Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9161-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-9161-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of storage conditions on the molecular-level composition of organic aerosol particles
Julian Resch
Department of Environmental Sciences, University of Basel,
Klingelbergstrasse 27, 4056 Basel, Switzerland
Kate Wolfer
Department of Environmental Sciences, University of Basel,
Klingelbergstrasse 27, 4056 Basel, Switzerland
Alexandre Barth
Department of Environmental Sciences, University of Basel,
Klingelbergstrasse 27, 4056 Basel, Switzerland
Markus Kalberer
CORRESPONDING AUTHOR
Department of Environmental Sciences, University of Basel,
Klingelbergstrasse 27, 4056 Basel, Switzerland
Related authors
Markus Leiminger, Lukas Fischer, Sophia Brilke, Julian Resch, Paul Martin Winkler, Armin Hansel, and Gerhard Steiner
Atmos. Meas. Tech., 15, 3705–3720, https://doi.org/10.5194/amt-15-3705-2022, https://doi.org/10.5194/amt-15-3705-2022, 2022
Short summary
Short summary
We developed an axial ion mobility classifier coupled to an atmospheric-pressure interface time-of-flight (APi-TOF) mass spectrometer to measure size-segregated atmospheric ions. We characterize the performance of the novel instrument with bipolar-electrospray-generated ion mobility standards and compare the results with CFD simulations and a simplified numerical particle-tracking model. Ultimately, we report first mass–mobility measurements of atmospheric ions in Innsbruck, Austria.
Anni Hartikainen, Mika Ihalainen, Deeksha Shukla, Marius Rohkamp, Arya Mukherjee, Quanfu He, Sandra Piel, Aki Virkkula, Delun Li, Tuukka Kokkola, Seongho Jeong, Hanna Koponen, Uwe Etzien, Anusmita Das, Krista Luoma, Lukas Schwalb, Thomas Gröger, Alexandre Barth, Martin Sklorz, Thorsten Streibel, Hendryk Czech, Benedikt Gündling, Markus Kalberer, Bert Buchholz, Andreas Hupfer, Thomas Adam, Thorsten Hohaus, Johan Øvrevik, Ralf Zimmermann, and Olli Sippula
Atmos. Chem. Phys., 25, 9275–9294, https://doi.org/10.5194/acp-25-9275-2025, https://doi.org/10.5194/acp-25-9275-2025, 2025
Short summary
Short summary
Photochemical reactions altered the properties of kerosene-operated jet engine burner exhaust emissions, which were studied in a laboratory using an oxidation flow reactor. Particle mass increased 300-fold as particles and gases became more oxidized. Light absorption increased, but the total direct radiative forcing efficiency was estimated to have shifted from positive to negative. The results highlight the importance of considering secondary aerosol formation when assessing the impacts of aviation.
Benjamin Gfeller, Mariia Becker, Adrian D. Aebi, Nicolas Bukowiecki, Marcus Wyss, and Markus Kalberer
Aerosol Research, 3, 351–369, https://doi.org/10.5194/ar-3-351-2025, https://doi.org/10.5194/ar-3-351-2025, 2025
Short summary
Short summary
Metal nanoparticles (Au, Pt, Cu and Ni) were generated in the aerosol phase using spark ablation and analysed for size, shape and number concentration. Particles as small as 1 nm and up to > 60 nm show shapes from fully spherical to fractal-like as characterized by electron microscopy. Furthermore, the metal particles were mixed with TiO2 nanoparticles, and the number and size of metal particles coating the TiO2 were determined.
Kevin Kilchhofer, Alexandre Barth, Battist Utinger, Markus Kalberer, and Markus Ammann
Aerosol Research, 3, 337–349, https://doi.org/10.5194/ar-3-337-2025, https://doi.org/10.5194/ar-3-337-2025, 2025
Short summary
Short summary
We report a substantial buildup of reactive molecules (due to sunlight) in organic particulate matter, causing adverse health effects. Metals, which occur naturally or are emitted by traffic, can complex with organic materials and initiate photochemical processes. At low humidity, organic particles may become highly viscous, which allows for the accumulation of reactive species. We found that copper acts as an reducing species to remove some of these harmful species from particles.
Battist Utinger, Alexandre Barth, Andreas Paul, Arya Mukherjee, Steven John Campbell, Christa-Maria Müller, Mika Ihalainen, Pasi Yli-Pirilä, Miika Kortelainen, Zheng Fang, Patrick Martens, Markus Somero, Juho Louhisalmi, Thorsten Hohaus, Hendryk Czech, Olli Sippula, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Aerosol Research, 3, 205–218, https://doi.org/10.5194/ar-3-205-2025, https://doi.org/10.5194/ar-3-205-2025, 2025
Short summary
Short summary
The oxidative potential (OP) of air pollution particles might be a metric explaining particle toxicity. This study quantifies the OP of fresh and aged car and wood burning emission particles and explores how the OP changes over time, using novel high-temporal-resolution instruments. We show that emissions from wood burning are more toxic than car exhaust per unit particle mass, especially as they age in the atmosphere. We also calculate emission factors for the OP, which could help to improve air pollution policies.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025, https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP dithiothreitol assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardisation in OP procedures.
Battist Utinger, Steven John Campbell, Nicolas Bukowiecki, Alexandre Barth, Benjamin Gfeller, Ray Freshwater, Hans-Rudolf Rüegg, and Markus Kalberer
Atmos. Meas. Tech., 16, 2641–2654, https://doi.org/10.5194/amt-16-2641-2023, https://doi.org/10.5194/amt-16-2641-2023, 2023
Short summary
Short summary
Exposure to atmospheric aerosols can lead to adverse health effect, but particle components responsible for this are unknown. Redox-active compounds, some with very short lifetimes, are considered to be a toxic class of compounds in particles. We developed the first online field instrument to quantify short-lived and stable redox-active compounds with a physiological assay based on ascorbic acid and a high time resolution and detection limits to allow measurements at unpolluted locations.
Markus Leiminger, Lukas Fischer, Sophia Brilke, Julian Resch, Paul Martin Winkler, Armin Hansel, and Gerhard Steiner
Atmos. Meas. Tech., 15, 3705–3720, https://doi.org/10.5194/amt-15-3705-2022, https://doi.org/10.5194/amt-15-3705-2022, 2022
Short summary
Short summary
We developed an axial ion mobility classifier coupled to an atmospheric-pressure interface time-of-flight (APi-TOF) mass spectrometer to measure size-segregated atmospheric ions. We characterize the performance of the novel instrument with bipolar-electrospray-generated ion mobility standards and compare the results with CFD simulations and a simplified numerical particle-tracking model. Ultimately, we report first mass–mobility measurements of atmospheric ions in Innsbruck, Austria.
Zhi-Hui Zhang, Elena Hartner, Battist Utinger, Benjamin Gfeller, Andreas Paul, Martin Sklorz, Hendryk Czech, Bin Xia Yang, Xin Yi Su, Gert Jakobi, Jürgen Orasche, Jürgen Schnelle-Kreis, Seongho Jeong, Thomas Gröger, Michal Pardo, Thorsten Hohaus, Thomas Adam, Astrid Kiendler-Scharr, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Atmos. Chem. Phys., 22, 1793–1809, https://doi.org/10.5194/acp-22-1793-2022, https://doi.org/10.5194/acp-22-1793-2022, 2022
Short summary
Short summary
Using a novel setup, we comprehensively characterized the formation of particle-bound reactive oxygen species (ROS) in anthropogenic and biogenic secondary organic aerosols (SOAs). We found that more than 90 % of all ROS components in both SOA types have a short lifetime. Our results also show that photochemical aging promotes particle-bound ROS production and enhances the oxidative potential of the aerosols. We found consistent results between chemical-based and biological-based ROS analyses.
Steven J. Campbell, Kate Wolfer, Battist Utinger, Joe Westwood, Zhi-Hui Zhang, Nicolas Bukowiecki, Sarah S. Steimer, Tuan V. Vu, Jingsha Xu, Nicholas Straw, Steven Thomson, Atallah Elzein, Yele Sun, Di Liu, Linjie Li, Pingqing Fu, Alastair C. Lewis, Roy M. Harrison, William J. Bloss, Miranda Loh, Mark R. Miller, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 21, 5549–5573, https://doi.org/10.5194/acp-21-5549-2021, https://doi.org/10.5194/acp-21-5549-2021, 2021
Short summary
Short summary
In this study, we quantify PM2.5 oxidative potential (OP), a metric widely suggested as a potential measure of particle toxicity, in Beijing in summer and winter using four acellular assays. We correlate PM2.5 OP with a comprehensive range of atmospheric and particle composition measurements, demonstrating inter-assay differences and seasonal variation of PM2.5 OP. Using multivariate statistical analysis, we highlight specific particle chemical components and sources that influence OP.
Sarah S. Steimer, Daniel J. Patton, Tuan V. Vu, Marios Panagi, Paul S. Monks, Roy M. Harrison, Zoë L. Fleming, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 20, 13303–13318, https://doi.org/10.5194/acp-20-13303-2020, https://doi.org/10.5194/acp-20-13303-2020, 2020
Short summary
Short summary
Air pollution is of growing concern due to its negative effect on public health, especially in low- and middle-income countries. This study investigates how the chemical composition of particles in Beijing changes under different measurement conditions (pollution levels, season) to get a better understanding of the sources of this form of air pollution.
Cited articles
Benton, H. P., Want, E. J., and Ebbels, T. M. D.: Correction of mass
calibration gaps in liquid chromatography-mass spectrometry metabolomics
data, Bioinformatics, 26, 2488–2489,
https://doi.org/10.1093/bioinformatics/btq441, 2010.
CEN, European Committee for Standardization: EN 12341:2014 Ambient air – Standard gravimetric
measurement method for the determination of the PM10 or PM2.5 mass
concentration of suspended particulate matter, CEN-CENELEC, 2014.
Chambers, M. C., MacLean, B., Burke, R., Amodei, D., Ruderman, D. L.,
Neumann, S., Gatto, L., Fischer, B., Pratt, B., Egertson, J., Hoff, K.,
Kessner, D., Tasman, N., Shulman, N., Frewen, B., Baker, T. A., Brusniak, M.
Y., Paulse, C., Creasy, D., Flashner, L., Kani, K., Moulding, C., Seymour,
S. L., Nuwaysir, L. M., Lefebvre, B., Kuhlmann, F., Roark, J., Rainer, P.,
Detlev, S., Hemenway, T., Huhmer, A., Langridge, J., Connolly, B., Chadick,
T., Holly, K., Eckels, J., Deutsch, E. W., Moritz, R. L., Katz, J. E., Agus,
D. B., MacCoss, M., Tabb, D. L., and Mallick, P.: A cross-platform toolkit
for mass spectrometry and proteomics, Nat. Biotechnol., 30, 918–920,
https://doi.org/10.1038/nbt.2377, 2012.
Dillner, A. M., Phuah, C. H., and Turner, J. R.: Effects of post-sampling
conditions on ambient carbon aerosol filter measurements, Atmos. Environ.,
43, 5937–5943, https://doi.org/10.1016/j.atmosenv.2009.08.009, 2009.
Eiguren-Fernandez, A., Miguel, A. H., Froines, J. R., Thurairatnam, S., and
Avol, E. L.: Seasonal and spatial variation of polycyclic aromatic
hydrocarbons in vapor-phase and PM2.5 in Southern California urban and rural
communities, Aerosol Sci. Tech., 38, 447–455,
https://doi.org/10.1080/02786820490449511, 2004.
Fuller, S. J., Wragg, F. P. H., Nutter, J., and Kalberer, M.: Comparison of
on-line and off-line methods to quantify reactive oxygen species (ROS) in
atmospheric aerosols, Atmos. Environ., 92, 97–103,
https://doi.org/10.1016/j.atmosenv.2014.04.006, 2014.
Glasius, M., Lahaniati, M., Calogirou, A., Di Bella, D., Jensen, N. R.,
Hjorth, J., Kotzias, D., and Larsen, B. R.: Carboxylic acids in secondary
aerosols from oxidation of cyclic monoterpenes by ozone, Environ. Sci.
Technol., 34, 1001–1010, https://doi.org/10.1021/es990445r, 2000.
Hall, W. A. and Johnston, M. V.: Oligomer formation pathways in secondary
organic aerosol from MS and MS/MS measurements with high mass accuracy and
resolving power, J. Am. Soc. Mass Spectrom., 23, 1097–1108,
https://doi.org/10.1007/s13361-012-0362-6, 2012.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern,
R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.:
Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020.
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9,
90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of organic aerosols in the
atmosphere, Science, 326, 1525–1529,
https://doi.org/10.1126/science.1180353, 2009.
Johnston, M. V. and Kerecman, D. E.: Molecular Characterization of
Atmospheric Organic Aerosol by Mass Spectrometry, Annu. Rev. Anal. Chem.,
12, 247–274, https://doi.org/10.1146/annurev-anchem-061516-045135, 2019.
Keller, A., Kalbermatter, D. M., Wolfer, K., Specht, P., Steigmeier, P.,
Resch, J., Kalberer, M., Hammer, T., and Vasilatou, K.: The organic coating
unit, an all-in-one system for reproducible generation of secondary organic
matter aerosol, Aerosol Sci. Tech., 56, 947–958,
https://doi.org/10.1080/02786826.2022.2110448, 2022.
Kelly, F. J.: Oxidative stress: Its role in air pollution and adverse health
effects, Occup. Environ. Med., 60, 612–616,
https://doi.org/10.1136/oem.60.8.612, 2003.
Kenseth, C. M., Huang, Y., Zhao, R., Dalleska, N. F., Caleb Hethcox, J.,
Stoltz, B. M., and Seinfeld, J. H.: Synergistic O3 + OH oxidation pathway
to extremely low-volatility dimers revealed in β-pinene secondary
organic aerosol, P. Natl. Acad. Sci. USA, 115, 8301–8306,
https://doi.org/10.1073/pnas.1804671115, 2018.
Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., and Docherty, K. S.: The formation of SOA and chemical tracer compounds from the photooxidation of naphthalene and its methyl analogs in the presence and absence of nitrogen oxides, Atmos. Chem. Phys., 12, 8711–8726, https://doi.org/10.5194/acp-12-8711-2012, 2012.
Kourtchev, I., Giorio, C., Manninen, A., Wilson, E., Mahon, B., Aalto, J.,
Kajos, M., Venables, D., Ruuskanen, T., Levula, J., Loponen, M., Connors,
S., Harris, N., Zhao, D., Kiendler-Scharr, A., Mentel, T., Rudich, Y.,
Hallquist, M., Doussin, J. F., Maenhaut, W., Bäck, J., Petäjä,
T., Wenger, J., Kulmala, M., and Kalberer, M.: Enhanced volatile organic
compounds emissions and organic aerosol mass increase the oligomer content
of atmospheric aerosols, Sci. Rep., 6, 1–9,
https://doi.org/10.1038/srep35038, 2016.
Kristensen, K., Watne, Å. K., Hammes, J., Lutz, A., Petäjä, T.,
Hallquist, M., Bilde, M., and Glasius, M.: High-Molecular Weight Dimer
Esters Are Major Products in Aerosols from α-Pinene Ozonolysis and
the Boreal Forest, Environ. Sci. Tech. Let., 3, 280–285,
https://doi.org/10.1021/acs.estlett.6b00152, 2016.
Mark, G., Tauber, A., Laupert, R., Schuchmann, H. P., Schulz, D., Mues, A.,
and Von Sonntag, C.: OH-radical formation by ultrasound in aqueous solution
– Part II: Terephthalate and Fricke dosimetry and the influence of various
conditions on the sonolytic yield, Ultrason. Sonochem., 5, 41–52,
https://doi.org/10.1016/S1350-4177(98)00012-1, 1998.
NABEL: Technischer Bericht zum Nationalen Beobachtungsnetz für
Luftfremdstoffe (NABEL), 209 pp., https://www.bafu.admin.ch/bafu/de/home/themen/luft/zustand/daten/nationales-beobachtungsnetz-fuer-luftfremdstoffe--nabel-.html (last access: 17 August 2023), 2023.
Nozière, B., Kalberer, M., Claeys, M., Allan, J., D'Anna, B., Decesari,
S., Finessi, E., Glasius, M., Grgić, I., Hamilton, J. F., Hoffmann, T.,
Iinuma, Y., Jaoui, M., Kahnt, A., Kampf, C. J., Kourtchev, I., Maenhaut, W.,
Marsden, N., Saarikoski, S., Schnelle-Kreis, J., Surratt, J. D., Szidat, S.,
Szmigielski, R., and Wisthaler, A.: The Molecular Identification of Organic
Compounds in the Atmosphere: State of the Art and Challenges, Chem. Rev.,
115, 3919–3983, https://doi.org/10.1021/cr5003485, 2015.
Parshintsev, J., Ruiz-Jimenez, J., Petäjä, T., Hartonen, K.,
Kulmala, M., and Riekkola, M. L.: Comparison of quartz and Teflon filters
for simultaneous collection of size-separated ultrafine aerosol particles
and gas-phase zero samples, Anal. Bioanal. Chem., 400, 3527–3535,
https://doi.org/10.1007/s00216-011-5041-0, 2011.
Pereira, K. L., Ward, M. W., Wilkinson, J. L., Sallach, J. B., Bryant, D.
J., Dixon, W. J., Hamilton, J. F., and Lewis, A. C.: An Automated
Methodology for Non-targeted Compositional Analysis of Small Molecules in
High Complexity Environmental Matrices Using Coupled Ultra Performance
Liquid Chromatography Orbitrap Mass Spectrometry, Environ. Sci. Technol.,
55, 7365–7375, https://doi.org/10.1021/acs.est.0c08208, 2021.
Perrino, C., Canepari, S., and Catrambone, M.: Comparing the performance of
Teflon and quartz membrane filters collecting atmospheric PM: Influence of
atmospheric water, Aerosol Air Qual. Res., 13, 137–147,
https://doi.org/10.4209/aaqr.2012.07.0167, 2013.
Pöschl, U. and Shiraiwa, M.: Multiphase Chemistry at the
Atmosphere-Biosphere Interface Influencing Climate and Public Health in the
Anthropocene, Chem. Rev., 115, 4440–4475,
https://doi.org/10.1021/cr500487s, 2015.
Raybaut, P.: Spyder-documentation, http://pythonhosted.org (last access: 17 August 2023), 2009.
Roper, C., Delgado, L. S., Barrett, D., Massey Simonich, S. L., and Tanguay,
R. L.: PM2.5 Filter Extraction Methods: Implications for Chemical and
Toxicological Analyses, Environ. Sci. Technol., 53, 434–442,
https://doi.org/10.1021/acs.est.8b04308, 2019.
Sato, K., Jia, T., Tanabe, K., Morino, Y., Kajii, Y., and Imamura, T.:
Terpenylic acid and nine-carbon multifunctional compounds formed during the
aging of β-pinene ozonolysis secondary organic aerosol, Atmos.
Environ., 130, 127–135, https://doi.org/10.1016/j.atmosenv.2015.08.047,
2016.
Seinfeld, J. H. and Pankow, J. F.: Organic Atmospheric Particulate Material,
Annu. Rev. Phys. Chem., 54, 121–140,
https://doi.org/10.1146/annurev.physchem.54.011002.103756, 2003.
Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R., and Siuzdak, G.: XCMS:
Processing mass spectrometry data for metabolite profiling using nonlinear
peak alignment, matching, and identification, Anal. Chem., 78, 779–787,
https://doi.org/10.1021/ac051437y, 2006.
Stark, H., Yatavelli, R. L. N., Thompson, S. L., Kimmel, J. R., Cubison, M.
J., Chhabra, P. S., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and
Jimenez, J. L.: Methods to extract molecular and bulk chemical information
from series of complex mass spectra with limited mass resolution, Int. J.
Mass Spectrom., 389, 26–38, https://doi.org/10.1016/j.ijms.2015.08.011,
2015.
Tautenhahn, R., Bottcher, C., and Neumann, S.: Highly sensitive feature
detection for high resolution LC/MS, BMC Bioinformatics, 9, 1–16,
https://doi.org/10.1186/1471-2105-9-504, 2008.
Van Rossum, G. and Drake, F. L.: Python 3 Reference Manual, CreateSpace,
Scotts Valley, CA, ISBN 1441412697, 2009.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag
New York, 260 pp., https://doi.org/10.1007/978-3-319-24277-4, 2016.
Wolfer, A. M., Correia, G. D. S., Sands, C. J., Camuzeaux, S., Yuen, A. H. Y.,
Chekmeneva, E., Takáts, Z., Pearce, J. T. M., and Lewis, M. R.:
peakPantheR, an R package for large-scale targeted extraction and
integration of annotated metabolic features in LC–MS profiling datasets,
Bioinformatics, 37, 4886–4888, https://doi.org/10.1093/bioinformatics/btab433, 2021.
Wong, C., Vite, D., and Nizkorodov, S. A.: Stability of α-Pinene and
d-Limonene Ozonolysis Secondary Organic Aerosol Compounds Toward Hydrolysis
and Hydration, ACS Earth Sp. Chem., 5, 2555–2564,
https://doi.org/10.1021/acsearthspacechem.1c00171, 2021.
Yasmeen, F., Vermeylen, R., Szmigielski, R., Iinuma, Y., Böge, O., Herrmann, H., Maenhaut, W., and Claeys, M.: Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of α- and β-pinene, Atmos. Chem. Phys., 10, 9383–9392, https://doi.org/10.5194/acp-10-9383-2010, 2010.
Zhao, R., Kenseth, C. M., Huang, Y., Dalleska, N. F., Kuang, X. M., Chen,
J., Paulson, S. E., and Seinfeld, J. H.: Rapid Aqueous-Phase Hydrolysis of
Ester Hydroperoxides Arising from Criegee Intermediates and Organic Acids,
J. Phys. Chem. A, 122, 5190–5201, https://doi.org/10.1021/acs.jpca.8b02195,
2018.
Short summary
Detailed chemical analysis of organic aerosols is necessary to better understand their effects on climate and health. Aerosol samples are often stored for days to months before analysis. We examined the effects of storage conditions (i.e., time, temperature, and aerosol storage on filters or as solvent extracts) on composition and found significant changes in the concentration of individual compounds, indicating that sample storage can strongly affect the detailed chemical particle composition.
Detailed chemical analysis of organic aerosols is necessary to better understand their effects...
Altmetrics
Final-revised paper
Preprint