

Supplement of

A bin microphysics parcel model investigation of secondary ice formation in an idealised shallow convective cloud

Rachel L. James et al.

Correspondence to: Rachel L. James (r.james@leeds.ac.uk) and Paul J. Connolly (paul.connolly@manchester.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1 Temperature profiles of a shallower (1.3 km deep) cloud. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C. The grey shaded regions indicate the temperature region in which rime-splintering could be active.

Figure S2 Temperature profiles of a deeper (2.4 km) cloud. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C. The grey shaded regions indicate the temperature region in which rime-splintering could be active.

SECTION S2: Additional figures for shallower clouds with a natural aerosol size distribution

Figure S3 Control simulation ice crystal number concentrations for shallower clouds (1.3 km deep) with a natural aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Figure S4 Cloud drop number concentrations for a shallower cloud (1.3~km deep) with a natural aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Shallower clouds with natural aerosol size distributions: control simulations

Figure S5 Ice crystal number concentrations for control simulations against simulation time for three initial INP concentrations (×0.1, ×1 and ×10) for a shallower cloud (1.3 km deep) with a natural aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Shallower clouds with natural aerosol size distributions: M1+M2 simulations

Figure S6 Mode 1 and mode 2 ice enhancement against simulation time for three INP concentrations (×0.1, ×1 and ×10) for a shallower (1.3 km deep) cloud with a natural aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0

Shallower clouds with natural aerosol size distributions: CB simulations

Figure S7 Ice-ice collisional breakup ice enhancement against simulation time for three INP concentrations (×0.1, ×1 and ×10) for a shallower (1.3 km deep) cloud with a natural aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

SECTION S3: Additional figures for shallower clouds with a near-city size distribution

Figure S8 Control simulation ice crystal number concentrations for shallower clouds (1.3 km deep) with a natural aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Figure S9 Cloud drop number concentrations for a shallower cloud (1.3~km deep) with a near-city aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Shallower clouds with near-city aerosol size distributions: control simulations

Figure S10 Ice crystal number concentrations for control simulations against simulation time for three initial INP concentrations (×0.1, ×1 and ×10) for a shallower cloud (1.3 km deep) with a near-city aerosol. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Shallower clouds with near-city aerosol size distributions: M1+M2 simulations

Figure S11 Mode 1 and mode 2 ice enhancement against simulation time for three INP concentrations $(\times 0.1, \times 1 \text{ and } \times 10)$ for a shallower (1.3 km deep) cloud with a near-city aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Shallower clouds with near-city aerosol size distributions: CB simulations

Figure S12 Ice-ice collisional breakup ice enhancement against simulation time for three INP concentrations (×0.1, ×1 and ×10) for a shallower (1.3 km deep) cloud with a natural aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

SECTION S4: Additional figures for deeper clouds with a natural aerosol size distribution

Figure S13 Control simulation ice crystal number concentrations for deeper clouds (1.3 km deep) with a natural aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Figure S14 Cloud drop number concentrations for a deeper cloud (1.3 km deep) with a natural aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

SECTION S5: Additional figures for deeper clouds with a near-city size distribution

Figure S15 Control simulation ice crystal number concentrations for deeper clouds (2.4 km deep) with a near-city aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Figure S16 Cloud drop number concentrations for a deeper cloud (2.4 km deep) with a near-city aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

SECTION S6: Particle and ice size distribution contour plots

Figure S17 Contour plot showing the particle size distribution as a function of simulation time for shallower clouds (1.3 km deep) with natural aerosol size distributions. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Shallower clouds with near-city aerosol size distributions: control simulations

Figure S18 Contour plot showing the particle size distribution as a function of simulation time for shallower clouds (1.3 km deep) with near-city aerosol size distributions. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Figure S19 Contour plot showing the particle size distribution as a function of simulation time for deeper clouds (2.4 km deep) with natural aerosol size distributions. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Deeper clouds with natural aerosol size distributions: control simulations

Deeper clouds with near-city aerosol size distributions: control simulations

Figure S20 Contour plot showing the particle size distribution as a function of simulation time for deeper clouds (2.4 km deep) with natural aerosol size distributions. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

SECTION S7: Ice particle aspect ratio figures

Figure S21 Ice particle aspect ratio for a shallower cloud (1.3 km deep) with a natural aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Figure S22 Ice particle aspect ratio for a shallower cloud (1.3 km deep) with a near-city aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Figure S23 Ice particle aspect ratio for a deeper cloud (2.4 km deep) with a natural aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

Figure S24 Ice particle aspect ratio for a deeper cloud (2.4 km deep) with a near-city aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C.

SECTION S8: Liquid and ice water contents

Figure S25 Liquid water content for a shallower cloud (1.3 km deep) with a natural aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C. These simulations were extended past the 133.3 min runtime, indicated by a grey dashed line, to demonstrate the effects of the Wegener-Bergeron Findeisen process.

Shallower clouds with natural aerosol size distributions: M2 simulations

Figure S26 Ice water content for a shallower cloud (1.3 km deep) with a natural aerosol size distribution. Warmer refers to cloud base temperatures of 7 °C, and colder refers to cloud base temperatures of 0 °C. These simulations were extended past the 133.3 min runtime, indicated by a grey dashed line, to demonstrate the effects of the Wegener-Bergeron Findeisen process.