Articles | Volume 23, issue 15
https://doi.org/10.5194/acp-23-8823-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-8823-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Can we use atmospheric CO2 measurements to verify emission trends reported by cities? Lessons from a 6-year atmospheric inversion over Paris
Origins.earth, SUEZ Group, Tour CB21, 16 Place de l'Iris, 92040 Paris La Défense CEDEX, France
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette CEDEX, France
Thomas Lauvaux
Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), Université de Reims-Champagne Ardenne, UMR CNRS 7331, Reims, France
Hervé Utard
Origins.earth, SUEZ Group, Tour CB21, 16 Place de l'Iris, 92040 Paris La Défense CEDEX, France
François-Marie Bréon
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette CEDEX, France
Grégoire Broquet
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette CEDEX, France
Michel Ramonet
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette CEDEX, France
Olivier Laurent
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette CEDEX, France
Ivonne Albarus
Origins.earth, SUEZ Group, Tour CB21, 16 Place de l'Iris, 92040 Paris La Défense CEDEX, France
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette CEDEX, France
Mali Chariot
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette CEDEX, France
Simone Kotthaus
Institut Pierre-Simon Laplace (IPSL), CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau CEDEX, France
Martial Haeffelin
Institut Pierre-Simon Laplace (IPSL), CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau CEDEX, France
Olivier Sanchez
AirParif, 7 rue Crillon, Paris, France
Olivier Perrussel
AirParif, 7 rue Crillon, Paris, France
Hugo Anne Denier van der Gon
Department of Climate, Air and Sustainability, TNO, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
Stijn Nicolaas Camiel Dellaert
Department of Climate, Air and Sustainability, TNO, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
Philippe Ciais
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette CEDEX, France
Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, 2121, Nicosia, Cyprus
Viewed
Total article views: 2,802 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Apr 2023)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,084 | 659 | 59 | 2,802 | 207 | 46 | 60 |
- HTML: 2,084
- PDF: 659
- XML: 59
- Total: 2,802
- Supplement: 207
- BibTeX: 46
- EndNote: 60
Total article views: 1,875 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Aug 2023)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,457 | 380 | 38 | 1,875 | 150 | 36 | 46 |
- HTML: 1,457
- PDF: 380
- XML: 38
- Total: 1,875
- Supplement: 150
- BibTeX: 36
- EndNote: 46
Total article views: 927 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Apr 2023)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
627 | 279 | 21 | 927 | 57 | 10 | 14 |
- HTML: 627
- PDF: 279
- XML: 21
- Total: 927
- Supplement: 57
- BibTeX: 10
- EndNote: 14
Viewed (geographical distribution)
Total article views: 2,802 (including HTML, PDF, and XML)
Thereof 2,783 with geography defined
and 19 with unknown origin.
Total article views: 1,875 (including HTML, PDF, and XML)
Thereof 1,862 with geography defined
and 13 with unknown origin.
Total article views: 927 (including HTML, PDF, and XML)
Thereof 921 with geography defined
and 6 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
11 citations as recorded by crossref.
- Development and deployment of a mid-cost CO2 sensor monitoring network to support atmospheric inverse modeling for quantifying urban CO2 emissions in Paris J. Lian et al. 10.5194/amt-17-5821-2024
- A Sensitivity Study of a Bayesian Inversion Model Used to Estimate Emissions of Synthetic Greenhouse Gases at the European Scale S. Annadate et al. 10.3390/atmos15010051
- Sustained Reductions of Bay Area CO2 Emissions 2018–2022 N. Asimow et al. 10.1021/acs.est.3c09642
- Estimating global 0.1° scale gridded anthropogenic CO2 emissions using TROPOMI NO2 and a data-driven method Y. Zhang et al. 10.1016/j.scitotenv.2024.175177
- CO2 flux emissions at two urban sites in Beijing and responses to human activity H. Liu et al. 10.1016/j.pce.2024.103791
- From political pledges to quantitative mapping of climate mitigation plans: Comparison of two European cities I. Albarus et al. 10.1186/s13021-023-00236-y
- Evaluation of light atmospheric plume inversion methods using synthetic XCO2 satellite images to compute Paris CO2 emissions A. Danjou et al. 10.1016/j.rse.2023.113900
- European pollen reanalysis, 1980–2022, for alder, birch, and olive M. Sofiev et al. 10.1038/s41597-024-03686-2
- Using urban-suburban difference of atmospheric CO2 to evaluate carbon neutrality capacity in Hangzhou, China B. Qi et al. 10.1016/j.jes.2024.10.027
- A top-down estimation of subnational CO2 budget using a global high-resolution inverse model with data from regional surface networks L. Nayagam et al. 10.1088/1748-9326/ad0f74
- Quantifying the Impact of COVID‐19 Pandemic on the Spatiotemporal Changes of CO2 Concentrations in the Yangtze River Delta, China Y. Wang et al. 10.1029/2023JD038512
10 citations as recorded by crossref.
- Development and deployment of a mid-cost CO2 sensor monitoring network to support atmospheric inverse modeling for quantifying urban CO2 emissions in Paris J. Lian et al. 10.5194/amt-17-5821-2024
- A Sensitivity Study of a Bayesian Inversion Model Used to Estimate Emissions of Synthetic Greenhouse Gases at the European Scale S. Annadate et al. 10.3390/atmos15010051
- Sustained Reductions of Bay Area CO2 Emissions 2018–2022 N. Asimow et al. 10.1021/acs.est.3c09642
- Estimating global 0.1° scale gridded anthropogenic CO2 emissions using TROPOMI NO2 and a data-driven method Y. Zhang et al. 10.1016/j.scitotenv.2024.175177
- CO2 flux emissions at two urban sites in Beijing and responses to human activity H. Liu et al. 10.1016/j.pce.2024.103791
- From political pledges to quantitative mapping of climate mitigation plans: Comparison of two European cities I. Albarus et al. 10.1186/s13021-023-00236-y
- Evaluation of light atmospheric plume inversion methods using synthetic XCO2 satellite images to compute Paris CO2 emissions A. Danjou et al. 10.1016/j.rse.2023.113900
- European pollen reanalysis, 1980–2022, for alder, birch, and olive M. Sofiev et al. 10.1038/s41597-024-03686-2
- Using urban-suburban difference of atmospheric CO2 to evaluate carbon neutrality capacity in Hangzhou, China B. Qi et al. 10.1016/j.jes.2024.10.027
- A top-down estimation of subnational CO2 budget using a global high-resolution inverse model with data from regional surface networks L. Nayagam et al. 10.1088/1748-9326/ad0f74
Latest update: 20 Nov 2024
Short summary
This study quantifies urban CO2 emissions via an atmospheric inversion for the Paris metropolitan area over a 6-year period from 2016 to 2021. Results show a long-term decreasing trend of about 2 % ± 0.6 % per year in the annual CO2 emissions over Paris. We conclude that our current capacity can deliver near-real-time CO2 emission estimates at the city scale in under a month, and the results agree within 10 % with independent estimates from multiple city-scale inventories.
This study quantifies urban CO2 emissions via an atmospheric inversion for the Paris...
Altmetrics
Final-revised paper
Preprint