Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9099-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-9099-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A bin microphysics parcel model investigation of secondary ice formation in an idealised shallow convective cloud
Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
now at: School of Chemistry, University of Leeds, Leeds, UK
Jonathan Crosier
Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
National Centre for Atmospheric Science (NCAS), University of Manchester, Manchester, UK
Paul J. Connolly
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
Related authors
Rachel L. James, Vaughan T. J. Phillips, and Paul J. Connolly
Atmos. Chem. Phys., 21, 18519–18530, https://doi.org/10.5194/acp-21-18519-2021, https://doi.org/10.5194/acp-21-18519-2021, 2021
Short summary
Short summary
Secondary ice production (SIP) plays an important role in ice formation within mixed-phase clouds. We present a laboratory investigation of a potentially new SIP mechanism involving the collisions of supercooled water drops with ice particles. At impact, the supercooled water drop fragments form smaller secondary drops. Approximately 30 % of the secondary drops formed during the retraction phase of the supercooled water drop impact freeze over a temperature range of −4 °C to −12 °C.
Mengyu Sun, Paul J. Connolly, Paul R. Field, Declan L. Finney, and Alan M. Blyth
EGUsphere, https://doi.org/10.5194/egusphere-2025-3158, https://doi.org/10.5194/egusphere-2025-3158, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigated how extra ice particles form inside tropical storm clouds and how they affect rainfall and sunlight reflection. By using a weather model, we found that these extra ice particles can change how clouds grow, reduce heat escaping to space, and slightly shift where rain falls. This helps improve how weather and climate models predict tropical storms.
Huihui Wu, Nicholas Marsden, Paul Connolly, Michael Flynn, Paul I. Williams, Declan Finney, Kezhen Hu, Graeme J. Nott, Navaneeth Thamban, Keith Bower, Alan Blyth, Martin Gallagher, and Hugh Coe
EGUsphere, https://doi.org/10.5194/egusphere-2025-2600, https://doi.org/10.5194/egusphere-2025-2600, 2025
Short summary
Short summary
Airborne observations over the Magdalena Mountains in New Mexico underscore the combined influence of meteorological conditions and aerosol characteristics on the development of deep-convective clouds under different flow regimes. Model-observation comparisons emphasize the critical role of aerosol entrainment in reproducing the observed broad cloud droplet spectra. This study provides valuable constraints for improving parameterizations of aerosol-cloud interactions in deep convective systems.
Declan L. Finney, Alan M. Blyth, Paul R. Field, Martin I. Daily, Benjamin J. Murray, Mengyu Sun, Paul J. Connolly, Zhiqiang Cui, and Steven Böing
EGUsphere, https://doi.org/10.5194/egusphere-2025-1227, https://doi.org/10.5194/egusphere-2025-1227, 2025
Short summary
Short summary
We present observation-informed modelling from the Deep Convective Microphysics Experiment to study how environmental conditions and cloud processes affect anvil cloud albedo and radiation. Aerosols influencing cloud droplets or influencing ice formation yield varying radiative effects. We introduce fingerprint metrics to discern these effects. Using detailed observations and modelling, we offer insights into high cloud radiative effects and feedbacks.
Omer Celebi, Andrew R. D. Smedley, Paul J. Connolly, and Ann R. Webb
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-200, https://doi.org/10.5194/amt-2024-200, 2025
Preprint under review for AMT
Short summary
Short summary
Ice crystals have a significant role in weather and climate, but their roughness is not measured which affects how ice crystals scatter sunlight. In our study, we have developed a new way of measuring roughness parameters of ice crystals. By growing crystals in laboratory conditions and creating replicas , we can image them under special imaging tools to measure small features on their surface. Results can be implemented in models to reduce uncertainties in understanding the atmosphere.
Declan L. Finney, Alan M. Blyth, Martin Gallagher, Huihui Wu, Graeme J. Nott, Michael I. Biggerstaff, Richard G. Sonnenfeld, Martin Daily, Dan Walker, David Dufton, Keith Bower, Steven Böing, Thomas Choularton, Jonathan Crosier, James Groves, Paul R. Field, Hugh Coe, Benjamin J. Murray, Gary Lloyd, Nicholas A. Marsden, Michael Flynn, Kezhen Hu, Navaneeth M. Thamban, Paul I. Williams, Paul J. Connolly, James B. McQuaid, Joseph Robinson, Zhiqiang Cui, Ralph R. Burton, Gordon Carrie, Robert Moore, Steven J. Abel, Dave Tiddeman, and Graydon Aulich
Earth Syst. Sci. Data, 16, 2141–2163, https://doi.org/10.5194/essd-16-2141-2024, https://doi.org/10.5194/essd-16-2141-2024, 2024
Short summary
Short summary
The DCMEX (Deep Convective Microphysics Experiment) project undertook an aircraft- and ground-based measurement campaign of New Mexico deep convective clouds during July–August 2022. The campaign coordinated a broad range of instrumentation measuring aerosol, cloud physics, radar signals, thermodynamics, dynamics, electric fields, and weather. The project's objectives included the utilisation of these data with satellite observations to study the anvil cloud radiative effect.
Rachel L. James, Vaughan T. J. Phillips, and Paul J. Connolly
Atmos. Chem. Phys., 21, 18519–18530, https://doi.org/10.5194/acp-21-18519-2021, https://doi.org/10.5194/acp-21-18519-2021, 2021
Short summary
Short summary
Secondary ice production (SIP) plays an important role in ice formation within mixed-phase clouds. We present a laboratory investigation of a potentially new SIP mechanism involving the collisions of supercooled water drops with ice particles. At impact, the supercooled water drop fragments form smaller secondary drops. Approximately 30 % of the secondary drops formed during the retraction phase of the supercooled water drop impact freeze over a temperature range of −4 °C to −12 °C.
Sebastian O'Shea, Jonathan Crosier, James Dorsey, Louis Gallagher, Waldemar Schledewitz, Keith Bower, Oliver Schlenczek, Stephan Borrmann, Richard Cotton, Christopher Westbrook, and Zbigniew Ulanowski
Atmos. Meas. Tech., 14, 1917–1939, https://doi.org/10.5194/amt-14-1917-2021, https://doi.org/10.5194/amt-14-1917-2021, 2021
Short summary
Short summary
The number, shape, and size of ice crystals in clouds are important properties that influence the Earth's radiation budget, cloud evolution, and precipitation formation. This work suggests that one of the most widely used methods for in situ measurements of these properties has significant uncertainties and biases. We suggest methods that dramatically improve these measurements, which can be applied to past and future datasets from these instruments.
Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe
Atmos. Chem. Phys., 20, 11893–11906, https://doi.org/10.5194/acp-20-11893-2020, https://doi.org/10.5194/acp-20-11893-2020, 2020
Short summary
Short summary
The feedback effect between aerosol particles, radiation and meteorology reduces turbulent motion and results in increased surface aerosol concentrations during Beijing haze. Observational analysis and regional modelling studies have examined the feedback effect but these studies are limited. In this work, we set up a high-resolution model for the Beijing environment to examine the sensitivity of the aerosol feedback effect to initial meteorological conditions and aerosol loading.
Cited articles
Baker, M. B., Corbin, R. G., and Latham, J.: The influence of entrainment on
the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing,
Q. J. Roy. Meteorol. Soc., 106, 581–598, https://doi.org/10.1002/qj.49710644914, 1980. a
Blyth, A. M. and Latham, J.: Development of ice and precipitation in new
mexican summertime cumulus, Q. J. Roy. Meteorol. Soc., 119, 91–120,
https://doi.org/10.1002/qj.49711950905, 1993. a
Blyth, A. M. and Latham, J.: A multi-thermal model of cumulus glaciation via the Hallett–Mossop process, Q. J. Roy. Meteorol. Soc., 123, 1185–1198,
https://doi.org/10.1002/qj.49712354104, 1997. a, b
Burrows, S. M., McCluskey, C. S., Cornwell, G., Steinke, I., Zhang, K., Zhao,
B., Zawadowicz, M., Raman, A., Kulkarni, G., China, S., Zelenyuk, A., and
DeMott, P. J.: Ice-Nucleating Particles That Impact Clouds and Climate:
Observational and Modeling Research Needs, Rev. Geophys., 60, e2021RG000745, https://doi.org/10.1029/2021RG000745, 2022. a
Changnon, S. A.: Characteristics of Ice Storms in the United States, J. Appl.
Meteorol., 42, 630–639, https://doi.org/10.1175/1520-0450(2003)042<0630:COISIT>2.0.CO;2, 2003. a
Chen, J.-P. and Lamb, D.: The Theoretical Basis for the Parameterization of Ice Crystal Habits: Growth by Vapor Deposition, J. Atmos. Sci., 51, 1206–1222, https://doi.org/10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2, 1994. a, b
Chen, S., Yau, M. K., and Bartello, P.: Turbulence Effects of Collision
Efficiency and Broadening of Droplet Size Distribution in Cumulus Clouds, J.
Atmos. Sci., 75, 203–217, https://doi.org/10.1175/JAS-D-17-0123.1, 2018. a
Connolly, P., Möhler, O., Field, P., Saathoff, H., Burgess, R.,
Choularton, T., and Gallagher, M.: Studies of heterogeneous freezing by
three different desert dust samples, Atmos. Chem. Phys., 9, 2805–2824,
https://doi.org/10.5194/acp-9-2805-2009, 2009. a
Conolly, P. J.: Bin-microphysics Model, GitHub [code], https://github.com/UoM-maul1609/bin-microphysics-model (last access: 14 August2023), 2023. a
Connolly, P. J., Emersic, C., and Field, P. R.: A laboratory investigation
into the aggregation efficiency of small ice crystals, Atmos. Chem. Phys.,
12, 2055–2076, https://doi.org/10.5194/acp-12-2055-2012, 2012. a
Connolly, P. J., McFiggans, G. B., Wood, R., and Tsiamis, A.: Factors
determining the most efficient spray distribution for marine cloud brightening, Philos. T. Roy. Soc. A, 372, 20140056, https://doi.org/10.1098/rsta.2014.0056, 2014. a
Crawford, I., Bower, K. N., Choularton, T. W., Dearden, C., Crosier, J.,
Westbrook, C., Capes, G., Coe, H., Connolly, P. J., Dorsey, J. R., Gallagher,
M. W., Williams, P., Trembath, J., Cui, Z., and Blyth, A.: Ice formation and
development in aged, wintertime cumulus over the UK: observations and
modelling, Atmos. Chem. Phys., 12, 4963–4985,
https://doi.org/10.5194/acp-12-4963-2012, 2012. a, b, c, d
Crooks, M., Connolly, P., and McFiggans, G.: A parameterisation for the
co-condensation of semi-volatile organics into multiple aerosol particle
modes, Geosci. Model Dev., 11, 3261–3278, https://doi.org/10.5194/gmd-11-3261-2018,
2018. a, b, c
Crosier, J., Bower, K. N., Choularton, T. W., Westbrook, C. D., Connolly, P. J., Cui, Z. Q., Crawford, I. P., Capes, G. L., Coe, H., Dorsey, J. R.,
Williams, P. I., Illingworth, A. J., Gallagher, M. W., and Blyth, A. M.:
Observations of ice multiplication in a weakly convective cell embedded in
supercooled mid-level stratus, Atmos. Chem. Phys., 11, 257–273,
https://doi.org/10.5194/acp-11-257-2011, 2011. a
DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D.,
Twohy, C. H., Richardson, M. S., Eidhammer, T., and Rogers, D. C.: Predicting
global atmospheric ice nuclei distributions and their impacts on climate,
P. Natl. Acad. Sci. USA, 107, 11217–11222, https://doi.org/10.1073/pnas.0910818107, 2010. a, b, c, d, e, f
Elsom, D.: Deaths and injuries caused by lightning in the United Kingdom:
analyses of two databases, Atmos. Res., 56, 325–334, https://doi.org/10.1016/S0169-8095(00)00083-1, 2001. a
Field, P. R. and Heymsfield, A. J.: Importance of snow to global precipitation, Geophys. Res. Lett., 42, 9512–9520, https://doi.org/10.1002/2015GL065497, 2015. a
Field, P. R., Lawson, R. P., Brown, P. R. A., Lloyd, G., Westbrook, C.,
Moisseev, D., Miltenberger, A., Nenes, A., Blyth, A., Choularton, T.,
Connolly, P., Buehl, J., Crosier, J., Cui, Z., Dearden, C., DeMott, P.,
Flossmann, A., Heymsfield, A., Huang, Y., Kalesse, H., Kanji, Z. A., Korolev,
A., Kirchgaessner, A., Lasher-Trapp, S., Leisner, T., McFarquhar, G.,
Phillips, V., Stith, J., and Sullivan, S.: Secondary Ice Production: Current
State of the Science and Recommendations for the Future, Meteorol. Monogr.,
58, 7.1–7.20, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1, 2017. a
Fowler, K., Connolly, P., and Topping, D.: Modelling the effect of
condensed-phase diffusion on the homogeneous nucleation of ice in
ultra-viscous particles, Atmos. Chem. Phys., 20, 683–698, https://doi.org/10.5194/acp-20-683-2020, 2020. a, b
Fridlind, A. M., Ackerman, A. S., McFarquhar, G., Zhang, G., Poellot, M. R.,
DeMott, P. J., Prenni, A. J., and Heymsfield, A. J.: Ice properties of
single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results, J. Geophys. Res.-Atmos., 112, D24202, https://doi.org/10.1029/2007JD008646, 2007. a
Grabowski, W. W. and Wang, L.-P.: Growth of Cloud Droplets in a Turbulent
Environment, Annu. Rev. Fluid Mech, 45, 293–324,
https://doi.org/10.1146/annurev-fluid-011212-140750, 2013. a
Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K.,
Jimenez, J. L., Artaxo, P., Andreae, M. O., Martin, S. T., and Pöschl, U.: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity, Atmos. Chem. Phys., 9, 7551–7575, https://doi.org/10.5194/acp-9-7551-2009, 2009. a
Hallett, J. and Mossop, S. C.: Production of secondary ice particles during
the riming process, Nature, 249, 26–28, https://doi.org/10.1038/249026a0, 1974. a, b
Harris-Hobbs, R. L. and Cooper, W. A.: Field Evidence Supporting Quantitative Predictions of Secondary Ice Production Rates, J. Atmos. Sci., 44, 1071–1082, https://doi.org/10.1175/1520-0469(1987)044<1071:FESQPO>2.0.CO;2, 1987. a
Heymsfield, A. J. and Westbrook, C. D.: Advances in the Estimation of Ice
Particle Fall Speeds Using Laboratory and Field Measurements, J. Atmos. Sci.,
67, 2469–2482, https://doi.org/10.1175/2010JAS3379.1, 2010. a
Hobbs, P. V. and Rangno, A. L.: Rapid Development of High Ice Particle
Concentrations in Small Polar Maritime Cumuliform Clouds, J. Atmos. Sci., 47,
2710–2722, https://doi.org/10.1175/1520-0469(1990)047<2710:RDOHIP>2.0.CO;2, 1990. a, b, c
Huang, Y., Blyth, A. M., Brown, P. R. A., Choularton, T. W., and Cui, Z.:
Factors controlling secondary ice production in cumulus clouds, Q. J. Roy.
Meteorol. Soc., 143, 1021–1031, https://doi.org/10.1002/qj.2987, 2017a. a
Huang, Y., Chubb, T., Baumgardner, D., deHoog, M., Siems, S. T., and Manton,
M. J.: Evidence for secondary ice production in Southern Ocean open cellular
convection, Q. J. Roy. Meteorol. Soc., 143, 1685–1703, https://doi.org/10.1002/qj.3041, 2017b. a
Huang, Y., Wu, W., McFarquhar, G. M., Xue, M., Morrison, H., Milbrandt, J.,
Korolev, A. V., Hu, Y., Qu, Z., Wolde, M., Nguyen, C., Schwarzenboeck, A.,
and Heckman, I.: Microphysical processes producing high ice water contents
(HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign:
dominant role of secondary ice production, Atmos. Chem. Phys., 22, 2365–2384, https://doi.org/10.5194/acp-22-2365-2022, 2022. a, b, c
James, R., Crosier, J., and Connolly, P. J.: A bin-microphysics parcel model investigation of secondary ice formation in an idealised shallow convective cloud, University of Manchester [data set], https://doi.org/10.48420/c.6238311.v2, 2022. a
Jacobson, M. Z.: Fundamentals of Atmospheric Modeling, in: 2nd Edn., Cambridge University Press, https://doi.org/10.1017/CBO9781139165389, 2005. a, b
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Krämer, M.: Overview of Ice Nucleating Particles, Meteorol. Monogr., 58, 1.1–1.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1,
2017. a
Karalis, M., Sotiropoulou, G., Abel, S. J., Bossioli, E., Georgakaki, P.,
Methymaki, G., Nenes, A., and Tombrou, M.: Effects of secondary ice processes
on a stratocumulus to cumulus transition during a cold-air outbreak, Atmos.
Res., 277, 106302, https://doi.org/10.1016/j.atmosres.2022.106302, 2022. a, b
Koop, T., Luo, B., Tsias, A., and Peter, T.: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions, Nature, 406, 611–614, https://doi.org/10.1038/35020537, 2000. a
Korolev, A., Heckman, I., Wolde, M., Ackerman, A. S., Fridlind, A. M., Ladino, L. A., Lawson, R. P., Milbrandt, J., and Williams, E.: A new look at the environmental conditions favorable to secondary ice production, Atmos. Chem. Phys., 20, 1391–1429, https://doi.org/10.5194/acp-20-1391-2020, 2020. a, b
Lasher-Trapp, S., Leon, D. C., DeMott, P. J., Villanueva-Birriel, C. M.,
Johnson, A. V., Moser, D. H., Tully, C. S., and Wu, W.: A Multisensor
Investigation of Rime Splintering in Tropical Maritime Cumuli, J. Atmos.
Sci., 73, 2547–2564, https://doi.org/10.1175/JAS-D-15-0285.1, 2016. a
Latham, J. and Warwicker, R.: Charge transfer accompanying the splashing of
supercooled raindrops on hailstones, Q. J. Roy. Meteorol. Soc., 106, 559–568, https://doi.org/10.1002/qj.49710644912, 1980. a
Lawson, R. P., Woods, S., and Morrison, H.: The Microphysics of Ice and
Precipitation Development in Tropical Cumulus Clouds, J. Atmos. Sci., 72,
2429–2445, https://doi.org/10.1175/JAS-D-14-0274.1, 2015. a
Levin, Z., Hobbs, P. V., and Taylor, G. I.: Splashing of water drops on solid
and wetted surfaces: hydrodynamics and charge separation, Philos. T. Roy.
Soc. A, 269, 555–585, https://doi.org/10.1098/rsta.1971.0052, 1971. a, b
Lloyd, G., Choularton, T. W., Bower, K. N., Crosier, J., Jones, H., Dorsey, J. R., Gallagher, M. W., Connolly, P., Kirchgaessner, A. C. R., and
Lachlan-Cope, T.: Observations and comparisons of cloud microphysical
properties in spring and summertime Arctic stratocumulus clouds during the
ACCACIA campaign, Atmos. Chem. Phys., 15, 3719–3737, https://doi.org/10.5194/acp-15-3719-2015, 2015. a
Long, A. B.: Solutions to the Droplet Collection Equation for Polynomial
Kernels, J. Atmos. Sci., 31, 1040–1052,
https://doi.org/10.1175/1520-0469(1974)031<1040:STTDCE>2.0.CO;2, 1974. a
Low, T. B. and List, R.: Collision, Coalescence and Breakup of Raindrops. Part I: Experimentally Established Coalescence Efficiencies and Fragment Size
Distributions in Breakup, J. Atmos. Sci., 39, 1591–1606,
https://doi.org/10.1175/1520-0469(1982)039<1591:CCABOR>2.0.CO;2, 1982. a
Luke, E. P., Yang, F., Kollias, P., Vogelmann, A. M., and Maahn, M.: New
insights into ice multiplication using remote-sensing observations of
slightly supercooled mixed-phase clouds in the Arctic, P. Natl. Acad. Sci. USA, 118, e2021387118, https://doi.org/10.1073/pnas.2021387118, 2021. a
Morrison, H., Lawson, P., and Chandrakar, K. K.: Observed and Bin Model
Simulated Evolution of Drop Size Distributions in High-Based Cumulus
Congestus Over the United Arab Emirates, J. Geophys. Res.-Atmos., 127,
e2021JD035711, https://doi.org/10.1029/2021JD035711, 2022. a
Mossop, S. C.: Some Factors Governing Ice Particle Multiplication in Cumulus
Clouds, J. Atmos. Sci., 35, 2033–2037,
https://doi.org/10.1175/1520-0469(1978)035<2033:SFGIPM>2.0.CO;2, 1978. a
Mossop, S. C. and Hallett, J.: Ice Crystal Concentration in Cumulus Clouds:
Influence of the Drop Spectrum, Science, 186, 632–634, https://doi.org/10.1126/science.186.4164.632, 1974. a
Öktem, R. and Romps, D. M.: Prediction for Cloud Spacing Confirmed Using
Stereo Cameras, J. Atmos. Sci., 78, 3717–3725,
https://doi.org/10.1175/JAS-D-21-0026.1, 2021. a
O'Shea, S. J., Choularton, T. W., Flynn, M., Bower, K. N., Gallagher, M.,
Crosier, J., Williams, P., Crawford, I., Fleming, Z. L., Listowski, C.,
Kirchgaessner, A., Ladkin, R. S., and Lachlan-Cope, T.: In situ measurements
of cloud microphysics and aerosol over coastal Antarctica during the MAC campaign, Atmos. Chem. Phys., 17, 13049–13070, https://doi.org/10.5194/acp-17-13049-2017, 2017. a
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of
hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem.
Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. a
Phillips, V. T. J., Blyth, A. M., Brown, P. R. A., Choularton, T. W., and
Latham, J.: The glaciation of a cumulus cloud over New Mexico, Q. J. Roy.
Meteorol. Soc., 127, 1513–1534, https://doi.org/10.1002/qj.49712757503, 2001. a
Phillips, V. T. J., Choularton, T. W., Illingworth, A. J., Hogan, R. J., and
Field, P. R.: Simulations of the glaciation of a frontal mixed-phase cloud
with the Explicit Microphysics Model, Q. J. Roy. Meteorol. Soc., 129,
1351–1371, https://doi.org/10.1256/qj.02.100, 2003. a
Phillips, V. T. J., Andronache, C., Sherwood, S. C., Bansemer, A., Conant,
W. C., Demott, P. J., Flagan, R. C., Heymsfield, A., Jonsson, H., Poellot,
M., Rissman, T. A., Seinfeld, J. H., Vanreken, T., Varutbangkul, V., and
Wilson, J. C.: Anvil glaciation in a deep cumulus updraught over Florida
simulated with the Explicit Microphysics Model. I: Impact of various
nucleation processes, Q. J. Roy. Meteorol. Soc., 131, 2019–2046,
https://doi.org/10.1256/qj.04.85, 2005. a
Phillips, V. T. J., Yano, J.-I., and Khain, A.: Ice Multiplication by Breakup
in Ice–Ice Collisions. Part I: Theoretical Formulation, J. Atmos. Sci., 74,
1705–1719, https://doi.org/10.1175/JAS-D-16-0224.1, 2017. a, b, c, d
Pinsky, M., Khain, A., and Krugliak, H.: Collisions of Cloud Droplets in a
Turbulent Flow. Part V: Application of Detailed Tables of Turbulent Collision
Rate Enhancement to Simulation of Droplet Spectra Evolution, J. Atmos. Sci.,
65, 357–374, https://doi.org/10.1175/2007JAS2358.1, 2008. a
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, in: 2nd Edn., Springer, Dordrecht, https://doi.org/10.1007/978-0-306-48100-0, 2010. a
Púčik, T., Castellano, C., Groenemeijer, P., Kühne, T., Rädler, A. T., Antonescu, B., and Faust, E.: Large Hail Incidence and Its Economic and Societal Impacts across Europe, Mon. Weather Rev., 147, 3901–3916, https://doi.org/10.1175/MWR-D-19-0204.1, 2019. a
Qu, Y., Khain, A., Phillips, V., Ilotoviz, E., Shpund, J., Patade, S., and
Chen, B.: The Role of Ice Splintering on Microphysics of Deep Convective
Clouds Forming Under Different Aerosol Conditions: Simulations Using the
Model With Spectral Bin Microphysics, J. Geophys. Res.-Atmos., 125, e2019JD031312, https://doi.org/10.1029/2019JD031312, 2020. a, b
Rangno, A. L. and Hobbs, P. V.: Ice particles in stratiform clouds in the
Arctic and possible mechanisms for the production of high ice concentrations,
J. Geophys. Res.-Atmos., 106, 15065–15075, https://doi.org/10.1029/2000JD900286, 2001. a
Rangno, A. L. and Hobbs, P. V.: Microstructures and precipitation development
in cumulus and small cumulonimbus clouds over the warm pool of the tropical
Pacific Ocean, Q. J. Roy. Meteorol. Soc., 131, 639–673, https://doi.org/10.1256/qj.04.13, 2005. a
Reisner, J., Rasmussen, R. M., and Bruintjes, R. T.: Explicit forecasting of
supercooled liquid water in winter storms using the MM5 mesoscale model, Q.
J. Roy. Meteorol. Soc., 124, 1071–1107, https://doi.org/10.1002/qj.49712454804, 1998. a
Reutter, P., Su, H., Trentmann, J., Simmel, M., Rose, D., Gunthe, S. S.,
Wernli, H., Andreae, M. O., and Pöschl, U.: Aerosol- and updraft-limited
regimes of cloud droplet formation: influence of particle number, size and
hygroscopicity on the activation of cloud condensation nuclei (CCN), Atmos.
Chem. Phys., 9, 7067–7080, https://doi.org/10.5194/acp-9-7067-2009, 2009. a, b, c
Simpson, E., Connolly, P., and McFiggans, G.: An investigation into the performance of four cloud droplet activation parameterisations, Geosci. Model Dev., 7, 1535–1542, https://doi.org/10.5194/gmd-7-1535-2014, 2014. a
Sotiropoulou, G., Vignon, E., Young, G., Morrison, H., O'Shea, S. J.,
Lachlan-Cope, T., Berne, A., and Nenes, A.: Secondary ice production in
summer clouds over the Antarctic coast: an underappreciated process in
atmospheric models, Atmos. Chem. Phys., 21, 755–771,
https://doi.org/10.5194/acp-21-755-2021, 2021. a, b
Sun, J., Ariya, P. A., Leighton, H. G., and Yau, M. K.: Mystery of ice
multiplication in warm-based precipitating shallow cumulus clouds, Geophys.
Res. Lett., 37, L10802, https://doi.org/10.1029/2010GL042440, 2010. a
Takahashi, T., Nagao, Y., and Kushiyama, Y.: Possible High Ice Particle
Production during Graupel–Graupel Collisions, J. Atmos. Sci., 52, 4523–4527, https://doi.org/10.1175/1520-0469(1995)052<4523:PHIPPD>2.0.CO;2, 1995. a
Taylor, J. W., Choularton, T. W., Blyth, A. M., Liu, Z., Bower, K. N., Crosier, J., Gallagher, M. W., Williams, P. I., Dorsey, J. R., Flynn, M. J., Bennett, L. J., Huang, Y., French, J., Korolev, A., and Brown, P. R. A.: Observations of cloud microphysics and ice formation during COPE, Atmos. Chem. Phys., 16, 799–826, https://doi.org/10.5194/acp-16-799-2016, 2016. a
Telford, J. and Chai, S.: A new aspect of condensational theory, Pure Appl.
Geophys., 118, 720–742, https://doi.org/10.1007/BF01593025, 1980. a
Van Dingenen, R., Raes, F., Putaud, J.-P., Urs, B., Charron, A., Facchini, M.-C., Decesari, Fuzzi, S., Gehrig, R., Hansson, H.-C., Harrison, R. M., Hüglin, C., Jones, A. M., Laj, P., Lorbeer, G., Maenhaut, W., Palmgren, F., Querol, X., Rodriguez, S., Schneider, J., ten Brink, H., Tunved, P., Tørseth, K., Wehner, B., Weingartner, E., Wiedensohler, A., and Wåhlin, P.: A European aerosol phenomenology–1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38, 2561–2577, https://doi.org/10.1016/j.atmosenv.2004.01.040, 2004.
a, b, c, d
Vardiman, L.: The Generation of Secondary Ice Particles in Clouds by
Crystal–Crystal Collision, J. Atmos. Sci., 35, 2168–2180,
https://doi.org/10.1175/1520-0469(1978)035<2168:TGOSIP>2.0.CO;2, 1978. a
Zhao, X. and Liu, X.: Global Importance of Secondary Ice Production, Geophy.
Res. Lett., 48, e2021GL092581, https://doi.org/10.1029/2021GL092581, 2021. a, b, c, d
Zhao, X. and Liu, X.: Primary and secondary ice production: interactions and
their relative importance, Atmos. Chem. Phys., 22, 2585–2600,
https://doi.org/10.5194/acp-22-2585-2022, 2022. a, b, c
Zhao, X., Liu, X., Phillips, V. T. J., and Patade, S.: Impacts of secondary ice production on Arctic mixed-phase clouds based on ARM observations and CAM6 single-column model simulations, Atmos. Chem. Phys., 21, 5685–5703,
https://doi.org/10.5194/acp-21-5685-2021, 2021. a, b, c
Short summary
Secondary ice production (SIP) may significantly enhance the ice particle concentration in mixed-phase clouds. We present a systematic modelling study of secondary ice formation in idealised shallow convective clouds for various conditions. Our results suggest that the SIP mechanism of collisions of supercooled water drops with more massive ice particles may be a significant ice formation mechanism in shallow convective clouds outside the rime-splintering temperature range (−3 to −8 °C).
Secondary ice production (SIP) may significantly enhance the ice particle concentration in...
Altmetrics
Final-revised paper
Preprint