents the greenhouse gas (GHG) mole fraction measurement campaign in May 2022 at Mt. Qomolangma station, including ground-based remote sensing and in situ measurements. The GHG measurements are carried out in this region for the first time and used for satellite validation.
Cunbo Han, Yaoming Ma, Weiqiang Ma, Fanglin Sun, Yunshuai Zhang, Wei Hu, Hanying Xu, Chunhui Duan, and Zhenhua Xi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1963, https://doi.org/10.5194/egusphere-2024-1963, 2024
Preprint archived
Short summary
Short summary
Wind speed spectra analysis is very important for understanding boundary layer turbulence characteristics, atmospheric numerical model development, and wind energy assessment. However, wind speed spectra studies in mountainous areas are extremely scarce. In this study, using a 15-year time series of wind speed observed by a PBL tower and eddy-covariance tower at a site on the north slope of Mt. Everest, we investigated the characteristics of wind speed and wind speed spectrum.
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024, https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Short summary
Current models and satellites struggle to accurately represent the land–atmosphere (L–A) interactions over the Tibetan Plateau. We present the most extensive compilation of in situ observations to date, comprising 17 years of data on L–A interactions across 12 sites. This quality-assured benchmark dataset provides independent validation to improve models and remote sensing for the region, and it enables new investigations of fine-scale L–A processes and their mechanistic drivers.
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024, https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Short summary
Microphysical characteristics of convective overshooting are essential but poorly understood, and we examine them by using the latest data. (1) Convective overshooting events mainly occur over NC (Northeast China) and northern MEC (Middle and East China). (2) Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the zero level, while the opposite is the case for MEC and SC (South China). (3) Droplets of convective overshooting are large but sparse.
Ling Yuan, Xuelong Chen, Yaoming Ma, Cunbo Han, Binbin Wang, and Weiqiang Ma
Earth Syst. Sci. Data, 16, 775–801, https://doi.org/10.5194/essd-16-775-2024, https://doi.org/10.5194/essd-16-775-2024, 2024
Short summary
Short summary
Accurately monitoring and understanding the spatial–temporal variability of evapotranspiration (ET) components over the Tibetan Plateau (TP) remains difficult. Here, 37 years (1982–2018) of monthly ET component data for the TP was produced, and the data are consistent with measurements. The annual average ET for the TP was about 0.93 (± 0.037) × 103 Gt yr−1. The rate of increase of the ET was around 0.96 mm yr−1. The increase in the ET can be explained by warming and wetting of the climate.
Zhenhao Wu, Yunfei Fu, Peng Zhang, Songyan Gu, and Lin Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-532, https://doi.org/10.5194/essd-2023-532, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We establish a new rain cell precipitation parameter and visible infrared and microwave signal dataset combining with the multi-instrument observation data on the Tropical Rainfall Measuring Mission (TRMM). The purpose of this dataset is to promote the three-dimensional study of rain cell precipitation system, and reveal the spatial and temporal variations of the scale morphology and intensity of the system.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yaoming Ma, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 14, 5513–5542, https://doi.org/10.5194/essd-14-5513-2022, https://doi.org/10.5194/essd-14-5513-2022, 2022
Short summary
Short summary
Soil moisture and soil temperature (SMST) are important state variables for quantifying the heat–water exchange between land and atmosphere. Yet, long-term, regional-scale in situ SMST measurements at multiple depths are scarce on the Tibetan Plateau (TP). The presented dataset would be valuable for the evaluation and improvement of long-term satellite- and model-based SMST products on the TP, enhancing the understanding of TP hydrometeorological processes and their response to climate change.
Maoshan Li, Wei Fu, Na Chang, Ming Gong, Pei Xu, Yaoming Ma, Zeyong Hu, Yaoxian Yang, and Fanglin Sun
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-257, https://doi.org/10.5194/acp-2022-257, 2022
Revised manuscript not accepted
Short summary
Short summary
Compared with the plain area, the land-atmosphere interaction on the Tibetan Plateau (TP) is intense and complex, which affects the structure of the boundary layer. The observed height of the convective boundary layer on the TP under the influence of the southern branch of the westerly wind was higher than that during the Asian monsoon season. The height of the boundary layer was positively correlated with the sensible heat flux and negatively correlated with latent heat flux.
Aoqi Zhang, Chen Chen, Yilun Chen, Weibiao Li, Shumin Chen, and Yunfei Fu
Earth Syst. Sci. Data, 14, 1433–1445, https://doi.org/10.5194/essd-14-1433-2022, https://doi.org/10.5194/essd-14-1433-2022, 2022
Short summary
Short summary
We constructed an event-based precipitation dataset with life cycle evolution based on coordinated application of observations from spaceborne active precipitation radar and geostationary satellites. The dataset provides both three-dimensional structures of the precipitation system and its corresponding life cycle evolution. The dataset greatly reduces the data size and avoids complex data processing algorithms for studying the life cycle evolution of precipitation microphysics.
Yunshuai Zhang, Qian Huang, Yaoming Ma, Jiali Luo, Chan Wang, Zhaoguo Li, and Yan Chou
Atmos. Chem. Phys., 21, 15949–15968, https://doi.org/10.5194/acp-21-15949-2021, https://doi.org/10.5194/acp-21-15949-2021, 2021
Short summary
Short summary
The source region of the Yellow River has an important role in issues related to water resources, ecological environment, and climate changes in China. We utilized large eddy simulation to understand whether the surface heterogeneity promotes or inhibits the boundary-layer turbulence, the great contribution of the thermal circulations induced by surface heterogeneity to the water and heat exchange between land/lake and air. Moreover, the turbulence in key locations is characterized.
Lian Liu, Yaoming Ma, Massimo Menenti, Rongmingzhu Su, Nan Yao, and Weiqiang Ma
Hydrol. Earth Syst. Sci., 25, 4967–4981, https://doi.org/10.5194/hess-25-4967-2021, https://doi.org/10.5194/hess-25-4967-2021, 2021
Short summary
Short summary
Albedo is a key factor in land surface energy balance, which is difficult to successfully reproduce by models. Here, we select eight snow events on the Tibetan Plateau to evaluate the universal improvements of our improved albedo scheme. The RMSE relative reductions for temperature, albedo, sensible heat flux and snow depth reach 27%, 32%, 13% and 21%, respectively, with remarkable increases in the correlation coefficients. This presents a strong potential of our scheme for modeling snow events.
Zhipeng Xie, Yaoming Ma, Weiqiang Ma, Zeyong Hu, and Genhou Sun
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-260, https://doi.org/10.5194/tc-2021-260, 2021
Preprint withdrawn
Short summary
Short summary
Wind-driven snow transport greatly influences spatial-temporal distribution of snow in mountainous areas. Knowledge of the spatiotemporal variability of blowing snow is in its infancy because of inaccuracies in satellite-based blowing snow algorithms and the absence of quantitative assessments. Here, we present the spatiotemporal variability and magnitude of blowing snow events, and explore the potential links with ambient meteorological conditions using near surface blowing snow observations.
Cunbo Han, Yaoming Ma, Binbin Wang, Lei Zhong, Weiqiang Ma, Xuelong Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3513–3524, https://doi.org/10.5194/essd-13-3513-2021, https://doi.org/10.5194/essd-13-3513-2021, 2021
Short summary
Short summary
Actual terrestrial evapotranspiration (ETa) is a key parameter controlling the land–atmosphere interaction processes and water cycle. However, the spatial distribution and temporal changes in ETa over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001–2018) monthly ETa and its spatial distribution on the TP by a combination of meteorological data and satellite products. Results have been validated at six eddy-covariance monitoring sites and show high accuracy.
Zhipeng Xie, Weiqiang Ma, Yaoming Ma, Zeyong Hu, Genhou Sun, Yizhe Han, Wei Hu, Rongmingzhu Su, and Yixi Fan
Hydrol. Earth Syst. Sci., 25, 3783–3804, https://doi.org/10.5194/hess-25-3783-2021, https://doi.org/10.5194/hess-25-3783-2021, 2021
Short summary
Short summary
Ground information on the occurrence of blowing snow has been sorely lacking because direct observations of blowing snow are sparse in time and space. In this paper, we investigated the potential capability of the decision tree model to detect blowing snow events in the European Alps. Trained with routine meteorological observations, the decision tree model can be used as an efficient tool to detect blowing snow occurrences across different regions requiring limited meteorological variables.
Yanbin Lei, Tandong Yao, Kun Yang, Lazhu, Yaoming Ma, and Broxton W. Bird
Hydrol. Earth Syst. Sci., 25, 3163–3177, https://doi.org/10.5194/hess-25-3163-2021, https://doi.org/10.5194/hess-25-3163-2021, 2021
Short summary
Short summary
Lake evaporation from Paiku Co on the TP is low in spring and summer and high in autumn and early winter. There is a ~ 5-month lag between net radiation and evaporation due to large lake heat storage. High evaporation and low inflow cause significant lake-level decrease in autumn and early winter, while low evaporation and high inflow cause considerable lake-level increase in summer. This study implies that evaporation can affect the different amplitudes of lake-level variations on the TP.
Maoshan Li, Xiaoran Liu, Lei Shu, Shucheng Yin, Lingzhi Wang, Wei Fu, Yaoming Ma, Yaoxian Yang, and Fanglin Sun
Hydrol. Earth Syst. Sci., 25, 2915–2930, https://doi.org/10.5194/hess-25-2915-2021, https://doi.org/10.5194/hess-25-2915-2021, 2021
Short summary
Short summary
In this study, using MODIS satellite data and site atmospheric turbulence observation data in the Nagqu area of the northern Tibetan Plateau, with the Massman-retrieved model and a single height observation to determine aerodynamic surface roughness, temporal and spatial variation characteristics of the surface roughness were analyzed. The result is feasible, and it can be applied to improve the model parameters of the land surface model and the accuracy of model simulation in future work.
Lilu Sun and Yunfei Fu
Earth Syst. Sci. Data, 13, 2293–2306, https://doi.org/10.5194/essd-13-2293-2021, https://doi.org/10.5194/essd-13-2293-2021, 2021
Short summary
Short summary
Multi-source dataset use is hampered by use of different spatial and temporal resolutions. We merged Tropical Rainfall Measuring Mission precipitation radar and visible and infrared scanner measurements with ERA5 reanalysis. The statistical results indicate this process has no unacceptable influence on the original data. The merged dataset can help in studying characteristics of and changes in cloud and precipitation systems and provides an opportunity for data analysis and model simulations.
Ziyu Huang, Lei Zhong, Yaoming Ma, and Yunfei Fu
Geosci. Model Dev., 14, 2827–2841, https://doi.org/10.5194/gmd-14-2827-2021, https://doi.org/10.5194/gmd-14-2827-2021, 2021
Short summary
Short summary
Spectral nudging is an effective dynamical downscaling method used to improve precipitation simulations of regional climate models (RCMs). However, the biases of the driving fields over the Tibetan Plateau (TP) would possibly introduce extra biases when spectral nudging is applied. The results show that the precipitation simulations were significantly improved when limiting the application of spectral nudging toward the potential temperature and water vapor mixing ratio over the TP.
Genhou Sun, Zeyong Hu, Yaoming Ma, Zhipeng Xie, Jiemin Wang, and Song Yang
Hydrol. Earth Syst. Sci., 24, 5937–5951, https://doi.org/10.5194/hess-24-5937-2020, https://doi.org/10.5194/hess-24-5937-2020, 2020
Short summary
Short summary
We investigate the influence of soil conditions on the planetary boundary layer (PBL) thermodynamics and convective cloud formations over a typical underlying surface, based on a series of simulations on a sunny day in the Tibetan Plateau, using the Weather Research and Forecasting (WRF) model. The real-case simulation and sensitivity simulations indicate that the soil moisture could have a strong impact on PBL thermodynamics, which may be favorable for the convective cloud formations.
Yaoming Ma, Zeyong Hu, Zhipeng Xie, Weiqiang Ma, Binbin Wang, Xuelong Chen, Maoshan Li, Lei Zhong, Fanglin Sun, Lianglei Gu, Cunbo Han, Lang Zhang, Xin Liu, Zhangwei Ding, Genhou Sun, Shujin Wang, Yongjie Wang, and Zhongyan Wang
Earth Syst. Sci. Data, 12, 2937–2957, https://doi.org/10.5194/essd-12-2937-2020, https://doi.org/10.5194/essd-12-2937-2020, 2020
Short summary
Short summary
In comparison with other terrestrial regions of the world, meteorological observations are scarce over the Tibetan Plateau.
This has limited our understanding of the mechanisms underlying complex interactions between the different earth spheres with heterogeneous land surface conditions.
The release of this continuous and long-term dataset with high temporal resolution is expected to facilitate broad multidisciplinary communities in understanding key processes on the
Third Pole of the world.
Felix Nieberding, Christian Wille, Gerardo Fratini, Magnus O. Asmussen, Yuyang Wang, Yaoming Ma, and Torsten Sachs
Earth Syst. Sci. Data, 12, 2705–2724, https://doi.org/10.5194/essd-12-2705-2020, https://doi.org/10.5194/essd-12-2705-2020, 2020
Short summary
Short summary
We present the first long-term eddy covariance CO2 and H2O flux measurements from the large but underrepresented alpine steppe ecosystem on the central Tibetan Plateau. We applied careful corrections and rigorous quality filtering and analyzed the turbulent flow regime to provide meaningful fluxes. This comprehensive data set allows potential users to put the gas flux dynamics into context with ecosystem properties and potential flux drivers and allows for comparisons with other data sets.
Cited articles
Ahn, C., Torres, O., and Bhartia, P. K.: Comparison of ozone monitoring
instrument UV aerosol products with Aqua/Moderate Resolution Imaging
Spectroradiometer and multiangle imaging spectroradiometer observations in
2006, J. Geophys. Res., 113, D16S27, https://doi.org/10.1029/2007jd008832, 2008.
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai,
Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y.,
Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama,
H., Uesawa, D., Yokota, H., and Yoshida, R.: An introduction to
Himawari-8/9 – Japan's new-generation geostationary meteorological
satellites, J. Meteorol. Soc. Jpn., 94,
151–183, https://doi.org/10.2151/jmsj.2016-009, 2016.
Bisht, G. and Bras, R. L.: Estimation of net radiation from the MODIS data
under all sky conditions: Southern Great Plains case study, Remote Sens.
Environ., 114, 1522–1534, https://doi.org/10.1016/j.rse.2010.02.007, 2010.
Bisht, G., Venturini, V., Islam, S., and Jiang, L.: Estimation of the net
radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data
for clear sky days, Remote Sens. Environ., 97, 52–67,
https://doi.org/10.1016/j.rse.2005.03.014, 2005.
Chen, J., Hu, Z., Dou, S., and Zeyu, Q.: Yin–Yang Slope problem along
Qinghai–Tibetan Lines and its radiation mechanism, Cold Reg. Sci.
Technol., 44, 217–224, https://doi.org/10.1016/j.coldregions.2005.12.001, 2006.
Chen, X., Su, Z., Ma, Y., Yang, K., and Wang, B.: Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau, Hydrol. Earth Syst. Sci., 17, 1607–1618, https://doi.org/10.5194/hess-17-1607-2013, 2013.
Decker, M., Brunke, M. A., Wang, Z., Sakaguchi, K., Zeng, X., and
Bosilovich, M. G.: Evaluation of the reanalysis products from GSFC, NCEP,
and ECMWF using flux tower observations, J. Climate, 25, 1916–1944,
https://doi.org/10.1175/jcli-d-11-00004.1, 2012.
Fu, Y., Ma, Y., Zhong, L., Yang, Y., Guo, X., Wang, C., Xu, X., Yang, K.,
Xu, X., Liu, L., Fan, G., Li, Y., and Wang, D.: Land-surface processes and
summer-cloud-precipitation characteristics in the Tibetan Plateau and their
effects on downstream weather: a review and perspective, Natl. Sci. Rev., 7,
500–515, https://doi.org/10.1093/nsr/nwz226, 2020.
Fujinami, H., Nomura, S., and Yasunari, T.: Characteristics of diurnal
variations in convection and precipitation over the southern Tibetan Plateau
during summer, Sola, 1, 49–52, https://doi.org/10.2151/sola.2005-014, 2005.
Gueymard, C. A.: Clear-sky irradiance predictions for solar resource mapping
and large-scale applications: Improved validation methodology and detailed
performance analysis of 18 broadband radiative models, Sol. Energy, 86,
2145–2169, https://doi.org/10.1016/j.solener.2011.11.011, 2012.
Guo, Q., Lu, F., Wei, C., Zhang, Z., and Yang, J.: Introducing the new
generation of Chinese geostationary weather satellites, Fengyun-4, B. Am. Meteorol. Soc., 98, 1637–1658,
https://doi.org/10.1175/bams-d-16-0065.1, 2017.
Hakuba, M. Z., Folini, D., Sanchez-Lorenzo, A., and Wild, M.: Spatial
representativeness of ground-based solar radiation measurements, J.
Geophys. Res.-Atmos., 118, 8585–8597, https://doi.org/10.1002/jgrd.50673, 2013.
Hans, H., Bell, W., Berrisford, P., Andras, H., Muñoz-Sabater, J.,
Nicolas, J., Raluca, R., Dinand, S., Adrian, S., Cornel, S., and Dick, D.:
Global reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF Newsletter No. 159 – Spring 2019, 17–24, 2019.
He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.: The first
high-resolution meteorological forcing dataset for land process studies over
China, Sci. Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y, 2020.
Hong, S.-Y., Kanamitsu, M., Kim, J.-E., and Koo, M.-S.: Effects of diurnal
cycle on a simulated Asian summer monsoon, J. Climate, 25,
8394–8408, https://doi.org/10.1175/jcli-d-12-00069.1, 2012.
Huang, C., Shi, H., Gao, L., Liu, M., Chen, Q., Fu, D., Wang, S., Yuan, Y.,
and Xia, X. A.: Fengyun-4 geostationary satellite-based solar energy
nowcasting system and its application in North China, Adv. Atmos. Sci., 39,
1316–1328, https://doi.org/10.1007/s00376-022-1464-0, 2022.
Huang, G., Li, X., Ma, M., Li, H., and Huang, C.: High resolution surface
radiation products for studies of regional energy, hydrologic and ecological
processes over Heihe river basin, northwest China, Agr. Forest. Meteorol,
230–231, 67–78, https://doi.org/10.1016/j.agrformet.2016.04.007, 2016a.
Huang, G., Li, X., Huang, C., Liu, S., Ma, Y., and Chen, H.:
Representativeness errors of point-scale ground-based solar radiation
measurements in the validation of remote sensing products, Remote Sens.
Environ., 181, 198–206, https://doi.org/10.1016/j.rse.2016.04.001, 2016b.
Huang, G., Liang, S., Lu, N., Ma, M., and Wang, D.: Toward a broadband
parameterization scheme for estimating surface solar irradiance: Development
and preliminary results on MODIS products, J. Geophys. Res.-Atmos., 123, 12180–112193, https://doi.org/10.1029/2018jd028905, 2018.
Huang, G., Li, Z., Li, X., Liang, S., Yang, K., Wang, D., and Zhang, Y.:
Estimating surface solar irradiance from satellites: Past, present, and
future perspectives, Remote Sens. Environ., 233, 111371,
https://doi.org/10.1016/j.rse.2019.111371, 2019.
Huang, G., Li, X., Lu, N., Wang, X., and He, T.: A general parameterization
scheme for the estimation of incident photosynthetically active radiation
under cloudy skies, IEEE T. Geosci. Remote, 58,
6255–6265, https://doi.org/10.1109/tgrs.2020.2976103, 2020.
Hwang, K., Choi, M., Lee, S. O., and Seo, J.-W.: Estimation of instantaneous
and daily net radiation from MODIS data under clear sky conditions: a case
study in East Asia, Irrigation Sci., 31, 1173–1184,
https://doi.org/10.1007/s00271-012-0396-3, 2012.
Immerzeel, W. W., van Beek, L. P., and Bierkens, M. F.: Climate change will
affect the Asian water towers, Science, 328, 1382–1385,
https://doi.org/10.1126/science.1183188, 2010.
Kim, D.-H.: Aerosol optical properties over east Asia determined from
ground-based sky radiation measurements, J. Geophys. Res.,
109, D02209, https://doi.org/10.1029/2003jd003387, 2004.
Kuang, X. and Jiao, J. J.: Review on climate change on the Tibetan Plateau
during the last half century, J. Geophys. Res.-Atmos.,
121, 3979–4007, https://doi.org/10.1002/2015jd024728, 2016.
Kukulies, J., Chen, D., and Wang, M.: Temporal and spatial variations of
convection, clouds and precipitation over the Tibetan Plateau from recent
satellite observations. Part II: Precipitation climatology derived from
global precipitation measurement mission, Int. J.
Climatol., 40, 4858–4875, https://doi.org/10.1002/joc.6493, 2020.
Letu, H., Shi, J., Li, M., Wang, T., Shang, H., Lei, Y., Ji, D., Wen, J.,
Yang, K., and Chen, L.: A review of the estimation of downward surface
shortwave radiation based on satellite data: Methods, progress and problems,
Science China Earth Sciences, 63, 774–789, https://doi.org/10.1007/s11430-019-9589-0, 2020.
Letu, H., Nakajima, T. Y., Wang, T., Shang, H., Ma, R., Yang, K., Baran, A.
J., Riedi, J., Ishimoto, H., Yoshida, M., Shi, C., Khatri, P., Du, Y., Chen,
L., and Shi, J.: A new benchmark for surface radiation products over the
East Asia–Pacific region retrieved from the Himawari-8/AHI next-generation
geostationary satellite, B. Am. Meteorol. Soc.,
103, E873–E888, https://doi.org/10.1175/bams-d-20-0148.1, 2022.
Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical
properties and application to Moderate Resolution Imaging Spectroradiometer
aerosol retrieval over land, J. Geophys. Res.-Atmos.,
112, D13210, https://doi.org/10.1029/2006jd007815, 2007.
Li, J., Tang, W., Yang, K., Xie, Y., Gueymard, C. A., Qin, J., and Sengupta,
M.: An improved algorithm for estimating surface shortwave radiation:
Preliminary evaluation with MODIS products, IEEE T. Geosci. Remote, 60, 1–9, https://doi.org/10.1109/tgrs.2021.3098742, 2022.
Li, Y., Wang, Y., Song, Y., Hu, L., Gao, S., and Rong, F.: Characteristics
of summer convective systems initiated over the Tibetan Plateau. Part I:
Origin, track, development, and precipitation, J. Appl. Meteorol. Clim., 47, 2679–2695, https://doi.org/10.1175/2008jamc1695.1, 2008.
Li, Z., Lyu, S., Wen, L., Zhao, L., Ao, Y., and Wang, S.: Effect of a cold,
dry air incursion on atmospheric boundary layer processes over a
high-altitude lake in the Tibetan Plateau, Atmos. Res., 185, 32–43,
https://doi.org/10.1016/j.atmosres.2016.10.024, 2017.
Li, Z., Lyu, S., Wen, L., Zhao, L., Ao, Y., and Meng, X.: Study of
freeze-thaw cycle and key radiation transfer parameters in a Tibetan Plateau
lake using LAKE2.0 model and field observations, J. Glaciol., 67,
91–106, https://doi.org/10.1017/jog.2020.87, 2020.
Li, Z., Lyu, S., Chen, S., Ao, Y., Zhao, L., Chen, H., and Meng, X.:
Observed characteristics of the water and heat transfer of the
soil–snow–atmosphere system through the snowpack in the eastern Tibetan
Plateau, Atmos. Res., 248, 105195, https://doi.org/10.1016/j.atmosres.2020.105195, 2021.
Li, Z. Q., Barker, H. W., and Moreau, L.: The variable effect of clouds on
atmospheric absorption of solar-radiation, Nature, 376, 486–490, https://doi.org/10.1038/376486a0, 1995.
Li, Z. Q., Moreau, L., and Arking, A.: On solar energy disposition: A
perspective from observation and modeling, B. Am.
Meteorol. Soc., 78, 53–70, https://doi.org/10.1175/1520-0477(1997)078<0053:Osedap>2.0.Co;2, 1997.
Liang, S., Zheng, T., Liu, R., Fang, H., Tsay, S.-C., and Running, S.:
Estimation of incident photosynthetically active radiation from Moderate
Resolution Imaging Spectrometer data, J. Geophys. Res., 111, D15208,
https://doi.org/10.1029/2005jd006730, 2006.
Liang, S., Wang, K., Zhang, X., and Wild, M.: Review on estimation of land
surface radiation and energy budgets from ground measurement, remote sensing
and model simulations, IEEE J. Sel. Top. Appl., 3, 225–240, https://doi.org/10.1109/jstars.2010.2048556,
2010.
Liang, S., Wang, D., He, T., and Yu, Y.: Remote sensing of earth's energy
budget: synthesis and review, Int. J. Digit. Earth, 12,
737–780, https://doi.org/10.1080/17538947.2019.1597189, 2019.
Loeb, N. G., Kato, S., Rose, F. G., Doelling, D. R., Rutan, D. A., Caldwell,
T. E., Yu, L., and Weller, R. A.: Surface irradiances consistent with
CERES-derived top-of-atmosphere shortwave and longwave irradiances, J. Climate, 26, 2719–2740, https://doi.org/10.1175/jcli-d-12-00436.1, 2013.
Lu, N., Liu, R., Liu, J., and Liang, S.: An algorithm for estimating
downward shortwave radiation from GMS 5 visible imagery and its evaluation
over China, J. Geophys. Res., 115, D18102, https://doi.org/10.1029/2009jd013457,
2010.
Lu, N., Qin, J., Yang, K., and Sun, J.: A simple and efficient algorithm to
estimate daily global solar radiation from geostationary satellite data,
Energy, 36, 3179–3188, https://doi.org/10.1016/j.energy.2011.03.007, 2011.
Ma, R., Letu, H., Yang, K., Wang, T., Shi, C., Xu, J., Shi, J., Shi, C., and
Chen, L.: Estimation of surface shortwave radiation from Himawari-8
satellite data based on a combination of radiative transfer and deep neural
network, IEEE T. Geosci. Remote, 58, 5304–5316,
https://doi.org/10.1109/tgrs.2019.2963262, 2020.
Ma, Y., Wang, Y., Wu, R., Hu, Z., Yang, K., Li, M., Ma, W., Zhong, L., Sun, F., Chen, X., Zhu, Z., Wang, S., and Ishikawa, H.: Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau, Hydrol. Earth Syst. Sci., 13, 1103–1111, https://doi.org/10.5194/hess-13-1103-2009, 2009.
Ma, Y., Zhu, Z., Zhong, L., Wang, B., Han, C., Wang, Z., Wang, Y., Lu, L., Amatya, P. M., Ma, W., and Hu, Z.: Combining MODIS, AVHRR and in situ data for evapotranspiration estimation over heterogeneous landscape of the Tibetan Plateau, Atmos. Chem. Phys., 14, 1507–1515, https://doi.org/10.5194/acp-14-1507-2014, 2014.
Ma, Y., Ma, W., Zhong, L., Hu, Z., Li, M., Zhu, Z., Han, C., Wang, B., and
Liu, X.: Monitoring and modeling the Tibetan Plateau's climate system and
its impact on East Asia, Sci. Rep., 7, 44574, https://doi.org/10.1038/srep44574, 2017.
Ma, Y., Hu, Z., Xie, Z., Ma, W., Wang, B., Chen, X., Li, M., Zhong, L., Sun, F., Gu, L., Han, C., Zhang, L., Liu, X., Ding, Z., Sun, G., Wang, S., Wang, Y., and Wang, Z.: A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau, Earth Syst. Sci. Data, 12, 2937–2957, https://doi.org/10.5194/essd-12-2937-2020, 2020a.
Ma, Y.: A long-term dataset of integrated land-atmosphere interaction observations on the Tibetan Plateau (2005–2016), TPDC [data set], http://data.tpdc.ac.cn (last access: 1 November 2022), 2020.
Ma, Y., He, T., Liang, S., McVicar, T. R., Hao, D., Liu, T., and Jiang, B.:
Estimation of fine spatial resolution all-sky surface net shortwave
radiation over mountainous terrain from Landsat 8 and Sentinel-2 data,
Remote Sens. Environ., 285, 113364, https://doi.org/10.1016/j.rse.2022.113364, 2023.
Ma, Y. M., Kang, S. C., Zhu, L. P., Xu, B. Q., Tian, L. D., and Yao, T. D.:
Tibetan observation and research platform atmosphere-land interaction over a
heterogeneous landscape, B. Am. Meteorol. Soc.,
89, 1487, https://doi.org/10.1175/2008bams2545.1, 2008.
Masuda, K., Leighton, H. G., and Li, Z. Q.: A new parameterization for the
determination of solar flux absorbed at the surface from satellite
measurements, J. Climate, 8, 1615–1629, https://doi.org/10.1175/1520-0442(1995)008<1615:Anpftd>2.0.Co;2, 1995.
Meng, X. and Lv, S.: Routine meteorological observation data of grassland observation points in erling Lake Basin, NCDC [data set], https://doi.org/10.12072/ncdc.ZPWERS.db1993.2022 (last access: 1 November 2022), 2022a.
Meng, X. and Lv, S.: Routine meteorological observation data of lakeside observation points in erling Lake Basin, NCDC [data set], https://doi.org/10.12072/ncdc.ZPWERS.db2002.2022 (last access: 1 November 2022), 2022b.
NASA: MODIS Moderate Resolution Imaging Spectroradiometer, NASA [data set], https://modis.gsfc.nasa.gov/data/ (last access: 1 November 2022), 2023.
Niemela, S., Raisanen, P., and Savijarvi, H.: Comparison of surface
radiative flux parameterizations – Part II. Shortwave radiation, Atmos.
Res., 58, 141–154, https://doi.org/10.1016/S0169-8095(01)00085-0, 2001.
Olson, M. and Rupper, S.: Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography, The Cryosphere, 13, 29–40, https://doi.org/10.5194/tc-13-29-2019, 2019.
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu,
H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang,
T., and Fang, J.: The impacts of climate change on water resources and
agriculture in China, Nature, 467, 43–51, https://doi.org/10.1038/nature09364, 2010.
Pinker, R. T. and Laszlo, I.: Modeling surface solar irradiance for
satellite applications on a global scale, J. Appl. Meteorol., 31, 194–211, https://doi.org/10.1175/1520-0450(1992)031<0194:Mssifs>2.0.Co;2, 1992.
Pinker, R. T., Zhang, B., and Dutton, E. G.: Do satellites detect trends in
surface solar radiation?, Science, 308, 850–854, https://doi.org/10.1126/science.1103159,
2005.
Pinker, R. T., Li, X., Meng, W., and Yegorova, E. A.: Toward improved
satellite estimates of short-wave radiative fluxes – Focus on cloud
detection over snow: 2. Results, J. Geophys. Res., 112, D09204,
https://doi.org/10.1029/2005jd006699, 2007.
Pinty, B., Lattanzio, A., Martonchik, J. V., Verstraete, M. M., Gobron, N.,
Taberner, M., Widlowski, J. L., Dickinson, R. E., and Govaerts, Y.: Coupling
diffuse sky radiation and surface albedo, J. Atmos.
Sci., 62, 2580–2591, https://doi.org/10.1175/Jas3479.1, 2005.
Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A.,
Riedi, J. C., and Frey, R. A.: The MODIS cloud products: algorithms and
examples from terra, IEEE T. Geosci. Remote, 41,
459–473, https://doi.org/10.1109/tgrs.2002.808301, 2003.
Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N.,
Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang,
P., Ridgway, W. L., and Riedi, J.: The MODIS cloud optical and microphysical
products: Collection 6 updates and examples from Terra and Aqua, IEEE T.
Geosci. Remote, 55, 502–525, https://doi.org/10.1109/TGRS.2016.2610522, 2017.
Qin, J., Chen, Z., Yang, K., Liang, S., and Tang, W.: Estimation of
monthly-mean daily global solar radiation based on MODIS and TRMM products,
Appl. Energ., 88, 2480–2489, https://doi.org/10.1016/j.apenergy.2011.01.018, 2011.
Qin, J., Tang, W., Yang, K., Lu, N., Niu, X., and Liang, S.: An efficient
physically based parameterization to derive surface solar irradiance based
on satellite atmospheric products, J. Geophys. Res.-Atmos., 120, 4975–4988, https://doi.org/10.1002/2015jd023097, 2015.
Qiu, J.: The third pole, Nature, 454, 393–396, https://doi.org/10.1038/454393a, 2008.
Roupioz, L., Jia, L., Nerry, F., and Menenti, M.: Estimation of daily solar
radiation budget at kilometer resolution over the Tibetan Plateau by
integrating MODIS data products and a DEM, Remote Sens.-Basel, 8, 504,
https://doi.org/10.3390/rs8060504, 2016.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X. W., Tsang, T.,
Strugnell, N. C., Zhang, X. Y., Jin, Y. F., Muller, J. P., Lewis, P.,
Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C.,
d'Entremont, R. P., Hu, B. X., Liang, S. L., Privette, J. L., and Roy, D.:
First operational BRDF, albedo nadir reflectance products from MODIS, Remote
Sens. Environ., 83, 135–148, https://doi.org/10.1016/S0034-4257(02)00091-3, 2002.
Sengupta, M., Xie, Y., Lopez, A., Habte, A., Maclaurin, G., and Shelby, J.:
The National Solar Radiation Data Base (NSRDB), Renew. Sust. Energ. Rev., 89, 51–60, https://doi.org/10.1016/j.rser.2018.03.003, 2018.
Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S.,
L'Ecuyer, T., Stackhouse, P. W., Lebsock, M., and Andrews, T.: An update on
Earth's energy balance in light of the latest global observations, Nat.
Geosci., 5, 691–696, https://doi.org/10.1038/ngeo1580, 2012.
Stokes, G. M. and Schwartz, S. E.: The Atmospheric Radiation - Measurement
(Arm) program – programmatic background and design of the cloud and
radiation Test-Bed, B. Am. Meteorol. Soc., 75,
1201–1221, https://doi.org/10.1175/1520-0477(1994)075<1201:Tarmpp>2.0.Co;2, 1994.
Tanaka, K., Ishikawa, H., Hayashi, T., Tamagawa, I., and Ma, Y. M.: Surface
energy budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data, J.
Meteorol. Soc. Jpn., 79, 505–517, https://doi.org/10.2151/jmsj.79.505, 2001.
Tang, W., Qin, J., Yang, K., Liu, S., Lu, N., and Niu, X.: Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data, Atmos. Chem. Phys., 16, 2543–2557, https://doi.org/10.5194/acp-16-2543-2016, 2016.
Tang, W., Yang, K., Qin, J., Li, X., and Niu, X.: A 16-year dataset (2000–2015) of high-resolution (3 h, 10 km) global surface solar radiation, Earth Syst. Sci. Data, 11, 1905–1915, https://doi.org/10.5194/essd-11-1905-2019, 2019.
Tovar, J., Olmo, F. J., and Aladosarboledas, L.: Local-scale variability of
solar-radiation in a mountainous region, J. Appl. Meteorol., 34, 2316–2322,
https://doi.org/10.1175/1520-0450(1995)034<2316:LSVOSR>2.0.CO;2, 1995.
Wang, D., Liang, S., Zhang, Y., Gao, X., Brown, M. G. L., and Jia, A.: A new
set of MODIS land products (MCD18): Downward shortwave radiation and
photosynthetically active radiation, Remote Sens., 12, 168, https://doi.org/10.3390/rs12010168,
2020.
Wang, G., Wang, T., and Xue, H.: Validation and comparison of surface
shortwave and longwave radiation products over the three poles,
Int. J. Appl. Earth Obs., 104, 102538,
https://doi.org/10.1016/j.jag.2021.102538, 2021.
Wang, K. and Dickinson, R. E.: Contribution of solar radiation to decadal
temperature variability over land, P. Natl. Acad Sci. USA, 110,
14877–14882, https://doi.org/10.1073/pnas.1311433110, 2013.
Wang, L., Xin, J., Wang, Y., Li, Z., Liu, G., and Li, J.: Evaluation of the
MODIS aerosol optical depth retrieval over different ecosystems in China
during EAST-AIRE, Atmos. Environ., 41, 7138–7149,
https://doi.org/10.1016/j.atmosenv.2007.05.001, 2007.
Wang, L., Gong, W., Hu, B., Lin, A., Li, H., and Zou, L.: Modeling and
analysis of the spatiotemporal variations of photosynthetically active
radiation in China during 1961–2012, Renew. Sust. Energ. Rev., 49, 1019–1032, https://doi.org/10.1016/j.rser.2015.04.174, 2015.
Wei, Y., Zhang, X., Hou, N., Zhang, W., Jia, K., and Yao, Y.: Estimation of
surface downward shortwave radiation over China from AVHRR data based on
four machine learning methods, Sol. Energy, 177, 32–46,
https://doi.org/10.1016/j.solener.2018.11.008, 2019.
Wu, G., Liu, Y., He, B., Bao, Q., Duan, A., and Jin, F. F.: Thermal controls
on the Asian summer monsoon, Sci. Rep., 2, 404, https://doi.org/10.1038/srep00404, 2012.
Xiao, Y. and Qiao, Y.: Meteorological dataset of Tanggula permafrost on Qinghai-Tibet Plateau from 2014 to 2016, NCDC [data set], https://doi.org/10.12072/ncdc.CCI.db0016.2020 (last access: 1 November 2022), 2020a.
Xiao, Y. and Qiao, Y.: Meteorological data set of permafrost in Xidatan, Qinghai-Tibet Plateau, 2014–2016, NCDC [data set], https://doi.org/10.12072/ncdc.CCI.db0017.2020 (last access: 1 November 2022), 2020b.
Xie, Y., Sengupta, M., and Dudhia, J.: A Fast All-sky Radiation Model for
Solar applications (FARMS): Algorithm and performance evaluation, Sol. Energy, 135, 435–445, https://doi.org/10.1016/j.solener.2016.06.003, 2016.
Xu, C., Ma, Y. M., You, C., and Zhu, Z. K.: The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau, Atmos. Chem. Phys., 15, 12065–12078, https://doi.org/10.5194/acp-15-12065-2015, 2015.
Xu, W., Ma, L., Ma, M., Zhang, H., and Yuan, W.: Spatial–temporal
variability of snow cover and depth in the Qinghai–Tibetan Plateau, J. Climate, 30, 1521–1533, https://doi.org/10.1175/jcli-d-15-0732.1, 2017.
Xu, X., Lu, C., Shi, X., and Gao, S.: World water tower: An atmospheric
perspective, Geophys. Res. Lett., 35, L20815, https://doi.org/10.1029/2008gl035867, 2008.
Yan, G., Chu, Q., Tong, Y., Mu, X., Qi, J., Zhou, Y., Liu, Y., Wang, T.,
Xie, D., Zhang, W., Yan, K., Chen, S., and Zhou, H.: An operational method
for validating the downward shortwave radiation over rugged terrains, IEEE T. Geosci. Remote, 1–18, 714–731,
https://doi.org/10.1109/tgrs.2020.2994384, 2020.
Yang, D., Wang, W., and Xia, X. A.: A concise overview on solar resource
assessment and forecasting, Adv. Atmos. Sci., 39, 1239–1251,
https://doi.org/10.1007/s00376-021-1372-8, 2022.
Yang, K., Koike, T., and Ye, B.: Improving estimation of hourly, daily, and
monthly solar radiation by importing global data sets, Agr. Forest Meteorol.,
137, 43–55, https://doi.org/10.1016/j.agrformet.2006.02.001, 2006a.
Yang, K., Koike, T., Stackhouse, P., Mikovitz, C., and Cox, S. J.: An
assessment of satellite surface radiation products for highlands with Tibet
instrumental data, Geophys. Res. Lett., 33, L22403, https://doi.org/10.1029/2006gl027640,
2006b.
Yang, K., Pinker, R. T., Ma, Y., Koike, T., Wonsick, M. M., Cox, S. J.,
Zhang, Y., and Stackhouse, P.: Evaluation of satellite estimates of downward
shortwave radiation over the Tibetan Plateau, J. Geophys. Res., 113, D17204, https://doi.org/10.1029/2007jd009736, 2008.
Yang, K., He, J., Tang, W., Qin, J., and Cheng, C. C. K.: On downward
shortwave and longwave radiations over high altitude regions: Observation
and modeling in the Tibetan Plateau, Agr. Forest Meteorol., 150, 38–46,
https://doi.org/10.1016/j.agrformet.2009.08.004, 2010.
Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., and Chen, Y.: Recent climate
changes over the Tibetan Plateau and their impacts on energy and water
cycle: A review, Global Planet. Change, 112, 79–91,
https://doi.org/10.1016/j.gloplacha.2013.12.001, 2014.
Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D., and Wan, G.:
Permafrost degradation and its environmental effects on the Tibetan Plateau:
A review of recent research, Earth-Sci. Rev., 103, 31–44,
https://doi.org/10.1016/j.earscirev.2010.07.002, 2010.
Yao, J., Zhao, L., Gu, L., Qiao, Y., and Jiao, K.: The surface energy budget
in the permafrost region of the Tibetan Plateau, Atmos. Res., 102,
394–407, https://doi.org/10.1016/j.atmosres.2011.09.001, 2011.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan,
K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., and Joswiak,
D.: Different glacier status with atmospheric circulations in Tibetan
Plateau and surroundings, Nat. Clim. Change, 2, 663–667,
https://doi.org/10.1038/nclimate1580, 2012.
Zhang, H., Xin, X., Li, L., and Liu, Q.: Estimating global solar radiation
using a hybrid parametric model from MODIS data over the Tibetan Plateau,
Sol. Energy, 112, 373–382, https://doi.org/10.1016/j.solener.2014.12.015, 2015.
Zhang, J., Zhao, L., Deng, S., Xu, W., and Zhang, Y.: A critical review of
the models used to estimate solar radiation, Renew. Sust.
Energ. Rev., 70, 314–329, https://doi.org/10.1016/j.rser.2016.11.124, 2017.
Zhang, K., Zhao, L., Tang, W., Yang, K., and Wang, J.: Global and regional
evaluation of the CERES edition-4A surface solar radiation and its
uncertainty quantification, IEEE J. Sel. Top. Appl., 15, 2971–2985, https://doi.org/10.1109/jstars.2022.3164471,
2022.
Zhang, T., Stackhouse, P. W., Chandler, W. S., and Westberg, D. J.:
Application of a global-to-beam irradiance model to the NASA GEWEX SRB
dataset: An extension of the NASA surface meteorology and solar energy
datasets, Sol. Energy, 110, 117–131, https://doi.org/10.1016/j.solener.2014.09.006, 2014.
Zhao, C., Chen, Y., Li, J., Letu, H., Su, Y., Chen, T., and Wu, X.:
Fifteen-year statistical analysis of cloud characteristics over China using
Terra and Aqua Moderate Resolution Imaging Spectroradiometer observations,
Int. J. Climatol., 39, 2612–2629, https://doi.org/10.1002/joc.5975,
2019.
Zhao, L., Zou, D., Hu, G., Wu, T., Du, E., Liu, G., Xiao, Y., Li, R., Pang, Q., Qiao, Y., Wu, X., Sun, Z., Xing, Z., Sheng, Y., Zhao, Y., Shi, J., Xie, C., Wang, L., Wang, C., and Cheng, G.: A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China, Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, 2021.
Zhao, P., Xu, X., Chen, F., Guo, X., Zheng, X., Liu, L., Hong, Y., Li, Y.,
La, Z., Peng, H., Zhong, L., Ma, Y., Tang, S., Liu, Y., Liu, H., Li, Y.,
Zhang, Q., Hu, Z., Sun, J., Zhang, S., Dong, L., Zhang, H., Zhao, Y., Yan,
X., Xiao, A., Wan, W., Liu, Y., Chen, J., Liu, G., Zhaxi, Y., and Zhou, X.:
The third atmospheric scientific experiment for understanding the
earth–atmosphere coupled system over the Tibetan Plateau and its effects,
B. Am. Meteorol. Soc., 99, 757–776,
https://doi.org/10.1175/bams-d-16-0050.1, 2018.
Zhao, P., Zhou, X., Chen, J., Liu, G., and Nan, S.: Global climate effects
of summer Tibetan Plateau, Sci. Bull., 64, 1–3,
https://doi.org/10.1016/j.scib.2018.11.019, 2019.
Zhong, L., Ma, Y., Su, Z., and Salama, M. S.: Estimation of land surface
temperature over the Tibetan Plateau using AVHRR and MODIS data, Adv. Atmos.
Sci., 27, 1110–1118, https://doi.org/10.1007/s00376-009-9133-0, 2010.
Zhong, L., Ma, Y., Hu, Z., Fu, Y., Hu, Y., Wang, X., Cheng, M., and Ge, N.: Estimation of hourly land surface heat fluxes over the Tibetan Plateau by the combined use of geostationary and polar-orbiting satellites, Atmos. Chem. Phys., 19, 5529–5541, https://doi.org/10.5194/acp-19-5529-2019, 2019a.
Zhong, L., Zou, M., Ma, Y., Huang, Z., Xu, K., Wang, X., Ge, N., and Cheng,
M.: Estimation of downwelling shortwave and longwave radiation in the
Tibetan Plateau under all-sky conditions, J. Geophys. Res.-Atmos., 124, 11086–11102, https://doi.org/10.1029/2019jd030763, 2019b.
Zhou, Y., Li, Z., Li, J., Zhao, R., and Ding, X.: Glacier mass balance in
the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000
based on Hexagon KH-9 and SRTM DEMs, Remote Sens. Environ., 210,
96–112, https://doi.org/10.1016/j.rse.2018.03.020, 2018.
Short summary
In this paper, all-sky downwelling shortwave radiation (DSR) over the entire Tibetan Plateau (TP) at a spatial resolution of 1 km was estimated using an improved parameterization scheme. The influence of topography and different radiative attenuations were comprehensively taken into account. The derived DSR showed good agreement with in situ measurements. The accuracy was better than six other DSR products. The derived DSR also provided more reasonable and detailed spatial patterns.
In this paper, all-sky downwelling shortwave radiation (DSR) over the entire Tibetan Plateau...
Altmetrics
Final-revised paper
Preprint