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Figure S1. Daily average daytime (8-17 UTC) observed CO: concentrations from 2016 to 2021 at seven in situ stations
within Paris and its surrounding areas, together with their respective heights above ground level of the air intake inlet.
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Text S1. Origins.earth fossil fuel CO2 emission inventory

The Origins.earth inventory compilation method is mainly based on methodologies developed by P&e National des Inventaires
Territoriaux (PCIT, 2019), the body tasked by the French government to establish national guidelines for computing GHG emission
inventories for local authorities. The near real-time high-resolution CO, emission maps are generated through the following two-
step process. The first step involves the construction of gridded annual CO, emission datasets for different sectors for the base year
2018, which consists in spatializing geographically the intensity of annual emissions of the IdF region reported by the French

climate agency (ROSE, https://www.roseidf.org/). Sector-specific spatial proxies (i.e., high spatial resolution French population

census, CORINE Land Cover, locations of the thermal power stations, incinerators, and main emitting industries) are applied to
allocate emissions to spatially resolved grids. The second step combines the annual sectorial emission maps with respective generic
and/or measure-based (real activity data) temporal profiles. It combines the annual sectorial emission maps with respective generic
and/or measure-based (real activity data) temporal profiles. For example, the on-road traffic emissions in the city of Paris are scaled
using the real-time traffic count data from more than 3000 traffic measurement points. For the on-road traffic outside the Paris city,
the temporal variations are assumed to follow the mean changes of the ones in the city. The temporal evolution of the residential
emissions is  estimated using the domestic gas consumption data from the SmartGRT database

(https://smart.grtgaz.com/en/consommation). This proxy discards the specific temporal variations of other energy sources for the

residential sector (e.g., petroleum, wood, coal), which may introduce additional uncertainties. Emissions from the tertiary, industry
and energy are downscaled to hourly values based on the industrial gas consumption without SFM (Sites Fortement Modulés).
Note that developing the near real-time CO; gridded emissions by sector at high-resolution is a relatively new endeavor. We
continue to revise the methodology to further improve data quality.
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Figure S2. (a) Daily and (b) annual sectorial fossil fuel CO2 emission estimates and their respective proportions from 2018
to 2021 according to the Origins.earth inventory.
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Text S2. Evaluation of the observed and modeled ABL heights

In this study, we assume systematic differences between the thermodynamic and aerosol-based layer detection are negligible or in
fact that the aerosol-based results provide a more suitable description for the dilution of near-surface CO, emissions, but it should
be noted that these issues are subject to current research (Kotthaus et al. 2023).

(a) Hourly afternoon/morning ABL heights at SIRTA
3000 - —— . s - 3000 v,
%) e ; i g Y REP PR 8
2 25004 3 A
2 :
= 2000 i e
& A
= 1500 >
f= £ -_I_ .
g 1000 § e s
= ! > R-074
£ 500 @ : S b | RMSE: 414.24
b3 : e San _ ’ ‘l'. .ﬂ.' MBE: 26.16
0+ == - 0 : . ]
201601 202001 202101 0 1000 2000 3000
400 - DRe— - 30 1 =
- (WRF-OBS)/OBS
g 300 N 25 4 2
e S 4 Er
© £ >
E=} =
5151 -93
2 3 :
= E10+
D
o ' ‘ 54
100 , , Ca - : %0 © 10 20 a0 a0
-1 1
(b) 201601 201701 201801 201901 202001 202101 e sy 2Bs o
2500 . 2500 -
— . . . - WRF - OBS e
© 2000 : aly gt
D T 3 * .
= 1500 3 3
iy L da -
= T
2 1000 T
g 500 & R: 0.61
| RMSE: 356.63
= $ Loyt W% . | MBE: 45.66
0 +—— a — = o 0- A . ]
201601 202001 202101 O 500 1000 1500 2000 2500
400 T — — — ol =
e : : - (WRF-OBS)/OBS
3 300 e T
% 151
o B3
8200 z
o £10 - T
2 1004 % 3
] o
[0} G & 5
[ E 3
Bt 9 A
-100 . i L S = - 0 :
201601 201701 201801 201801 202001 202101 -100 300 400

s s
Month ( - ) (%)

Figure S3. Comparison of the observed and modeled hourly ABL heights at SIRTA station, both for the (a) afternoon
(12-17 UTC) and (b) morning (8-11 UTC) period.
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Figure S4. Roadmap for the selection of the assimilated CO2 observation data into the inversion system

Table S1. Summary of inversion configurations used in this study, both for the reference inversion setup and for the
sensitivity tests with changing one configuration at a time compared to the reference.

Category Description :R;Elf:rr;gie Sensitivity test
Time period of the assimilated data Di;/tbn.}.ec(f i A'\;lt%rrz?(?n(?l-;-llg-lz?cl)
Wind bias outlier based on an interquartile
sDeEIi;?:tion range (IQR) method 05
criteria Minimum wind speed 3m/s
Wind direction transects 30° 20°
Station-to-station minimum distance 10km
Station-to-station preference distance 32 km 20km / 40 km
] Day-to-day temporal correlation 1 day 4 days
Errllgerrglij:ty Uncertainty for 6h fossil fuel flux 60% 40% / 80%
Uncertainty for daily biogenic flux 60% 40% / 100%
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Figure S5. The assimilated hourly daytime CO2 concentration gradients with (a) prior fluxes and (b) posterior fluxes
against the observations from 2016 to 2021. Scatter plot of the assimilated observations and the corresponding simulated
CO:2 concentration gradients using the prior fluxes and the posterior fluxes for the (c) morning 8-11 UTC and (d)
afternoon 12-17 UTC period, respectively. The statistics of the coefficient correlation (R), root mean square error
(RMSE) and mean bias error (MBE) of prior model-data misfit and posterior model-data misfit for the inversion are also
provided in the figure.
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Figure S6. Daily estimates of fossil fuel CO2 emissions over the rest of IdF region when assimilating (a) daytime (8-
17UTC), (b) morning (8-11UTC) and (c) afternoon (12-17UTC) CO2 concentration observations. The blue line and
shading show the prior flux according to the Origins.earth inventory together with its assumed uncertainty. The pink and
5 shading show the posterior estimates with their uncertainty ranges. The yellow shaded areas are the two COVID-19
lockdown periods in France. The grey shaded areas are the summer holidays of July and August.
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Figure S7. (a) Prior and posterior estimates of the monthly total fossil fuel CO2 emission over the rest of IdF region. (b)
the change of CO2 emissions in percentage (posterior-prior)/prior. The boxplots are the posterior emissions from an
ensemble of sensitivity tests of the inversion configuration.
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Figure S8. Average diurnal cycle and the standard deviation of the observed and modeled wind speeds at 100m above the
ground level at SAC station for four seasons from 2016 to 2021.
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Text S3. Residential heating

Residential CO emissions are typically determined by multiple energy consumption statistics accounting for fossil fuels and their
corresponding emission factors. It usually includes petroleum, bottle gas, city gas, wood, and coal. Note that the electricity and
urban network energy sources are included in the energy sector in the Origins.earth inventory and are therefore not accounted for
here. The calculation of fossil fuel CO, emissions for the residential sector in the Origins.earth inventory follows two steps: (1)
estimating the spatialized annual emissions from different energy consumption sources. (2) downscaling annual emission to the
hourly time scale based on the domestic gas consumption data from the SmartGRT database

(https://smart.grtgaz.com/en/consommation). This assumption of the evolution of emissions with time ignores the temporal

variations of other energy sources for the residential sector (e.g., petroleum, wood, coal). We thus calculate the proportions of
annual residential fossil fuel CO, emissions from different energy types (Figure S9). These shares indicate that the temporal
variation of residential CO, emissions from petroleum and wood burning might be an important missing source in the Origins.earth
inventory, especially in suburban areas.
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Figure S9. The proportions of annual residential fossil fuel CO2 emissions from different energy types (in percentage)
over Be-de-France, Greater Paris and Paris city respectively.
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Text S4. Biogenic flux

The VPRM modeled biogenic fluxes (net ecosystem exchange, NEE) are compared with the eddy flux measurements at two stations
within the IdF region (Figure S10). The Fontainebleau forest site (48.4763N; 2.7801<E) is located southeast of Paris center.
Deciduous broadleaf trees (oak (Quercus petraea and Quercus robur), beech (Fagus sylvatica), and hornbeam (Carpinus betulus))
are the dominant species in the vicinity of the flux tower. The Grignon site (48.8442N, 1.9519<E) is located at around 40 km west

of Paris. The crop is a maize, winter-wheat, oilseed rape, winter-wheat rotation.
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Figure S10. Locations of eddy flux stations within the inner two WRF domains (D02 and D03) together with the MODIS
land use map.
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Figure S11. Comparison of the WRF-VPRM simulated hourly biogenic flux (net ecosystem exchange, NEE) with the
measured eddy flux data at the (a) Fontainebleau forest station and (b) Grignon cropland station from 2016 to 2020.
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Annual CO; emission difference between Origins and TNO
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Figure S12. Differences in annual fossil fuel CO2 emission between the Origins.earth and the TNO 1km inventory for the
year 2018.
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Figure S13. (a) Annual fossil fuel CO2 emissions prior estimates by Origins.earth and TNO 1km inventory and the
respective posterior estimates for the seven days of the week in 2018 over the city of Paris (left panel) and the rest of
Greater Paris region (right panel) (cf. Figure S12) respectively. (b) the change of CO2 emissions in percentage (posterior-
prior)/prior.
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