Articles | Volume 23, issue 2
https://doi.org/10.5194/acp-23-877-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-877-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hemispheric-wide climate response to regional COVID-19-related aerosol emission reductions: the prominent role of atmospheric circulation adjustments
Nora L. S. Fahrenbach
CORRESPONDING AUTHOR
School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
Massimo A. Bollasina
School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
Related authors
No articles found.
Weihao Sun, Massimo Bollasina, Ioana Colfescu, Guoxiong Wu, and Yimin Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3389, https://doi.org/10.5194/egusphere-2025-3389, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Observational records show that the Asian monsoon underwent substantial changes during the early 20th century, including a wetting trend over South Asia and a southward shift in rainfall over East Asia. We show that increasing European sulphate aerosol emissions played a crucial role in shaping the monsoon rainfall trends. This has important implications for reducing uncertainties in monsoon projections, particularly in light of the diverse future aerosol emission scenarios for the region.
Zixuan Jia, Massimo A. Bollasina, Wenjun Zhang, and Ying Xiang
Atmos. Chem. Phys., 25, 8805–8820, https://doi.org/10.5194/acp-25-8805-2025, https://doi.org/10.5194/acp-25-8805-2025, 2025
Short summary
Short summary
Using multi-model mean data from regional aerosol perturbation experiments, we find that increased Asian sulfate aerosols strengthen the link between ENSO (El Niño–Southern Oscillation) and the East Asian winter monsoon. In coupled simulations, aerosol-induced broad cooling increases the ENSO amplitude by affecting the tropical Pacific mean state, contributing to the increase in monsoon interannual variability. These results provide important implications to reduce uncertainties in future projections of regional extreme variability.
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel M. Westervelt, Andrew I. L. Williams, and Bjørn H. Samset
Atmos. Chem. Phys., 25, 4443–4454, https://doi.org/10.5194/acp-25-4443-2025, https://doi.org/10.5194/acp-25-4443-2025, 2025
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that, while there is regional warming, the global 2020–2040 temperature rise is only +0.03 °C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
Zhen Liu, Massimo A. Bollasina, and Laura J. Wilcox
Atmos. Chem. Phys., 24, 7227–7252, https://doi.org/10.5194/acp-24-7227-2024, https://doi.org/10.5194/acp-24-7227-2024, 2024
Short summary
Short summary
The aerosol impact on monsoon precipitation and circulation is strongly influenced by a model-simulated spatio-temporal variability in the climatological monsoon precipitation across Asia, which critically modulates the efficacy of aerosol–cloud–precipitation interactions, the predominant driver of the total aerosol response. There is a strong interplay between South Asia and East Asia monsoon precipitation biases and their relative predominance in driving the overall monsoon response.
Joseph Smith, Cathryn Birch, John Marsham, Simon Peatman, Massimo Bollasina, and George Pankiewicz
Nat. Hazards Earth Syst. Sci., 24, 567–582, https://doi.org/10.5194/nhess-24-567-2024, https://doi.org/10.5194/nhess-24-567-2024, 2024
Short summary
Short summary
Nowcasting uses observations to make predictions of the atmosphere on short timescales and is particularly applicable to the Maritime Continent, where storms rapidly develop and cause natural disasters. This paper evaluates probabilistic and deterministic satellite nowcasting algorithms over the Maritime Continent. We show that the probabilistic approach is most skilful at small scales (~ 60 km), whereas the deterministic approach is most skilful at larger scales (~ 200 km).
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023, https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Short summary
We adopt an existing data assimilation technique to constrain a model simulation to follow three important modes of variability, the North Atlantic Oscillation, El Niño–Southern Oscillation and the Southern Annular Mode. How it compares to the observed climate is evaluated, with improvements over simulations without data assimilation found over many regions, particularly the tropics, the North Atlantic and Europe, and discrepancies with global cooling following volcanic eruptions are reconciled.
Liang Guo, Laura J. Wilcox, Massimo Bollasina, Steven T. Turnock, Marianne T. Lund, and Lixia Zhang
Atmos. Chem. Phys., 21, 15299–15308, https://doi.org/10.5194/acp-21-15299-2021, https://doi.org/10.5194/acp-21-15299-2021, 2021
Short summary
Short summary
Severe haze remains serious over Beijing despite emissions decreasing since 2008. Future haze changes in four scenarios are studied. The pattern conducive to haze weather increases with the atmospheric warming caused by the accumulation of greenhouse gases. However, the actual haze intensity, measured by either PM2.5 or optical depth, decreases with aerosol emissions. We show that only using the weather pattern index to predict the future change of Beijing haze is insufficient.
Francesco S. R. Pausata, Gabriele Messori, Jayoung Yun, Chetankumar A. Jalihal, Massimo A. Bollasina, and Thomas M. Marchitto
Clim. Past, 17, 1243–1271, https://doi.org/10.5194/cp-17-1243-2021, https://doi.org/10.5194/cp-17-1243-2021, 2021
Short summary
Short summary
Far-afield changes in vegetation such as those that occurred over the Sahara during the middle Holocene and the consequent changes in dust emissions can affect the intensity of the South Asian Monsoon (SAM) rainfall and the lengthening of the monsoon season. This remote influence is mediated by anomalies in Indian Ocean sea surface temperatures and may have shaped the evolution of the SAM during the termination of the African Humid Period.
Lixia Zhang, Laura J. Wilcox, Nick J. Dunstone, David J. Paynter, Shuai Hu, Massimo Bollasina, Donghuan Li, Jonathan K. P. Shonk, and Liwei Zou
Atmos. Chem. Phys., 21, 7499–7514, https://doi.org/10.5194/acp-21-7499-2021, https://doi.org/10.5194/acp-21-7499-2021, 2021
Short summary
Short summary
The projected frequency of circulation patterns associated with haze events and global warming increases significantly due to weakening of the East Asian winter monsoon. Rapid reduction in anthropogenic aerosol further increases the frequency of circulation patterns, but haze events are less dangerous. We revealed competing effects of aerosol emission reductions on future haze events through their direct contribution to haze intensity and their influence on the atmospheric circulation patterns.
Laura J. Wilcox, Zhen Liu, Bjørn H. Samset, Ed Hawkins, Marianne T. Lund, Kalle Nordling, Sabine Undorf, Massimo Bollasina, Annica M. L. Ekman, Srinath Krishnan, Joonas Merikanto, and Andrew G. Turner
Atmos. Chem. Phys., 20, 11955–11977, https://doi.org/10.5194/acp-20-11955-2020, https://doi.org/10.5194/acp-20-11955-2020, 2020
Short summary
Short summary
Projected changes in man-made aerosol range from large reductions to moderate increases in emissions until 2050. Rapid reductions between the present and the 2050s lead to enhanced increases in global and Asian summer monsoon precipitation relative to scenarios with continued increases in aerosol. Relative magnitude and spatial distribution of aerosol changes are particularly important for South Asian summer monsoon precipitation changes, affecting the sign of the trend in the coming decades.
Cited articles
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227,
1989. a
Allen, R. J. and Sherwood, S. C.: The impact of natural versus anthropogenic
aerosols on atmospheric circulation in the Community Atmosphere Model,
Clim. Dynam., 36, 1959–1978, https://doi.org/10.1007/s00382-010-0898-8,
2011. a, b
Andrews, T., Boucher, O., Fläschner, D., Kasoar, M., Kharin, V.,
Kirkevåg, A., Lamarque, J.-F., Myhre, G., Mülmenstädt, J.,
Oliviè, D. J. L., Samset, B., Sandstad, M., Shawki, D., Shindell, D.,
Stier, P., Takemura, T., Voulgarakis, A., and Watson-Parris, D.:
Precipitation Driver Response Model Intercomparison Project data
sets 2013–2021, World Data Center for Climate (WDCC) at DKRZ [data
set], https://doi.org/10.26050/WDCC/PDRMIP_2012-2021, 2021. a
Bartlett, R. E., Bollasina, M. A., Booth, B. B. B., Dunstone, N. J., Marenco,
F., Messori, G., and Bernie, D. J.: Do differences in future sulfate emission
pathways matter for near-term climate? A case study for the Asian monsoon,
Clim. Dynam., 50, 1863–1880, https://doi.org/10.1007/s00382-017-3726-6, 2018. a, b, c
Bollasina, M. A., Ming, Y., Ramaswamy, V., Schwarzkopf, M. D., and Naik, V.:
Contribution of local and remote anthropogenic aerosols to the twentieth
century weakening of the South Asian Monsoon, Geophys. Res. Lett.,
41, 680–687, https://doi.org/10.1002/2013GL058183, 2014. a
Boo, K.-O., Booth, B. B. B., Byun, Y.-H., Lee, J., Cho, C., Shim, S., and Kim,
K.-T.: Influence of aerosols in multidecadal SST variability simulations
over the North Pacific, J. Geophys. Res.-Atmos., 120, 517–531,
https://doi.org/10.1002/2014JD021933, 2015. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P. M., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P.,
Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X.-Y.: Clouds and
aerosols, in: Climate change 2013: The physical science basis. Contribution
of working group I to the fifth assessment report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner,
G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P., Cambridge University Press, 571–658,
https://doi.org/10.1017/CBO9781107415324.016, 2013. a
Chevallier, F., Zheng, B., Broquet, G., Ciais, P., Liu, Z., Davis, S. J., Deng,
Z., Wang, Y., Breon, F.-M., and O'Dell, C. W.: Local anomalies in the
column-averaged dry air mole fractions of carbon dioxide across the globe
during the first months of the coronavirus recession, Geophys. Res.
Lett., 47, e2020GL090244, https://doi.org/10.1029/2020GL090244, 2020. a
Deser, C., Magnusdottir, G., Saravanan, R., and Phillips, A.: The effects of
North Atlantic SST and sea ice anomalies on the winter circulation in
CCM3. Part II: Direct and indirect components of the response, J.
Climate, 17, 877–889,
https://doi.org/10.1175/1520-0442(2004)017<0877:TEONAS>2.0.CO;2, 2004. a
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate
change projections: the role of internal variability, Clim. Dynam., 38,
527–546, https://doi.org/10.1007/s00382-010-0977-x, 2012. a
Diamond, M. S. and Wood, R.: Limited regional aerosol and cloud microphysical
changes despite unprecedented decline in nitrogen oxide pollution during the
February 2020 COVID-19 shutdown in China, Geophys. Res. Lett.,
47, e2020GL088913, https://doi.org/10.1029/2020GL088913, 2020. a
Dow, W. J., Maycock, A. C., Lofverstrom, M., and Smith, C. J.: The effect of
anthropogenic aerosols on the Aleutian Low, J. Climate, 34,
1725–1741, https://doi.org/10.1175/JCLI-D-20-0423.1, 2021. a, b
Elleby, C., Dominguez, I. P., Adenauer, M., and Genovese, G.: Impacts of the
COVID-19 pandemic on the global agricultural markets, Environ. Resour.
Econ., 76, 1067–1079, https://doi.org/10.1007/s10640-020-00473-6, 2020. a
Fiedler, S., Wyser, K., Rogelj, J., and van Noije, T.: Radiative effects of
reduced aerosol emissions during the COVID-19 pandemic and the future
recovery, Atmos. Res., 264, 105866, https://doi.org/10.1016/j.atmosres.2021.105866,
2021. a, b, c
Forster, P. M., Lamboll, R. D., and Rogelj, J.: Emissions changes in 2020 due
to Covid-19 (v4.0), Zenodo [data set], https://doi.org/10.5281/zenodo.3957826, 2020a. a
Forster, P. M., Forster, H. I., Evans, M. J., Gidden, M. J., Jones, C. D.,
Keller, C. A., Lamboll, R. D., Le Quéré, C., Rogelj, J., Rosen, D.,
Schleussner, C.-F., Richardson, T. B., Smith, C. J., and Turnock, S. T.:
Current and future global climate impacts resulting from
COVID-19, Nat. Clim. Change, 10, 913–919,
https://doi.org/10.1038/s41558-020-0883-0, 2020b. a, b, c, d, e, f, g, h, i, j, k, l
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.: Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, 2020. a
Fyfe, J. C., Kharin, V. V., Swart, N., Flato, G. M., Sigmond, M., and Gillett,
N. P.: Quantifying the influence of short-term emission reductions on
climate, Science Advances, 7, eabf7133, https://doi.org/10.1126/sciadv.abf7133, 2021. a, b
Gillett, N. P., Shiogama, H., Funke, B., Hegerl, G., Knutti, R., Matthes, K., Santer, B. D., Stone, D., and Tebaldi, C.: The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6, Geosci. Model Dev., 9, 3685–3697, https://doi.org/10.5194/gmd-9-3685-2016, 2016. a
Gkatzelis, I, G., Gilman, J. B., Brown, S. S., Eskes, H., Gomes, A. R., Lange,
A. C., McDonald, B. C., Peischl, J., Petzold, A., Thompson, C. R., and
Kiendler-Scharr, A.: The global impacts of COVID-19 lockdowns on urban air
pollution: A critical review and recommendations, Elementa-Science of the
Anthropocene, 9, 00176, https://doi.org/10.1525/elementa.2021.00176, 2021. a, b, c, d, e
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers,
D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly
averaged data on pressure levels from 1959 to present, Copernicus Climate
Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.6860a573, 2019. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A.,
Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley,
S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I.,
Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5 global reanalysis,
Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020. a
Jones, C. D., Hickman, J. E., Rumbold, S. T., Walton, J., Lamboll, R. D.,
Skeie, R. B., Fiedler, S., Forster, P. M., Rogelj, J., Abe, M., Botzet, M.,
Calvin, K., Cassou, C., Cole, J. N. S., Davini, P., Deushi, M., Dix, M.,
Fyfe, J. C., Gillett, N. P., Ilyina, T., Kawamiya, M., Kelley, M., Kharin,
S., Koshiro, T., Li, H., Mackallah, C., Mueller, W. A., Nabat, P., van Noije,
T., Nolan, P., Ohgaito, R., Olivie, D., Oshima, N., Parodi, J., Reerink,
T. J., Ren, L., Romanou, A., Seferian, R., Tang, Y., Timmreck, C., Tjiputra,
J., Tourigny, E., Tsigaridis, K., Wang, H., Wu, M., Wyser, K., Yang, S.,
Yang, Y., and Ziehn, T.: The climate response to emissions reductions due to
COVID-19: Initial results from CovidMIP, Geophys. Res. Lett.,
48, e2020GL091883, https://doi.org/10.1029/2020GL091883, 2021. a, b, c, d, e, f, g, h
Krüger, O. O., Holanda, B. A., Chowdhury, S., Pozzer, A., Walter, D., Pöhlker, C., Andrés Hernández, M. D., Burrows, J. P., Voigt, C., Lelieveld, J., Quaas, J., Pöschl, U., and Pöhlker, M. L.: Black carbon aerosol reductions during COVID-19 confinement quantified by aircraft measurements over Europe, Atmos. Chem. Phys., 22, 8683–8699, https://doi.org/10.5194/acp-22-8683-2022, 2022. a
Lamboll, R. D., Jones, C. D., Skeie, R. B., Fiedler, S., Samset, B. H., Gillett, N. P., Rogelj, J., and Forster, P. M.: Modifying emissions scenario projections to account for the effects of COVID-19: protocol for CovidMIP, Geosci. Model Dev., 14, 3683–3695, https://doi.org/10.5194/gmd-14-3683-2021, 2021. a, b, c, d
Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., and Seinfeld, J. H.:
Unexpected air pollution with marked emission reductions during the
COVID-19 outbreak in China, Science, 369, 702–706,
https://doi.org/10.1126/science.abb7431, 2020. a
Le Quéré, C., Jackson, R. B., Jones, M. W., Smith, A. J. P., Abernethy, S.,
Andrew, R. M., De-Gol, A. J., Willis, D. R., Shan, Y., Canadell, J. G.,
Friedlingstein, P., Creutzig, F., and Peters, G. P.: Temporary reduction in
daily global CO2 emissions during the COVID-19 forced confinement,
Nat. Clim. Change, 10, 647–653,
https://doi.org/10.1038/s41558-020-0797-x, 2020. a, b, c, d
Lewinschal, A., Ekman, A. M. L., and Kornich, H.: The role of precipitation in
aerosol-induced changes in Northern Hemisphere wintertime stationary
waves, Clim. Dynam., 41, 647–661, https://doi.org/10.1007/s00382-012-1622-7,
2013. a, b, c, d
Liu, L., Shawki, D., Voulgarakis, A., Kasoar, M., Samset, B. H., Myhre, G.,
Forster, P. M., Hodnebrog, O., Sillmann, J., Aalbergsjo, S. G., Boucher, O.,
Faluvegi, G., Iversen, T., Kirkevag, A., Lamarque, J. F., Olivie, D.,
Richardson, T., Shindell, D., and Takemura, T.: A PDRMIP multimodel study
on the impacts of regional aerosol forcings on global and regional
precipitation, J. Climate, 31, 4429–4447,
https://doi.org/10.1175/JCLI-D-17-0439.1, 2018. a, b, c
Lund, M. T., Myhre, G., and Samset, B. H.: Anthropogenic aerosol forcing under the Shared Socioeconomic Pathways, Atmos. Chem. Phys., 19, 13827–13839, https://doi.org/10.5194/acp-19-13827-2019, 2019. a
Ming, Y. and Ramaswamy, V.: Nonlinear climate and hydrological responses to
aerosol effects, J. Climate, 22, 1329–1339,
https://doi.org/10.1175/2008JCLI2362.1, 2009. a
Ming, Y., Ramaswamy, V., and Chen, G.: A model investigation of
aerosol-induced changes in boreal winter extratropical circulation, J.
Climate, 24, 6077–6091, https://doi.org/10.1175/2011JCLI4111.1, 2011. a, b, c
Ming, Y., Lin, P., Paulot, F., Horowitz, L. W., Ginoux, P. A., Ramaswamy, V.,
Loeb, N. G., Shen, Z., Singer, C. E., Ward, R. X., Zhang, Z., and Bellouin,
N.: Assessing the influence of COVID-19 on the shortwave radiative fluxes
over the East Asian Marginal Seas, Geophys. Res. Lett., 48, e2020GL091699,
https://doi.org/10.1029/2020GL091699, 2021. a, b, c, d, e
Myhre, G., Samset, B., Forster, P., Hodnebrog, Ã., Sandstad, M., Mohr, C.,
Sillmann, J., Stjern, C., Andrews, T., Boucher, O., Faluvegi, G., Iversen,
T., Lamarque, J.-F., Kasoar, M., Kirkevåg, A., Kramer, R., Liu, L.,
Mülmenstädt, J., Olivié, D., and Watson-Parris, D.: Scientific data from
Precipitation Driver Response Model Intercomparison Project,
Sci., 9, 123, https://doi.org/10.1038/s41597-022-01194-9, 2022. a
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. a
O'Reilly, C. H., Befort, D. J., Weisheimer, A., Woollings, T., Ballinger, A.,
and Hegerl, G.: Projections of northern hemisphere extratropical climate
underestimate internal variability and associated uncertainty, Commun.
Earth Environ., 2, 194, https://doi.org/10.1038/s43247-021-00268-7, 2021. a
Persad, G. G. and Caldeira, K.: Divergent global-scale temperature effects from
identical aerosols emitted in different regions, Nat. Commun., 9, 3289,
https://doi.org/10.1038/s41467-018-05838-6, 2018. a, b
Qin, J. C. and Robinson, W. A.: On the Rossby-wave source and the steady
linear-response to tropical forcing, J. Atmos. Sci., 50, 1819–1823,
https://doi.org/10.1175/1520-0469(1993)050<1819:OTRWSA>2.0.CO;2, 1993. a
Rodwell, M. J. and Hoskins, B. J.: Subtropical anticyclones and summer
monsoons, J. Climate, 14, 3192–3211,
https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2, 2001. a
Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, O., Andrews, T., Faluvegi,
G., Flaeschner, D., Kasoar, M., Kharin, V., Kirkevag, A., Lamarque, J.-F.,
Olivie, D., Richardson, T., Shindell, D., Shine, K. P., Takemura, T., and
Voulgarakis, A.: Fast and slow precipitation responses to individual climate
forcers: A PDRMIP multimodel study, Geophys. Res. Lett., 43,
2782–2791, https://doi.org/10.1002/2016GL068064, 2016. a, b
Samset, B. H., Lund, M. T., Bollasina, M., Myhre, G., and Wilcox, L.: Emerging
Asian aerosol patterns, Nat. Geosci., 12, 582–584,
https://doi.org/10.1038/s41561-019-0424-5, 2019. a, b, c
Sandford, A.: Coronavirus: Half of humanity now on lockdown as 90 countries
call for confinement, euronews,
https://www.euronews.com/2020/04/02/coronavirus-in-europe-spain-s-death-toll-hits-10-000-after-record-950-new-deaths-in-24-hou (last access: 5 August 2022),
2020. a
Shepherd, T. G.: Atmospheric circulation as a source of uncertainty in climate
change projections, Nat. Geosci., 7, 703–708, https://doi.org/10.1038/NGEO2253,
2014. a
Sohrabi, C., Alsafi, Z., O'Neill, N., Khan, M., Kerwan, A., Al-Jabir, A.,
Iosifidis, C., and Agha, R.: World Health Organization declares global
emergency: A review of the 2019 novel coronavirus (COVID-19), Int.
J. Surg., 76, 71–76, https://doi.org/10.1016/j.ijsu.2020.02.034, 2020. a
Stjern, C. W., Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, O.,
Andrews, T., Boucher, O., Faluvegi, G., Iversen, T., Kasoar, M., Kharin, V.,
Kirkevag, A., Lamarque, J.-F., Olivie, D., Richardson, T., Shawki, D.,
Shindell, D., Smith, C. J., Takemura, T., and Voulgarakis, A.: Rapid
adjustments cause weak surface temperature response to increased black carbon
concentrations, J. Geophys. Res.-Atmos., 122, 11462–11481,
https://doi.org/10.1002/2017JD027326, 2017. a
Szopa, S., Naik, V.and Adhikary, B., Artaxo, P., Berntsen, T., Collins, W. D.,
Fuzzi, S., Gallardo, L., Kiendler Scharr, A., Klimont, Z., Liao, H., Unger,
N., and Zanis, P.: Short-lived climate forcers, in: Climate change 2021:
The physical science basis. Contribution of working group I to the sixth
assessment report of the Intergovernmental Panel on Climate Change,
edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan,
C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekçi, O., Yu, R., and Zhou, B., chap. 6, Cambridge University Press, 817–922,
https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-6/ (last access: 15 January 2023),
2021. a, b, c, d
Takaya, K. and Nakamura, H.: A formulation of a phase-independent wave-activity
flux for stationary and migratory quasigeostrophic eddies on a zonally
varying basic flow, J. Atmos. Sci., 58, 608–627,
https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2, 2001. a
Tang, T., Shindell, D., Samset, B. H., Boucher, O., Forster, P. M., Hodnebrog, Ø., Myhre, G., Sillmann, J., Voulgarakis, A., Andrews, T., Faluvegi, G., Fläschner, D., Iversen, T., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Olivié, D., Richardson, T., Stjern, C. W., and Takemura, T.: Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols, Atmos. Chem. Phys., 18, 8439–8452, https://doi.org/10.5194/acp-18-8439-2018, 2018. a
Twomey, S.: Influence of pollution on shortwave albedo of clouds, J.
Atmos. Sci., 34, 1149–1152,
https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977. a
Undorf, S., Polson, D., Bollasina, M. A., Ming, Y., Schurer, A., and Hegerl,
G. C.: Detectable impact of local and remote anthropogenic aerosols on the
20th century changes of West African and South Asian monsoon
precipitation, J. Geophys. Res.-Atmos., 123, 4871–4889,
https://doi.org/10.1029/2017JD027711, 2018. a
van Heerwaarden, C. C., Mol, W. B., Veerman, M. A., Benedict, I., Heusinkveld,
B. G., Knap, W. H., Kazadzis, S., Kouremeti, N., and Fiedler, S.: Record
high solar irradiance in Western Europe during first COVID-19 lockdown
largely due to unusual weather, Commun. Earth Env., 2, 37,
https://doi.org/10.1038/s43247-021-00110-0, 2021. a
Venter, Z. S., Aunan, K., Chowdhury, S., and Lelieveld, J.: COVID-19 lockdowns
cause global air pollution declines, P. Natl. Acad. Sci. USA,
117, 18984–18990, https://doi.org/10.1073/pnas.2006853117, 2020. a
Wang, Z., Lin, L., Xu, Y., Che, H., Zhang, X., Zhang, H., Dong, W., Wang, C.,
Gui, K., and Xie, B.: Incorrect Asian aerosols affecting the attribution
and projection of regional climate change in CMIP6 models, NPJ Clim.
Atmos. Sci., 4, 2, https://doi.org/10.1038/s41612-020-00159-2, 2021. a
Westervelt, D. M., Conley, A. J., Fiore, A. M., Lamarque, J.-F., Shindell, D. T., Previdi, M., Mascioli, N. R., Faluvegi, G., Correa, G., and Horowitz, L. W.: Connecting regional aerosol emissions reductions to local and remote precipitation responses, Atmos. Chem. Phys., 18, 12461–12475, https://doi.org/10.5194/acp-18-12461-2018, 2018. a
Westervelt, D. M., Mascioli, N. R., Fiore, A. M., Conley, A. J., Lamarque, J.-F., Shindell, D. T., Faluvegi, G., Previdi, M., Correa, G., and Horowitz, L. W.: Local and remote mean and extreme temperature response to regional aerosol emissions reductions, Atmos. Chem. Phys., 20, 3009–3027, https://doi.org/10.5194/acp-20-3009-2020, 2020. a, b, c
Williams, A. I. L., Stier, P., Dagan, G., and Watson-Parris, D.: Strong control
of effective radiative forcing by the spatial pattern of absorbing aerosol,
Nat. Clim. Change, 12, 735–742, https://doi.org/10.1038/s41558-022-01415-4, 2022. a, b
World Climate Research Programme (WCRP): CovidMIP data, CMIP6-CEDA, https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/, last access: 15 January 2023. a
Xie, X., Myhre, G., Liu, X., Li, X., Shi, Z., Wang, H., Kirkevåg, A., Lamarque, J.-F., Shindell, D., Takemura, T., and Liu, Y.: Distinct responses of Asian summer monsoon to black carbon aerosols and greenhouse gases, Atmos. Chem. Phys., 20, 11823–11839, https://doi.org/10.5194/acp-20-11823-2020, 2020.
a
Yang, Y., Ren, L., Li, H., Wang, H., Wang, P., Chen, L., Yue, X., and Liao, H.:
Fast climate responses to aerosol emission reductions during the COVID-19
pandemic, Geophys. Res. Lett., 47, e2020GL089788, https://doi.org/10.1029/2020GL089788,
2020. a, b
Short summary
We studied the monthly-scale climate response to COVID-19 aerosol emission reductions during January–May 2020 using climate models. Our results show global temperature and rainfall anomalies driven by circulation changes. The climate patterns reverse polarity from JF to MAM due to a shift in the main SO2 reduction region from China to India. This real-life example of rapid climate adjustments to abrupt, regional aerosol emission reduction has large implications for future climate projections.
We studied the monthly-scale climate response to COVID-19 aerosol emission reductions during...
Altmetrics
Final-revised paper
Preprint