Articles | Volume 23, issue 14
https://doi.org/10.5194/acp-23-8001-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-8001-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Remotely sensed and surface measurement- derived mass-conserving inversion of daily NOx emissions and inferred combustion technologies in energy-rich northern China
Xiaolu Li
Institute of Environmental Science, Shanxi University, Taiyuan,
030006, China
School of Environment and Spatial Informatics, China University of
Mining and Technology, Xuzhou, 221116, China
School of Environment and Spatial Informatics, China University of
Mining and Technology, Xuzhou, 221116, China
School of Environment and Spatial Informatics, China University of
Mining and Technology, Xuzhou, 221116, China
Hong Geng
Institute of Environmental Science, Shanxi University, Taiyuan,
030006, China
Xiaohui Wu
Shanxi Dadi Ecology and Environment Technology Research Institute
Ltd., Taiyuan, 030000, China
Liling Wu
School of Environment, Tsinghua University, Beijing, 10084, China
Chengli Yang
Shanxi Dadi Ecology and Environment Technology Research Institute
Ltd., Taiyuan, 030000, China
Rui Zhang
Shanxi Institute of Ecology and Environment Planning and Technology, Taiyuan, 030002, China
Liqin Zhang
Shanxi Institute of Ecology and Environment Monitoring and Emergency Response Center, Taiyuan, 030027, China
Related authors
Lingxiao Lu, Jason Blake Cohen, Kai Qin, Xiaolu Li, and Qin He
EGUsphere, https://doi.org/10.5194/egusphere-2024-1903, https://doi.org/10.5194/egusphere-2024-1903, 2024
Short summary
Short summary
This study assimilates NO2 observations from TROPOMI in a mass-conserving manner and inverts daily NOx emissions. The results are presented over rapidly changing regions in China. Attribution is quantified using local observations and inverted proxy of combustion temperature. There are significant sources identified in some areas which are not in existing databases, especially small and medium industries along the Yangtze River. We also demonstrate which emissions are robust and which are not.
Kai Qin, Hongrui Gao, Xuancen Liu, Qin He, Pravash Tiwari, and Jason Blake Cohen
Earth Syst. Sci. Data, 16, 5287–5310, https://doi.org/10.5194/essd-16-5287-2024, https://doi.org/10.5194/essd-16-5287-2024, 2024
Short summary
Short summary
Satellites have brought new opportunities for monitoring atmospheric NO2, although the results are limited by clouds and other factors, resulting in missing data. This work proposes a new process to obtain reliable data products with high coverage by reconstructing the raw data from multiple satellites. The results are validated in terms of traditional methods as well as variance maximization and demonstrate a good ability to reproduce known polluted and clean areas around the world.
Lingxiao Lu, Jason Blake Cohen, Kai Qin, Xiaolu Li, and Qin He
EGUsphere, https://doi.org/10.5194/egusphere-2024-1903, https://doi.org/10.5194/egusphere-2024-1903, 2024
Short summary
Short summary
This study assimilates NO2 observations from TROPOMI in a mass-conserving manner and inverts daily NOx emissions. The results are presented over rapidly changing regions in China. Attribution is quantified using local observations and inverted proxy of combustion temperature. There are significant sources identified in some areas which are not in existing databases, especially small and medium industries along the Yangtze River. We also demonstrate which emissions are robust and which are not.
Fan Lu, Kai Qin, Jason Blake Cohen, Qin He, Pravash Tiwari, Wei Hu, Chang Ye, Yanan Shan, Qing Xu, Shuo Wang, and Qiansi Tu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1784, https://doi.org/10.5194/egusphere-2024-1784, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This work describes a field campaign and new fast emissions estimation approach to attribute methane from a large known and previously unknown coal mine in Shanxi China. The emissions computed are shown to be larger than known oil and gas sources, indicating that methane from coal mines may play a larger role in the global methane budget. The results are found to be slightly larger than or similar to satellite observational campaigns over the same region.
Qiansi Tu, Frank Hase, Kai Qin, Jason Blake Cohen, Farahnaz Khosrawi, Xinrui Zou, Matthias Schneider, and Fan Lu
Atmos. Chem. Phys., 24, 4875–4894, https://doi.org/10.5194/acp-24-4875-2024, https://doi.org/10.5194/acp-24-4875-2024, 2024
Short summary
Short summary
Four-year satellite observations of XCH4 are used to derive CH4 emissions in three regions of China’s coal-rich Shanxi province. The wind-assigned anomalies for two opposite wind directions are calculated, and the estimated emission rates are comparable to the current bottom-up inventory but lower than the CAMS and EDGAR inventories. This research enhances the understanding of emissions in Shanxi and supports climate mitigation strategies by validating emission inventories.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Hanjin Yoo, Li Wu, Hong Geng, and Chul-Un Ro
Atmos. Chem. Phys., 24, 853–867, https://doi.org/10.5194/acp-24-853-2024, https://doi.org/10.5194/acp-24-853-2024, 2024
Short summary
Short summary
We conducted an investigation of atmospheric aerosols collected in Seoul, South Korea, during the KORUS-AQ campaign on a single-particle basis. We were able to identify their sources, the atmospheric fate, and the impacts of local emissions and long-range transport on aerosol composition. Additionally, we traced potential sources of non-exhaust heavy-metal particles. This comprehensive analysis provides valuable insights into the complex dynamics of urban aerosols.
Jianping Guo, Jian Zhang, Jia Shao, Tianmeng Chen, Kaixu Bai, Yuping Sun, Ning Li, Jingyan Wu, Rui Li, Jian Li, Qiyun Guo, Jason B. Cohen, Panmao Zhai, Xiaofeng Xu, and Fei Hu
Earth Syst. Sci. Data, 16, 1–14, https://doi.org/10.5194/essd-16-1-2024, https://doi.org/10.5194/essd-16-1-2024, 2024
Short summary
Short summary
A global continental merged high-resolution (PBLH) dataset with good accuracy compared to radiosonde is generated via machine learning algorithms, covering the period from 2011 to 2021 with 3-hour and 0.25º resolution in space and time. The machine learning model takes parameters derived from the ERA5 reanalysis and GLDAS product as input, with PBLH biases between radiosonde and ERA5 as the learning targets. The merged PBLH is the sum of the predicted PBLH bias and the PBLH from ERA5.
Yuhang Zhang, Jintai Lin, Jhoon Kim, Hanlim Lee, Junsung Park, Hyunkee Hong, Michel Van Roozendael, Francois Hendrick, Ting Wang, Pucai Wang, Qin He, Kai Qin, Yongjoo Choi, Yugo Kanaya, Jin Xu, Pinhua Xie, Xin Tian, Sanbao Zhang, Shanshan Wang, Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Thomas Wagner, Robert Spurr, Lulu Chen, Hao Kong, and Mengyao Liu
Atmos. Meas. Tech., 16, 4643–4665, https://doi.org/10.5194/amt-16-4643-2023, https://doi.org/10.5194/amt-16-4643-2023, 2023
Short summary
Short summary
Our tropospheric NO2 vertical column density product with high spatiotemporal resolution is based on the Geostationary Environment Monitoring Spectrometer (GEMS) and named POMINO–GEMS. Strong hotspot signals and NO2 diurnal variations are clearly seen. Validations with multiple satellite products and ground-based, mobile car and surface measurements exhibit the overall great performance of the POMINO–GEMS product, indicating its capability for application in environmental studies.
Qiansi Tu, Frank Hase, Zihan Chen, Matthias Schneider, Omaira García, Farahnaz Khosrawi, Shuo Chen, Thomas Blumenstock, Fang Liu, Kai Qin, Jason Cohen, Qin He, Song Lin, Hongyan Jiang, and Dianjun Fang
Atmos. Meas. Tech., 16, 2237–2262, https://doi.org/10.5194/amt-16-2237-2023, https://doi.org/10.5194/amt-16-2237-2023, 2023
Short summary
Short summary
Four-year TROPOMI observations are used to derive tropospheric NO2 emissions in two mega(cities) with high anthropogenic activity. Wind-assigned anomalies are calculated, and the emission rates and spatial patterns are estimated based on a machine learning algorithm. The results are in reasonable agreement with previous studies and the inventory. Our method is quite robust and can be used as a simple method to estimate the emissions of NO2 as well as other gases in other regions.
Zexia Duan, Zhiqiu Gao, Qing Xu, Shaohui Zhou, Kai Qin, and Yuanjian Yang
Earth Syst. Sci. Data, 14, 4153–4169, https://doi.org/10.5194/essd-14-4153-2022, https://doi.org/10.5194/essd-14-4153-2022, 2022
Short summary
Short summary
Land–atmosphere interactions over the Yangtze River Delta (YRD) in China are becoming more varied and complex, as the area is experiencing rapid land use changes. In this paper, we describe a dataset of microclimate and eddy covariance variables at four sites in the YRD. This dataset has potential use cases in multiple research fields, such as boundary layer parametrization schemes, evaluation of remote sensing algorithms, and development of climate models in typical East Asian monsoon regions.
Xiaolu Ling, Ying Huang, Weidong Guo, Yixin Wang, Chaorong Chen, Bo Qiu, Jun Ge, Kai Qin, Yong Xue, and Jian Peng
Hydrol. Earth Syst. Sci., 25, 4209–4229, https://doi.org/10.5194/hess-25-4209-2021, https://doi.org/10.5194/hess-25-4209-2021, 2021
Short summary
Short summary
Soil moisture (SM) plays a critical role in the water and energy cycles of the Earth system, for which a long-term SM product with high quality is urgently needed. In situ observations are generally treated as the true value to systematically evaluate five SM products, including one remote sensing product and four reanalysis data sets during 1981–2013. This long-term intercomparison study provides clues for SM product enhancement and further hydrological applications.
Shuo Wang, Jason Blake Cohen, Chuyong Lin, and Weizhi Deng
Atmos. Chem. Phys., 20, 15401–15426, https://doi.org/10.5194/acp-20-15401-2020, https://doi.org/10.5194/acp-20-15401-2020, 2020
Short summary
Short summary
We analyze global measurements of aerosol height from fires. A plume rise model reproduces measurements with a low bias in five regions, while a statistical model based on satellite measurements of trace gasses co-emitted from the fires reproduces measurements without bias in eight regions. We propose that the magnitude of the pollutants emitted may impact their height and subsequent downwind transport. Using satellite data allows better modeling of the global aerosol distribution.
Mengyao Liu, Jintai Lin, Hao Kong, K. Folkert Boersma, Henk Eskes, Yugo Kanaya, Qin He, Xin Tian, Kai Qin, Pinhua Xie, Robert Spurr, Ruijing Ni, Yingying Yan, Hongjian Weng, and Jingxu Wang
Atmos. Meas. Tech., 13, 4247–4259, https://doi.org/10.5194/amt-13-4247-2020, https://doi.org/10.5194/amt-13-4247-2020, 2020
Short summary
Short summary
Nitrogen oxides (NOx = NO + NO2) are important air pollutants in the troposphere and play crucial roles in the formation of ozone and particulate matter. The recently launched TROPOspheric Monitoring Instrument (TROPOMI) provides an opportunity to retrieve tropospheric concentrations of nitrogen dioxide (NO2) at an unprecedented high horizontal resolution. This work presents a new NO2 retrieval product over East Asia and further quantifies key factors affecting the retrieval, including aerosol.
Pradeep Khatri, Hironobu Iwabuchi, Tadahiro Hayasaka, Hitoshi Irie, Tamio Takamura, Akihiro Yamazaki, Alessandro Damiani, Husi Letu, and Qin Kai
Atmos. Meas. Tech., 12, 6037–6047, https://doi.org/10.5194/amt-12-6037-2019, https://doi.org/10.5194/amt-12-6037-2019, 2019
Short summary
Short summary
In an attempt to make cloud retrievals from the surface more common and convenient, we developed a cloud retrieval algorithm applicable for sky radiometers. It is based on an optimum method by fitting measured transmittances with modeled values. Further, a cost-effective and easy-to-use calibration procedure is proposed and validated using data obtained from the standard method. A detailed error analysis and quality assessment are also performed.
C. Y. Lin, S. Wang, and J. B. Cohen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W9, 119–123, https://doi.org/10.5194/isprs-archives-XLII-3-W9-119-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W9-119-2019, 2019
S. Wang, C. Y. Lin, and J. B. Cohen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W9, 165–170, https://doi.org/10.5194/isprs-archives-XLII-3-W9-165-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W9-165-2019, 2019
Li Wu, Xue Li, HyeKyeong Kim, Hong Geng, Ricardo H. M. Godoi, Cybelli G. G. Barbosa, Ana F. L. Godoi, Carlos I. Yamamoto, Rodrigo A. F. de Souza, Christopher Pöhlker, Meinrat O. Andreae, and Chul-Un Ro
Atmos. Chem. Phys., 19, 1221–1240, https://doi.org/10.5194/acp-19-1221-2019, https://doi.org/10.5194/acp-19-1221-2019, 2019
Short summary
Short summary
Aerosol samples collected at a remote site in the Amazonian rainforest (ATTO) and an urban site in Manaus, Brazil, were investigated on a single particle basis using a quantitative energy-dispersive electron probe X-ray microanalysis, suggesting the different sources and formation mechanisms of secondary aerosols, i.e., the predominant presence of sulfate at the ATTO site from mostly biogenic emissions and the elevated influences of nitrates from anthropogenic activities at the Manaus site.
X. Han, G. Tana, K. Qin, and H. Letu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 9–15, https://doi.org/10.5194/isprs-archives-XLII-3-W5-9-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W5-9-2018, 2018
C. Lin and J. Cohen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 53–59, https://doi.org/10.5194/isprs-archives-XLII-3-W5-53-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W5-53-2018, 2018
X. Shi, C. Zhao, K. Qin, Y. Yang, K. Zhang, and H. Fan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 73–76, https://doi.org/10.5194/isprs-archives-XLII-3-W5-73-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W5-73-2018, 2018
J. Zou, K. Qin, J. Xu, and X. Han
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 83–88, https://doi.org/10.5194/isprs-archives-XLII-3-W5-83-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W5-83-2018, 2018
Jason Blake Cohen, Daniel Hui Loong Ng, Alan Wei Lun Lim, and Xin Rong Chua
Atmos. Chem. Phys., 18, 7095–7108, https://doi.org/10.5194/acp-18-7095-2018, https://doi.org/10.5194/acp-18-7095-2018, 2018
Short summary
Short summary
Measured aerosol heights over the Maritime Continent are higher than previously thought, with 61 to 83 % of aerosols above the boundary layer. These aerosols should hence have a larger impact on the climate. The use of a plume rise model cannot match the measurements, unless the measured fire energy is increased by 0–60 %. Furthermore, the model is too spread, indicating the importance of including convection and aerosol–radiation interactions. Significant model improvements will be required.
K. L. Chan and K. Qin
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 29–36, https://doi.org/10.5194/isprs-archives-XLII-2-W7-29-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W7-29-2017, 2017
Jason Blake Cohen, Eve Lecoeur, and Daniel Hui Loong Ng
Atmos. Chem. Phys., 17, 721–743, https://doi.org/10.5194/acp-17-721-2017, https://doi.org/10.5194/acp-17-721-2017, 2017
Short summary
Short summary
This study highlights the importance of taking into account a simultaneous use of land use, fire and precipitation for understanding the impacts of fires on the atmospheric loading and distribution of aerosols in Southeast Asia over both space and time. Also, it highlights that there are significant advantages of using 8-day and monthly average values (instead of daily data) in order to better quantify the magnitude and timing of the inter- and intra-annual variance of Southeast Asian fires.
Weihua Chen, Xuemei Wang, Jason Blake Cohen, Shengzhen Zhou, Zhisheng Zhang, Ming Chang, and Chuen-Yu Chan
Atmos. Chem. Phys., 16, 13271–13289, https://doi.org/10.5194/acp-16-13271-2016, https://doi.org/10.5194/acp-16-13271-2016, 2016
Short summary
Short summary
Measurements of size-resolved aerosols (0.25–18 μm) were conducted at three sites (urban, suburban and background sites) in southern China during monsoon season (May–June) in 2010 aqueous-phase reaction was the main formation pathway of droplet mode sulfate. New particle formation, chemical aging, and long-range transport from upwind urban or biomass burning regions were also found to be important in at least some of the sights on some of the sampling days.
Lixin Wu, Shuo Zheng, Angelo De Santis, Kai Qin, Rosa Di Mauro, Shanjun Liu, and Mario Luigi Rainone
Nat. Hazards Earth Syst. Sci., 16, 1859–1880, https://doi.org/10.5194/nhess-16-1859-2016, https://doi.org/10.5194/nhess-16-1859-2016, 2016
Short summary
Short summary
Many anomalies before the 2009 L'Aquila earthquake were reported but not synergically analyzed referring to geosystem coupling. We investigated changes of multiple hydrothermal parameters in coversphere and atmosphere and studied 3-D evolution of b value in lithosphere. Quasi-synchronism of pre-earthquake anomalies georelating to particular thrusts and local topography are revealed. A geosphere coupling mode is proposed interpreting the function of CO2-rich crust fluids on local LCA coupling.
K. Qin, L. X. Wu, X. Y. Ouyang, X. H. Shen, and S. Zheng
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-2439-2013, https://doi.org/10.5194/nhessd-1-2439-2013, 2013
Revised manuscript has not been submitted
Related subject area
Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Satellite-observed relationships between land cover, burned area, and atmospheric composition over the southern Amazon
Ammonia emission estimates using CrIS satellite observations over Europe
Insights into the long-term (2005–2021) spatiotemporal evolution of summer ozone production sensitivity in the Northern Hemisphere derived with the Ozone Monitoring Instrument (OMI)
Tropical tropospheric ozone distribution and trends from in situ and satellite data
Estimation of ground-level NO2 and its spatiotemporal variations in China using GEMS measurements and a nested machine learning model
Investigation of the impact of satellite vertical sensitivity on long-term retrieved lower-tropospheric ozone trends
Quantifying the diurnal variation in atmospheric NO2 from Geostationary Environment Monitoring Spectrometer (GEMS) observations
Global seasonal urban, industrial, and background NO2 estimated from TROPOMI satellite observations
Opinion: Beyond Global Means: Novel Space-Based Approaches to Indirectly Constrain the Concentrations, Trends, and Variations of Tropospheric Hydroxyl Radical (OH)
Ammonia in the upper troposphere–lower stratosphere (UTLS): GLORIA airborne measurements for CAMS model evaluation in the Asian monsoon and in biomass burning plumes above the South Atlantic
A lightweight NO2-to-NOx conversion model for quantifying NOx emissions of point sources from NO2 satellite observations
Towards a sector-specific CO∕CO2 emission ratio: satellite-based observations of CO release from steel production in Germany
Monitoring European anthropogenic NOx emissions from space
Comparing space-based to reported carbon monoxide emission estimates for Europe’s iron & steel plants
Vertical profiles of global tropospheric nitrogen dioxide (NO2) obtained by cloud-slicing TROPOMI
Opposite variations of peak and low ozone concentrations in eastern China: Positive effects of NOx control on ozone pollution
Pyrogenic HONO seen from space: insights from global IASI observations
First evaluation of the GEMS formaldehyde product against TROPOMI and ground-based column measurements during the in-orbit test period
High-resolution mapping of nitrogen oxide emissions in large US cities from TROPOMI retrievals of tropospheric nitrogen dioxide columns
Quantifying the tropospheric ozone radiative effect and its temporal evolution in the satellite era
Tropical upper tropospheric trends in ozone and carbon monoxide (2005–2020): observational and model results
A satellite chronology of plumes from the April 2021 eruption of La Soufrière, St Vincent
Investigation of spatial and temporal variability in lower tropospheric ozone from RAL Space UV–Vis satellite products
Two years of satellite-based carbon dioxide emission quantification at the world's largest coal-fired power plants
Tropical tropospheric ozone and carbon monoxide distributions: characteristics, origins, and control factors, as seen by IAGOS and IASI
Investigation of the summer 2018 European ozone air pollution episodes using novel satellite data and modelling
Bridging the spatial gaps of the Ammonia Monitoring Network using satellite ammonia measurements
A roadmap to estimating agricultural ammonia volatilization over Europe using satellite observations and simulation data
Investigation of meteorological conditions and BrO during ozone depletion events in Ny-Ålesund between 2010 and 2021
Quantification of carbon monoxide emissions from African cities using TROPOMI
Nitrogen oxides emissions from selected cities in North America, Europe, and East Asia observed by the TROPOspheric Monitoring Instrument (TROPOMI) before and after the COVID-19 pandemic
Examining TROPOMI formaldehyde to nitrogen dioxide ratios in the Lake Michigan region: implications for ozone exceedances
Impact of different sources of precursors on an ozone pollution outbreak over Europe analysed with IASI+GOME2 multispectral satellite observations and model simulations
Monitoring and quantifying CO2 emissions of isolated power plants from space
Technical note: Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers – first steps toward assessing the feasibility of a global observation strategy
Significant contribution of inland ships to the total NOx emissions along the Yangtze River
Characteristics of interannual variability in space-based XCO2 global observations
Toward a versatile spaceborne architecture for immediate monitoring of the global methane pledge
Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021
Ground solar absorption observations of total column CO, CO2, CH4, and aerosol optical depth from California's Sequoia Lightning Complex Fire: emission factors and modified combustion efficiency at regional scales
Potential of TROPOMI for understanding spatio-temporal variations in surface NO2 and their dependencies upon land use over the Iberian Peninsula
Mobile MAX-DOAS observations of tropospheric NO2 and HCHO during summer over the Three Rivers' Source region in China
Estimating enhancement ratios of nitrogen dioxide, carbon monoxide and carbon dioxide using satellite observations
Source mechanisms and transport patterns of tropospheric bromine monoxide: findings from long-term multi-axis differential optical absorption spectroscopy measurements at two Antarctic stations
Measurement report: Spatiotemporal variability of peroxy acyl nitrates (PANs) over Mexico City from TES and CrIS satellite measurements
Biomass burning CO, PM and fuel consumption per unit burned area estimates derived across Africa using geostationary SEVIRI fire radiative power and Sentinel-5P CO data
Characterization of errors in satellite-based HCHO ∕ NO2 tropospheric column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval uncertainties
Evaluation of transport processes over North China Plain and Yangtze River Delta using MAX-DOAS observations
Estimation of biomass burning emission of NO2 and CO from 2019–2020 Australia fires based on satellite observations
Quantifying daily NOx and CO2 emissions from Wuhan using satellite observations from TROPOMI and OCO-2
Emma Sands, Richard J. Pope, Ruth M. Doherty, Fiona M. O'Connor, Chris Wilson, and Hugh Pumphrey
Atmos. Chem. Phys., 24, 11081–11102, https://doi.org/10.5194/acp-24-11081-2024, https://doi.org/10.5194/acp-24-11081-2024, 2024
Short summary
Short summary
Changes in vegetation alongside biomass burning impact regional atmospheric composition and air quality. Using satellite remote sensing, we find a clear linear relationship between forest cover and isoprene and a pronounced non-linear relationship between burned area and nitrogen dioxide in the southern Amazon, a region of substantial deforestation. These quantified relationships can be used for model evaluation and further exploration of biosphere-atmosphere interactions in Earth System Models.
Jieying Ding, Ronald van der A, Henk Eskes, Enrico Dammers, Mark Shephard, Roy Wichink Kruit, Marc Guevara, and Leonor Tarrason
Atmos. Chem. Phys., 24, 10583–10599, https://doi.org/10.5194/acp-24-10583-2024, https://doi.org/10.5194/acp-24-10583-2024, 2024
Short summary
Short summary
Here we applied the existing Daily Emissions Constrained by Satellite Observations (DECSO) inversion algorithm to NH3 observations from the CrIS satellite instrument to estimate NH3 emissions. As NH3 in the atmosphere is influenced by NOx, we implemented DECSO to estimate NOx and NH3 emissions simultaneously. The emissions are derived over Europe for 2020 at a spatial resolution of 0.2° using daily observations from CrIS and TROPOMI. Results are compared to bottom-up emission inventories.
Matthew S. Johnson, Sajeev Philip, Scott Meech, Rajesh Kumar, Meytar Sorek-Hamer, Yoichi P. Shiga, and Jia Jung
Atmos. Chem. Phys., 24, 10363–10384, https://doi.org/10.5194/acp-24-10363-2024, https://doi.org/10.5194/acp-24-10363-2024, 2024
Short summary
Short summary
Satellites, like the Ozone Monitoring Instrument (OMI), retrieve proxy species of ozone (O3) formation (formaldehyde and nitrogen dioxide) and the ratios (FNRs) which can define O3 production sensitivity regimes. Here we investigate trends of OMI FNRs from 2005 to 2021, and they have increased in major cities, suggesting a transition from radical- to NOx-limited regimes. OMI also observed the impact of reduced emissions during the 2020 COVID-19 lockdown that resulted in increased FNRs.
Audrey Gaudel, Ilann Bourgeois, Meng Li, Kai-Lan Chang, Jerald Ziemke, Bastien Sauvage, Ryan M. Stauffer, Anne M. Thompson, Debra E. Kollonige, Nadia Smith, Daan Hubert, Arno Keppens, Juan Cuesta, Klaus-Peter Heue, Pepijn Veefkind, Kenneth Aikin, Jeff Peischl, Chelsea R. Thompson, Thomas B. Ryerson, Gregory J. Frost, Brian C. McDonald, and Owen R. Cooper
Atmos. Chem. Phys., 24, 9975–10000, https://doi.org/10.5194/acp-24-9975-2024, https://doi.org/10.5194/acp-24-9975-2024, 2024
Short summary
Short summary
The study examines tropical tropospheric ozone changes. In situ data from 1994–2019 display increased ozone, notably over India, Southeast Asia, and Malaysia and Indonesia. Sparse in situ data limit trend detection for the 15-year period. In situ and satellite data, with limited sampling, struggle to consistently detect trends. Continuous observations are vital over the tropical Pacific Ocean, Indian Ocean, western Africa, and South Asia for accurate ozone trend estimation in these regions.
Naveed Ahmad, Changqing Lin, Alexis K. H. Lau, Jhoon Kim, Tianshu Zhang, Fangqun Yu, Chengcai Li, Ying Li, Jimmy C. H. Fung, and Xiang Qian Lao
Atmos. Chem. Phys., 24, 9645–9665, https://doi.org/10.5194/acp-24-9645-2024, https://doi.org/10.5194/acp-24-9645-2024, 2024
Short summary
Short summary
This study developed a nested machine learning model to convert the GEMS NO2 column measurements into ground-level concentrations across China. The model directly incorporates the NO2 mixing height (NMH) into the methodological framework. The study underscores the importance of considering NMH when estimating ground-level NO2 from satellite column measurements and highlights the significant advantages of new-generation geostationary satellites in air quality monitoring.
Richard J. Pope, Fiona M. O'Connor, Mohit Dalvi, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Brice Barret, Eric Le Flochmoen, Anne Boynard, Martyn P. Chipperfield, Wuhu Feng, Matilda A. Pimlott, Sandip S. Dhomse, Christian Retscher, Catherine Wespes, and Richard Rigby
Atmos. Chem. Phys., 24, 9177–9195, https://doi.org/10.5194/acp-24-9177-2024, https://doi.org/10.5194/acp-24-9177-2024, 2024
Short summary
Short summary
Ozone is a potent air pollutant in the lower troposphere, with adverse impacts on human health. Satellite records of tropospheric ozone currently show large-scale inconsistencies in long-term trends. Our detailed study of the potential factors (e.g. satellite errors, where the satellite can observe ozone) potentially driving these inconsistencies found that, in North America, Europe, and East Asia, the underlying trends are typically small with large uncertainties.
David P. Edwards, Sara Martínez-Alonso, Duseong S. Jo, Ivan Ortega, Louisa K. Emmons, John J. Orlando, Helen M. Worden, Jhoon Kim, Hanlim Lee, Junsung Park, and Hyunkee Hong
Atmos. Chem. Phys., 24, 8943–8961, https://doi.org/10.5194/acp-24-8943-2024, https://doi.org/10.5194/acp-24-8943-2024, 2024
Short summary
Short summary
Until recently, satellite observations of atmospheric pollutants at any location could only be obtained once a day. New geostationary satellites stare at a region of the Earth to make hourly measurements, and the Geostationary Environment Monitoring Spectrometer is the first looking at Asia. These data and model simulations show how the change seen for one important pollutant that determines air quality depends on a combination of pollution emissions, atmospheric chemistry, and meteorology.
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Xiaoyi Zhao, and Henk Eskes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1991, https://doi.org/10.5194/egusphere-2024-1991, 2024
Short summary
Short summary
Satellite data were used to estimate urban per capita emissions for 261 major cities worldwide. Three components in tropospheric NO2 data: background NO2, NO2 from urban sources, and from industrial point sources were isolated and then each of these components was analyzed separately. The largest per capita emissions were found at the Middle East and the smallest were in India and South Africa. Urban weekend emissions are 20 %–50 % less than workday emissions for all regions except China.
Bryan Duncan, Daniel Anderson, Arlene Fiore, Joanna Joiner, Nickolay Krotkov, Can Li, Dylan Millet, Julie Nicely, Luke Oman, Jason St. Clair, Joshua Shutter, Amir Souri, Sarah Strode, Brad Weir, Glenn Wolfe, Helen Worden, and Qindan Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2331, https://doi.org/10.5194/egusphere-2024-2331, 2024
Short summary
Short summary
Trace gases emitted to or formed within the atmosphere may be chemically or physically removed from the atmosphere. One trace gas, the hydroxyl radical (OH), is responsible for initiating the chemical removal of many trace gases, including some climate gases. Despite its importance, scientists have not been able to adequately measure OH. In this opinion piece, we discuss promising new methods to indirectly constrain OH using satellite data of trace gases that control the abundance of OH.
Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Norbert Glatthor, Thomas Gulde, Vincent Huijnen, Anne Kleinert, Erik Kretschmer, Guido Maucher, Tom Neubert, Hans Nordmeyer, Christof Piesch, Peter Preusse, Martin Riese, Björn-Martin Sinnhuber, Jörn Ungermann, Gerald Wetzel, and Wolfgang Woiwode
Atmos. Chem. Phys., 24, 8125–8138, https://doi.org/10.5194/acp-24-8125-2024, https://doi.org/10.5194/acp-24-8125-2024, 2024
Short summary
Short summary
We present airborne infrared limb sounding GLORIA measurements of ammonia (NH3) in the upper troposphere of air masses within the Asian monsoon and of those connected with biomass burning. Comparing CAMS (Copernicus Atmosphere Monitoring Service) model data, we find that the model reproduces the measured enhanced NH3 within the Asian monsoon well but not that within biomass burning plumes, where no enhanced NH3 is measured in the upper troposphere but considerable amounts are simulated by CAMS.
Sandro Meier, Erik F. M. Koene, Maarten Krol, Dominik Brunner, Alexander Damm, and Gerrit Kuhlmann
Atmos. Chem. Phys., 24, 7667–7686, https://doi.org/10.5194/acp-24-7667-2024, https://doi.org/10.5194/acp-24-7667-2024, 2024
Short summary
Short summary
Nitrogen oxides (NOx = NO + NO2) are important air pollutants. This study addresses the challenge of accurately estimating NOx emissions from NO2 satellite observations. We develop a realistic model to convert NO2 to NOx by using simulated plumes from various power plants. We apply the model to satellite NO2 observations, significantly reducing biases in estimated NOx emissions. The study highlights the potential for a consistent, high-resolution estimation of NOx emissions using satellite data.
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Michael Weimer, Heinrich Bovensmann, John P. Burrows, and Hartmut Bösch
Atmos. Chem. Phys., 24, 7609–7621, https://doi.org/10.5194/acp-24-7609-2024, https://doi.org/10.5194/acp-24-7609-2024, 2024
Short summary
Short summary
Large quantities of CO and CO2 are emitted during conventional steel production. As satellite-based estimates of CO2 emissions at the facility level are challenging, co-emitted CO can indicate the carbon footprint of steel plants. We estimate CO emissions for German steelworks and use CO2 emissions from emissions trading data to derive a sector-specific CO/CO2 emission ratio for the steel industry; it is a prerequisite to use CO as a proxy for CO2 emissions from similar steel production sites.
Ronald J. van der A, Jieying Ding, and Henk Eskes
Atmos. Chem. Phys., 24, 7523–7534, https://doi.org/10.5194/acp-24-7523-2024, https://doi.org/10.5194/acp-24-7523-2024, 2024
Short summary
Short summary
Using observations of the Sentinel-5P satellite and the latest version of the inversion algorithm DECSO, anthropogenic NOx emissions are derived for Europe for the years 2019–2022 with a spatial resolution of 0.2°. The results are compared with European emissions of the Copernicus Atmosphere Monitoring Service.
Gijs Leguijt, Joannes D. Maasakkers, Hugo A. C. Denier van der Gon, Arjo J. Segers, Tobias Borsdorff, Ivar R. van der Velde, and Ilse Aben
EGUsphere, https://doi.org/10.5194/egusphere-2024-1561, https://doi.org/10.5194/egusphere-2024-1561, 2024
Short summary
Short summary
The production of steel coincides with large emissions of greenhouse gases and air pollutants including carbon monoxide. European facilities are required to report their emissions, which are estimated using a variety of methods. We evaluate these estimates using carbon monoxide concentrations measured using a satellite. We find generally good agreement between our values and those reported but also identify some uncertainties, showing that satellites can provide insights on these emissions.
Rebekah P. Horner, Eloise A. Marais, Nana Wei, Robert G. Ryan, and Viral Shah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1541, https://doi.org/10.5194/egusphere-2024-1541, 2024
Short summary
Short summary
Nitrogen oxides (NOx ≡ NO + NO2) affect tropospheric ozone and the hydroxyl radical, influencing climate and atmospheric oxidation. To address the lack of routine observations of NOx, we cloud-slice satellite observations of NO2 to derive a new dataset of global vertical profiles of NO2. We evaluate our data against in-situ aircraft observations and use our data to critique contemporary knowledge of tropospheric NOx as simulated with the GEOS-Chem model.
Zhuang Wang, Chune Shi, Hao Zhang, Xianguang Ji, Yizhi Zhu, Congzi Xia, Xiaoyun Sun, Xinfeng Lin, Shaowei Yan, Suyao Wang, Yuan Zhou, Chengzhi Xing, Yujia Chen, and Cheng Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-341, https://doi.org/10.5194/egusphere-2024-341, 2024
Short summary
Short summary
This study attempts to explain the surface ozone background, typical, and peak trends in eastern China by combining a large amount of ground–based and satellite observations, and found substantial reductions in nitrogen oxides emissions have diametrically opposed effects on peak (decreasing) and low (increasing) ozone concentrations.
Bruno Franco, Lieven Clarisse, Nicolas Theys, Juliette Hadji-Lazaro, Cathy Clerbaux, and Pierre Coheur
Atmos. Chem. Phys., 24, 4973–5007, https://doi.org/10.5194/acp-24-4973-2024, https://doi.org/10.5194/acp-24-4973-2024, 2024
Short summary
Short summary
Using IASI global infrared measurements, we retrieve nitrous acid (HONO) in fire plumes from space. We detect large enhancements of pyrogenic HONO worldwide, especially from intense wildfires at Northern Hemisphere mid- and high latitudes. Predominance of IASI nighttime over daytime measurements sheds light on HONO's extended lifetime and secondary formation during long-range transport in smoke plumes. Our findings deepen the understanding of atmospheric HONO, crucial for air quality assessment.
Gitaek T. Lee, Rokjin J. Park, Hyeong-Ahn Kwon, Eunjo S. Ha, Sieun D. Lee, Seunga Shin, Myoung-Hwan Ahn, Mina Kang, Yong-Sang Choi, Gyuyeon Kim, Dong-Won Lee, Deok-Rae Kim, Hyunkee Hong, Bavo Langerock, Corinne Vigouroux, Christophe Lerot, Francois Hendrick, Gaia Pinardi, Isabelle De Smedt, Michel Van Roozendael, Pucai Wang, Heesung Chong, Yeseul Cho, and Jhoon Kim
Atmos. Chem. Phys., 24, 4733–4749, https://doi.org/10.5194/acp-24-4733-2024, https://doi.org/10.5194/acp-24-4733-2024, 2024
Short summary
Short summary
This study evaluates the Geostationary Environment Monitoring Spectrometer (GEMS) HCHO product by comparing its vertical column densities (VCDs) with those of TROPOMI and ground-based observations. Based on some sensitivity tests, obtaining radiance references under clear-sky conditions significantly improves HCHO retrieval quality. GEMS HCHO VCDs captured seasonal and diurnal variations well during the first year of observation, showing consistency with TROPOMI and ground-based observations.
Fei Liu, Steffen Beirle, Joanna Joiner, Sungyeon Choi, Zhining Tao, K. Emma Knowland, Steven J. Smith, Daniel Q. Tong, Siqi Ma, Zachary T. Fasnacht, and Thomas Wagner
Atmos. Chem. Phys., 24, 3717–3728, https://doi.org/10.5194/acp-24-3717-2024, https://doi.org/10.5194/acp-24-3717-2024, 2024
Short summary
Short summary
Using satellite data, we developed a coupled method independent of the chemical transport model to map NOx emissions across US cities. After validating our technique with synthetic data, we charted NOx emissions from 2018–2021 in 39 cities. Our results closely matched EPA estimates but also highlighted some inconsistencies in both magnitude and spatial distribution. This research can help refine strategies for monitoring and managing air quality.
Richard J. Pope, Alexandru Rap, Matilda A. Pimlott, Brice Barret, Eric Le Flochmoen, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Anne Boynard, Christian Retscher, Wuhu Feng, Richard Rigby, Sandip S. Dhomse, Catherine Wespes, and Martyn P. Chipperfield
Atmos. Chem. Phys., 24, 3613–3626, https://doi.org/10.5194/acp-24-3613-2024, https://doi.org/10.5194/acp-24-3613-2024, 2024
Short summary
Short summary
Tropospheric ozone is an important short-lived climate forcer which influences the incoming solar short-wave radiation and the outgoing long-wave radiation in the atmosphere (8–15 km) where the balance between the two yields a net positive (i.e. warming) effect at the surface. Overall, we find that the tropospheric ozone radiative effect ranges between 1.21 and 1.26 W m−2 with a negligible trend (2008–2017), suggesting that tropospheric ozone influences on climate have remained stable with time.
Lucien Froidevaux, Douglas E. Kinnison, Benjamin Gaubert, Michael J. Schwartz, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, Jerry R. Ziemke, and Ryan A. Fuller
EGUsphere, https://doi.org/10.5194/egusphere-2024-525, https://doi.org/10.5194/egusphere-2024-525, 2024
Short summary
Short summary
We compare observed changes in ozone (O3) and carbon monoxide (CO) in the tropical upper troposphere (10–15 km altitude) for 2005–2020 to predictions from model simulations that track the evolution of natural and industrial emissions transported to this region. An increasing trend in measured upper tropospheric O3 is generally well matched by the model trends. We also find that changes in modeled industrial CO surface emissions lead to better model agreement with observed decreasing CO trends.
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023, https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Short summary
This study looks at sulfur dioxide (SO2) and ash emissions from the April 2021 eruption of La Soufrière on St Vincent. Using satellite data, 35 eruptive events were identified. Satellite data were used to track SO2 as it was transported around the globe. The majority of SO2 was emitted into the upper troposphere and lower stratosphere. Similarities with the 1979 eruption of La Soufrière highlight the value of studying these eruptions to be better prepared for future eruptions.
Richard J. Pope, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Martyn P. Chipperfield, Wuhu Feng, Matilda A. Pimlott, Sandip S. Dhomse, Christian Retscher, and Richard Rigby
Atmos. Chem. Phys., 23, 14933–14947, https://doi.org/10.5194/acp-23-14933-2023, https://doi.org/10.5194/acp-23-14933-2023, 2023
Short summary
Short summary
Ozone is a potent air pollutant, and we present the first study to investigate long-term changes in lower tropospheric column ozone (LTCO3) from space. We have constructed a merged LTCO3 dataset from GOME-1, SCIAMACHY and OMI between 1996 and 2017. Comparing LTCO3 between the 1996–2000 and 2013–2017 5-year averages, we find significant positive increases in the tropics/sub-tropics, while in the northern mid-latitudes, we find small-scale differences.
Daniel H. Cusworth, Andrew K. Thorpe, Charles E. Miller, Alana K. Ayasse, Ralph Jiorle, Riley M. Duren, Ray Nassar, Jon-Paul Mastrogiacomo, and Robert R. Nelson
Atmos. Chem. Phys., 23, 14577–14591, https://doi.org/10.5194/acp-23-14577-2023, https://doi.org/10.5194/acp-23-14577-2023, 2023
Short summary
Short summary
Carbon dioxide (CO2) emissions from combustion sources are uncertain in many places across the globe. Satellites have the ability to detect and quantify emissions from large CO2 point sources, including coal-fired power plants. In this study, we tasked two satellites to routinely observe CO2 emissions at 30 coal-fired power plants between 2021 and 2022. These results present the largest dataset of space-based CO2 emission estimates to date.
Maria Tsivlidou, Bastien Sauvage, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Eric Le Flochmoën, Philippe Nédélec, Valérie Thouret, Pawel Wolff, and Brice Barret
Atmos. Chem. Phys., 23, 14039–14063, https://doi.org/10.5194/acp-23-14039-2023, https://doi.org/10.5194/acp-23-14039-2023, 2023
Short summary
Short summary
The tropics are a region where the ozone increase has been most apparent since 1980 and where observations are sparse. Using aircraft, satellite, and model data, we document the characteristics of tropospheric ozone and CO over the whole tropics for the last 2 decades. We explore the origin of the observed CO anomalies and investigate transport processes driving the tropical CO and O3 distribution. Our study highlights the importance of anthropogenic emissions, mostly over the northern tropics.
Richard J. Pope, Brian J. Kerridge, Martyn P. Chipperfield, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Matilda A. Pimlott, Wuhu Feng, Edward Comyn-Platt, Garry D. Hayman, Stephen R. Arnold, and Ailish M. Graham
Atmos. Chem. Phys., 23, 13235–13253, https://doi.org/10.5194/acp-23-13235-2023, https://doi.org/10.5194/acp-23-13235-2023, 2023
Short summary
Short summary
In the summer of 2018, Europe experienced several persistent large-scale ozone (O3) pollution episodes. Satellite tropospheric O3 and surface O3 data recorded substantial enhancements in 2018 relative to other years. Targeted model simulations showed that meteorological processes and emissions controlled the elevated surface O3, while mid-tropospheric O3 enhancements were dominated by stratospheric O3 intrusion and advection of North Atlantic O3-rich air masses into Europe.
Rui Wang, Da Pan, Xuehui Guo, Kang Sun, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Cathy Clerbaux, Melissa Puchalski, and Mark A. Zondlo
Atmos. Chem. Phys., 23, 13217–13234, https://doi.org/10.5194/acp-23-13217-2023, https://doi.org/10.5194/acp-23-13217-2023, 2023
Short summary
Short summary
Ammonia (NH3) is a key precursor for fine particulate matter (PM2.5) and a primary form of reactive nitrogen, yet it has sparse ground measurements. We perform the first comprehensive comparison between ground observations and satellite retrievals in the US, demonstrating that satellite NH3 data can help fill spatial gaps in the current ground monitoring networks. Trend analyses using both datasets highlight increasing NH3 trends across the US, including the NH3 hotspots and urban areas.
Rimal Abeed, Camille Viatte, William C. Porter, Nikolaos Evangeliou, Cathy Clerbaux, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, and Sarah Safieddine
Atmos. Chem. Phys., 23, 12505–12523, https://doi.org/10.5194/acp-23-12505-2023, https://doi.org/10.5194/acp-23-12505-2023, 2023
Short summary
Short summary
Ammonia emissions from agricultural activities will inevitably increase with the rise in population. We use a variety of datasets (satellite, reanalysis, and model simulation) to calculate the first regional map of ammonia emission potential during the start of the growing season in Europe. We then apply our developed method using a climate model to show the effect of the temperature increase on future ammonia columns under two possible climate scenarios.
Bianca Zilker, Andreas Richter, Anne-Marlene Blechschmidt, Peter von der Gathen, Ilias Bougoudis, Sora Seo, Tim Bösch, and John Philip Burrows
Atmos. Chem. Phys., 23, 9787–9814, https://doi.org/10.5194/acp-23-9787-2023, https://doi.org/10.5194/acp-23-9787-2023, 2023
Short summary
Short summary
During Arctic spring, near-surface ozone is depleted by bromine released from salty sea ice and/or snow-covered areas under certain meteorological conditions. To study this ozone depletion and the prevailing meteorological conditions, two ozone data sets from Ny-Ålesund, Svalbard, have been evaluated. We found that during ozone depletion events lower pressure over the Barents Sea and higher pressure in the Icelandic Low area led to a transport of cold polar air from the north to Ny-Ålesund.
Gijs Leguijt, Joannes D. Maasakkers, Hugo A. C. Denier van der Gon, Arjo J. Segers, Tobias Borsdorff, and Ilse Aben
Atmos. Chem. Phys., 23, 8899–8919, https://doi.org/10.5194/acp-23-8899-2023, https://doi.org/10.5194/acp-23-8899-2023, 2023
Short summary
Short summary
We present a fast method to evaluate carbon monoxide emissions from cities in Africa. Carbon monoxide is important for climate change in an indirect way, as it is linked to ozone, methane, and carbon dioxide. Our measurements are made with a satellite that sees the entire globe every single day. This means that we can check from space whether the current knowledge of emission rates is up to date. We make the comparison and show that the emission rates in northern Africa are underestimated.
Chantelle R. Lonsdale and Kang Sun
Atmos. Chem. Phys., 23, 8727–8748, https://doi.org/10.5194/acp-23-8727-2023, https://doi.org/10.5194/acp-23-8727-2023, 2023
Short summary
Short summary
The COVID-19 pandemic, which was caused by the SARS-CoV-2 virus, emerged in 2019, and its still evolving variants have resulted in unprecedented shifts in human activities and anthropogenic emissions into the Earth's atmosphere. We present monthly nitrogen oxide emissions over three major continents from May 2018 to January 2023 to capture variations before and after the COVID-19 pandemic. We focus on a diverse collection of 54 cities to quantify the post-COVID-19 perturbations.
Juanito Jerrold Mariano Acdan, Robert Bradley Pierce, Angela F. Dickens, Zachariah Adelman, and Tsengel Nergui
Atmos. Chem. Phys., 23, 7867–7885, https://doi.org/10.5194/acp-23-7867-2023, https://doi.org/10.5194/acp-23-7867-2023, 2023
Short summary
Short summary
Ozone is an air pollutant that is harmful to human health. Near the surface of Earth, ozone is created when other pollutants react in the presence of sunlight. This study uses satellite data to investigate how ozone levels can be decreased in the Lake Michigan region of the United States. Our results indicate that ozone levels can be decreased by decreasing volatile organic compound emissions in urban areas and decreasing nitrogen oxide emissions in the region as a whole.
Sachiko Okamoto, Juan Cuesta, Matthias Beekmann, Gaëlle Dufour, Maxim Eremenko, Kazuyuki Miyazaki, Cathy Boonne, Hiroshi Tanimoto, and Hajime Akimoto
Atmos. Chem. Phys., 23, 7399–7423, https://doi.org/10.5194/acp-23-7399-2023, https://doi.org/10.5194/acp-23-7399-2023, 2023
Short summary
Short summary
We present a detailed analysis of the daily evolution of the lowermost tropospheric ozone documented by IASI+GOME2 multispectral satellite observations and that of its precursors from TCR-2 tropospheric chemistry reanalysis. It reveals that the ozone outbreak across Europe in July 2017 was produced during favorable condition for photochemical production of ozone and was associated with multiple sources of ozone precursors: biogenic, anthropogenic, and biomass burning emissions.
Xiaojuan Lin, Ronald van der A, Jos de Laat, Henk Eskes, Frédéric Chevallier, Philippe Ciais, Zhu Deng, Yuanhao Geng, Xuanren Song, Xiliang Ni, Da Huo, Xinyu Dou, and Zhu Liu
Atmos. Chem. Phys., 23, 6599–6611, https://doi.org/10.5194/acp-23-6599-2023, https://doi.org/10.5194/acp-23-6599-2023, 2023
Short summary
Short summary
Satellite observations provide evidence for CO2 emission signals from isolated power plants. We use these satellite observations to quantify emissions. We found that for power plants with multiple observations, the correlation of estimated and reported emissions is significantly improved compared to a single observation case. This demonstrates that accurate estimation of power plant emissions can be achieved by monitoring from future satellite missions with more frequent observations.
Daniel C. Anderson, Bryan N. Duncan, Julie M. Nicely, Junhua Liu, Sarah A. Strode, and Melanie B. Follette-Cook
Atmos. Chem. Phys., 23, 6319–6338, https://doi.org/10.5194/acp-23-6319-2023, https://doi.org/10.5194/acp-23-6319-2023, 2023
Short summary
Short summary
We describe a methodology that combines machine learning, satellite observations, and 3D chemical model output to infer the abundance of the hydroxyl radical (OH), a chemical that removes many trace gases from the atmosphere. The methodology successfully captures the variability of observed OH, although further observations are needed to evaluate absolute accuracy. Current satellite observations are of sufficient quality to infer OH, but retrieval validation in the remote tropics is needed.
Xiumei Zhang, Ronald van der A, Jieying Ding, Xin Zhang, and Yan Yin
Atmos. Chem. Phys., 23, 5587–5604, https://doi.org/10.5194/acp-23-5587-2023, https://doi.org/10.5194/acp-23-5587-2023, 2023
Short summary
Short summary
We compiled a ship emission inventory based on automatic identification system (AIS) signals in the Jiangsu section of the Yangtze River. This ship emission inventory was compared with Chinese bottom-up inventories and the satellite-derived emissions from TROPOMI. The result shows a consistent spatial distribution, with riverine cities having high NOx emissions. Inland ship emissions of NOx are shown to contribute at least 40 % to air pollution along the river.
Yifan Guan, Gretchen Keppel-Aleks, Scott C. Doney, Christof Petri, Dave Pollard, Debra Wunch, Frank Hase, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Kim Strong, Rigel Kivi, Matthias Buschmann, Nicholas Deutscher, Paul Wennberg, Ralf Sussmann, Voltaire A. Velazco, and Yao Té
Atmos. Chem. Phys., 23, 5355–5372, https://doi.org/10.5194/acp-23-5355-2023, https://doi.org/10.5194/acp-23-5355-2023, 2023
Short summary
Short summary
We characterize spatial–temporal patterns of interannual variability (IAV) in atmospheric CO2 based on NASA’s Orbiting Carbon Observatory-2 (OCO-2). CO2 variation is strongly impacted by climate events, with higher anomalies during El Nino years. We show high correlation in IAV between space-based and ground-based CO2 from long-term sites. Because OCO-2 has near-global coverage, our paper provides a roadmap to study IAV where in situ observation is sparse, such as open oceans and remote lands.
Yuchen Wang, Xvli Guo, Yajie Huo, Mengying Li, Yuqing Pan, Shaocai Yu, Alexander Baklanov, Daniel Rosenfeld, John H. Seinfeld, and Pengfei Li
Atmos. Chem. Phys., 23, 5233–5249, https://doi.org/10.5194/acp-23-5233-2023, https://doi.org/10.5194/acp-23-5233-2023, 2023
Short summary
Short summary
Substantial advances have been made in recent years toward detecting and quantifying methane super-emitters from space. However, such advances have rarely been expanded to measure the global methane pledge because large-scale swaths and high-resolution sampling have not been coordinated. Here we present a versatile spaceborne architecture that can juggle planet-scale and plant-level methane retrievals, challenge official emission reports, and remain relevant for stereoscopic measurements.
Liang Feng, Paul I. Palmer, Robert J. Parker, Mark F. Lunt, and Hartmut Bösch
Atmos. Chem. Phys., 23, 4863–4880, https://doi.org/10.5194/acp-23-4863-2023, https://doi.org/10.5194/acp-23-4863-2023, 2023
Short summary
Short summary
Our understanding of recent changes in atmospheric methane has defied explanation. Since 2007, the atmospheric growth of methane has accelerated to record-breaking values in 2020 and 2021. We use satellite observations of methane to show that (1) increasing emissions over the tropics are mostly responsible for these recent atmospheric changes, and (2) changes in the OH sink during the 2020 Covid-19 lockdown can explain up to 34% of changes in atmospheric methane for that year.
Isis Frausto-Vicencio, Sajjan Heerah, Aaron G. Meyer, Harrison A. Parker, Manvendra Dubey, and Francesca M. Hopkins
Atmos. Chem. Phys., 23, 4521–4543, https://doi.org/10.5194/acp-23-4521-2023, https://doi.org/10.5194/acp-23-4521-2023, 2023
Short summary
Short summary
Wildfires are increasing in the western USA, making it critical to understand the impacts of greenhouse gases and air pollutants on the atmosphere. We used a ground-based remote sensing technique to measure the greenhouse gases and aerosol in the atmosphere. We isolate a large smoke plume from a nearby wildfire and calculate variables to understand the fuel properties and combustion phases. We find that a significant amount of methane is emitted from the 2020 California wildfire season.
Hervé Petetin, Marc Guevara, Steven Compernolle, Dene Bowdalo, Pierre-Antoine Bretonnière, Santiago Enciso, Oriol Jorba, Franco Lopez, Albert Soret, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 3905–3935, https://doi.org/10.5194/acp-23-3905-2023, https://doi.org/10.5194/acp-23-3905-2023, 2023
Short summary
Short summary
This study analyses the potential of the TROPOMI space sensor for monitoring the variability of NO2 pollution over the Iberian Peninsula. A reduction of NO2 levels is observed during the weekend and in summer, especially over most urbanized areas, in agreement with surface observations. An enhancement of NO2 is found during summer with TROPOMI over croplands, potentially related to natural soil NO emissions, which illustrates the outstanding value of TROPOMI for complementing surface networks.
Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Xiangde Xu, Wenqian Zhang, Jinguang Lv, Gang Bai, Bing Chen, Siying Ma, Steffen Ziegler, Sebastian Donner, and Thomas Wagner
Atmos. Chem. Phys., 23, 3655–3677, https://doi.org/10.5194/acp-23-3655-2023, https://doi.org/10.5194/acp-23-3655-2023, 2023
Short summary
Short summary
We made mobile MAX-DOAS measurements in the background atmosphere over the Tibetan Plateau in summer 2021. We retrieved the tropospheric NO2 and HCHO vertical column densities (VCDs) along extended driving routes and found a decreasing trend of the VCDs with altitude. Elevated NO2 VCDs along the driving routes could be attributed to enhanced traffic emissions from the towns crossed. The spatio-temporal distribution of the HCHO VCDs correlated strongly with the surface temperature.
Cameron G. MacDonald, Jon-Paul Mastrogiacomo, Joshua L. Laughner, Jacob K. Hedelius, Ray Nassar, and Debra Wunch
Atmos. Chem. Phys., 23, 3493–3516, https://doi.org/10.5194/acp-23-3493-2023, https://doi.org/10.5194/acp-23-3493-2023, 2023
Short summary
Short summary
We use three satellites measuring carbon dioxide (CO2), carbon monoxide (CO) and nitrogen dioxide (NO2) to calculate atmospheric enhancements of these gases from 27 urban areas. We calculate enhancement ratios between the species and compare those to ratios derived from four globally gridded anthropogenic emission inventories. We find that the global inventories generally underestimate CO emissions in many North American and European cities relative to our observed enhancement ratios.
Udo Frieß, Karin Kreher, Richard Querel, Holger Schmithüsen, Dan Smale, Rolf Weller, and Ulrich Platt
Atmos. Chem. Phys., 23, 3207–3232, https://doi.org/10.5194/acp-23-3207-2023, https://doi.org/10.5194/acp-23-3207-2023, 2023
Short summary
Short summary
Reactive bromine compounds, emitted by the sea ice during polar spring, play an important role in the atmospheric chemistry of the coastal regions of Antarctica. We investigate the sources and impacts of reactive bromine in detail using many years of measurements at two Antarctic sites located at opposite sides of the Antarctic continent. Using a multitude of meteorological observations, we were able to identify the main triggers and source regions for reactive bromine in Antarctica.
Madison J. Shogrin, Vivienne H. Payne, Susan S. Kulawik, Kazuyuki Miyazaki, and Emily V. Fischer
Atmos. Chem. Phys., 23, 2667–2682, https://doi.org/10.5194/acp-23-2667-2023, https://doi.org/10.5194/acp-23-2667-2023, 2023
Short summary
Short summary
We evaluate the spatiotemporal variability of peroxy acyl nitrates (PANs), important photochemical pollutants, over Mexico City using satellite observations. PANs exhibit a seasonal cycle that maximizes in spring. Wildfires contribute to observed interannual variability, and the satellite indicates several areas of frequent outflow. Recent changes in NOx emissions are not accompanied by changes in PANs. This work demonstrates analysis approaches that can be applied to other megacities.
Hannah M. Nguyen, Jiangping He, and Martin J. Wooster
Atmos. Chem. Phys., 23, 2089–2118, https://doi.org/10.5194/acp-23-2089-2023, https://doi.org/10.5194/acp-23-2089-2023, 2023
Short summary
Short summary
This work presents novel advances in the estimation of open biomass burning emissions via the first fully "top-down" approach to exploit satellite-derived observations of fire radiative power and carbon monoxide over Africa. We produce a 16-year record of fire-generated CO emissions and dry matter consumed per unit area for Africa and evaluate these emissions estimates through their use in an atmospheric model, whose simulation output is then compared to independent satellite observations of CO.
Amir H. Souri, Matthew S. Johnson, Glenn M. Wolfe, James H. Crawford, Alan Fried, Armin Wisthaler, William H. Brune, Donald R. Blake, Andrew J. Weinheimer, Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Corinne Vigouroux, Bavo Langerock, Sungyeon Choi, Lok Lamsal, Lei Zhu, Shuai Sun, Ronald C. Cohen, Kyung-Eun Min, Changmin Cho, Sajeev Philip, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 23, 1963–1986, https://doi.org/10.5194/acp-23-1963-2023, https://doi.org/10.5194/acp-23-1963-2023, 2023
Short summary
Short summary
We have rigorously characterized different sources of error in satellite-based HCHO / NO2 tropospheric columns, a widely used metric for diagnosing near-surface ozone sensitivity. Specifically, the errors were categorized/quantified into (i) an inherent chemistry error, (ii) the decoupled relationship between columns and the near-surface concentration, (iii) the spatial representativeness error of ground satellite pixels, and (iv) the satellite retrieval errors.
Yuhang Song, Chengzhi Xing, Cheng Liu, Jinan Lin, Hongyu Wu, Ting Liu, Hua Lin, Chengxin Zhang, Wei Tan, Xiangguang Ji, Haoran Liu, and Qihua Li
Atmos. Chem. Phys., 23, 1803–1824, https://doi.org/10.5194/acp-23-1803-2023, https://doi.org/10.5194/acp-23-1803-2023, 2023
Short summary
Short summary
Using the MAX-DOAS network, we successfully analyzed three typical transport types (regional, dust, and transboundary long-range transport), emphasizing the unique advantages provided by the network in monitoring pollutant transport. We think that our findings provide the public with a thorough understanding of pollutant transport phenomena and a reference for designing collaborative air pollution control strategies.
Nenghan Wan, Xiaozhen Xiong, Gerard J. Kluitenberg, J. M. Shawn Hutchinson, Robert Aiken, Haidong Zhao, and Xiaomao Lin
Atmos. Chem. Phys., 23, 711–724, https://doi.org/10.5194/acp-23-711-2023, https://doi.org/10.5194/acp-23-711-2023, 2023
Short summary
Short summary
This study used new TROPOMI measurements of NO2 and CO to characterize regional biomass burning characteristics and efficiency. We found that the NO2 / CO emission ratio was consistent with recent studies over temperate forest fires but slightly lower in savanna vegetation fires. Our results can help identify the relative contribution of smoldering and flaming activities as well as their impacts on the regional atmospheric composition and air quality.
Qianqian Zhang, K. Folkert Boersma, Bin Zhao, Henk Eskes, Cuihong Chen, Haotian Zheng, and Xingying Zhang
Atmos. Chem. Phys., 23, 551–563, https://doi.org/10.5194/acp-23-551-2023, https://doi.org/10.5194/acp-23-551-2023, 2023
Short summary
Short summary
We developed an improved superposition column model and used the latest released (v2.3.1) TROPOMI satellite NO2 observations to estimate daily city-scale NOx and CO2 emissions. The results are verified against bottom-up emissions and OCO-2 XCO2 observations. We obtained the day-to-day variation of city NOx and CO2 emissions, allowing policymakers to gain real-time information on spatial–temporal emission patterns and the effectiveness of carbon and nitrogen regulation in urban environments.
Cited articles
Abyzov, A.: Aluminum oxide and alumina ceramics (review). Part 1. Properties
of Al2O3 and commercial production of dispersed Al2O3, Refract. Ind. Ceram., 60, 24–32, https://doi.org/10.1007/s11148-019-00304-2, 2019.
Aho, M. J., Paakkinen, K. M., Pirkonen, P. M., Kilpinen, P., and Hupa, M.:
The effects of pressure, oxygen partial pressure, and temperature on the
formation of N2O, NO, and NO2 from pulverized coal, Combust. Flame., 102, 387–400, https://doi.org/10.1016/0010-2180(95)00019-3, 1995.
Akgun, F.: Investigaton of energy saving and NOx reduction possibilities in a rotary cement kiln, Int. J. Energ. Res., 27, 455–465, https://doi.org/10.1002/er.888, 2003.
Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and Wagner, T.: Megacity emissions and lifetimes of nitrogen oxides probed from space,
Science, 333, 1737–1739, https://doi.org/10.1126/science.1207824, 2011.
Beirle, S., Borger, C., Dorner, S., Li, A., Hu, Z. K., Liu, F., Wang, Y.,
and Wagner, T.: Pinpointing nitrogen oxide emissions from space, Sci. Adv.,
5, eaax9800, https://doi.org/10.1126/sciadv.aax9800, 2019.
Björnsson, H. and Venegas, S.: A manual for EOF and SVD analyses of
climatic data, Open File Rep, Department of Atmospheric and Oceanic Sciences
and Centre for Climate and Global Change Research, McGill University, http://www.geog.mcgill.ca/gec3/wp-content/uploads/2009/03/Report-no.-1997-1.pdf (last access: 24 May 2023), 1997.
Bond, T. C.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res., 109, D14203, https://doi.org/10.1029/2003jd003697, 2004.
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G., and Trautmann, N. M.: Historical emissions of black and
organic carbon aerosol from energy-related combustion, 1850–2000, Global
Biogeochem. Cy., 21, GB2018, https://doi.org/10.1029/2006GB002840, 2007.
Cai, B., Liang, S., Zhou, J., Wang, J., Cao, L., Qu, S., Xu, M., and Yang,
Z.: China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data, Resour. Conserv. Recycl., 129, 232–239, https://doi.org/10.1016/j.resconrec.2017.10.036, 2018.
Chen, X., Liu, Q., Sheng, T., Li, F., Xu, Z., Han, D., Zhang, X., Huang, X.,
Fu, Q., and Cheng, J.: A high temporal-spatial emission inventory and
updated emission factors for coal-fired power plants in Shanghai, China, Sci. Total. Environ., 688, 94–102, https://doi.org/10.1016/j.scitotenv.2019.06.201, 2019.
Chen, Y. H. and Prinn, R. G.: Estimation of atmospheric methane emissions
between 1996 and 2001 using a three-dimensional global chemical transport
model, J. Geophys. Res.-Atmos., 111, D10307, https://doi.org/10.1029/2005JD006058, 2006.
Cohen, J. B.: Quantifying the occurrence and magnitude of the Southeast Asian fire climatology, Environ. Res. Lett., 9, 114018, https://doi.org/10.1088/1748-9326/9/11/114018, 2014.
Cohen, J. B. and Prinn, R. G.: Development of a fast, urban chemistry metamodel for inclusion in global models, Atmos. Chem. Phys., 11, 7629–7656, https://doi.org/10.5194/acp-11-7629-2011, 2011.
Cohen, J. B. and Wang, C.: Estimating global black carbon emissions using a
top-down Kalman Filter approach, J. Geophys. Res.-Atmos., 119, 307–323,
https://doi.org/10.1002/2013jd019912, 2014.
Cohen, J. B., Lecoeur, E., and Hui Loong Ng, D.: Decadal-scale relationship
between measurements of aerosols, land-use change, and fire over Southeast
Asia, Atmos. Chem. Phys., 17, 721–743, https://doi.org/10.5194/acp-17-721-2017, 2017.
Cohen, J. B., Ng, D. H. L., Lim, A. W. L., and Chua, X. R.: Vertical
distribution of aerosols over the Maritime Continent during El Niño, Atmos. Chem. Phys., 18, 7095–7108, https://doi.org/10.5194/acp-18-7095-2018, 2018.
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V.,
and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013,
https://doi.org/10.5194/essd-10-1987-2018, 2018.
DEESP: Shanxi Province Ecology and Environment Status Bulletin,
https://sthjt.shanxi.gov.cn/zwgk/hjgb/hjzkgb/index.shtml (last access: 24 May 2023), 2015.
DEESP: Continuous emission monitoring system in Shanxi Province, https://sthjt.shanxi.gov.cn/wryjg/jczf (last access: 28 June 2023), 2017.
DEESP: Shanxi Province Ecology and Environment Status Bulletin,
https://sthjt.shanxi.gov.cn/zwgk/hjgb/hjzkgb/index.shtml (last access: 24 May 2023), 2020.
ECMWF: ERA5 hourly data on pressure levels from 1940 to present, https://doi.org/10.24381/cds.bd0915c6, 2022.
Eskes, H., van Geffen, J., Boersma, F., Eichmann, K.-U., Apituley, A.,
Pedergnana, M., Sneep, M., Pepijn Veefkind, J., and Loyola, D.: Sentinel-5 precursor/TROPOMI Level 2 product user manual nitrogendioxide, Open File Rep., Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management, https://sentinel.esa.int/documents/247904/4682535/Sentinel-5P-Level-2-Product-User-Manual-Nitrogen-Dioxide/ad25ea4c-3a9a-3067-0d1c-aaa56eb1746b (last access: 28 June 2023), 2021.
Geng, G., Xiao, Q., Zheng, Y., Tong, D., Zhang, Y., Zhang, X., Zhang, Q.,
He, K., and Liu, Y.: Impact of China's air pollution prevention and control
action plan on PM2.5 chemical composition over eastern China, Sci. China, 62, 1872–1884, https://doi.org/10.1007/s11430-018-9353-x, 2019.
GES DISC: Sentinel-5P TROPOMI Tropospheric NO2 1-Orbit L2 5.5 km × 3.5 km (S5P_L2_NO2_HiR), https://disc.gsfc.nasa.gov/datasets/S5P_L2__NO2____HiR_2/summary?keywords=tropomi NO2, last access: 28 June 2023.
Goldberg, D. L., Lu, Z., Streets, D. G., de Foy, B., Griffin, D., McLinden,
C. A., Lamsal, L. N., Krotkov, N. A., and Eskes, H.: Enhanced capabilities
of TROPOMI NO2: estimating NOx from North American Cities and power plants, Environ. Sci. Technol., 53, 12594–12601, https://doi.org/10.1021/acs.est.9b04488, 2019.
Green, A., Singhal, R., and Venkateswar, R.: Analytic extensions of the
Gaussian plume model, J. Air Pollut. Control Assoc., 30, 773–776,
https://doi.org/10.1080/00022470.1980.10465108, 1980.
Greene, C. A., Thirumalai, K., Kearney, K. A., Delgado, J. M., Schwanghart, W., Wolfenbarger, N. S., Thyng, K. M., Gwyther, D. E., Gardner, A. S., and Blankenship, D. D.: The climate data toolbox for MATLAB, Geochem. Geophys. Geosystems, 20, 3774–3781, https://doi.org/10.1029/2019GC008392, 2019.
Gu, X., Li, B., Sun, C., Liao, H., Zhao, Y., and Yang, Y.: An improved
hourly-resolved NOx emission inventory for power plants based on continuous
emission monitoring system (CEMS) database: A case in Jiangsu, China, J.
Clean. Product., 369, 133176, https://doi.org/10.1016/j.jclepro.2022.133176, 2022.
Hammer, M. S., Martin, R. V., van Donkelaar, A., Buchard, V., Torres, O.,
Ridley, D. A., and Spurr, R. J. D.: Interpreting the ultraviolet aerosol
index observed with the OMI satellite instrument to understand absorption by
organic aerosols: implications for atmospheric oxidation and direct
radiative effects, Atmos. Chem. Phys., 16, 2507–2523,
https://doi.org/10.5194/acp-16-2507-2016, 2016.
Harte, J.: Consider a spherical cow: A course in environmental problem solving, University Science Books, ISBN 093570258X (pbk), 1988.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G.,
Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T.
C., Dawidowski, L., Kholod, N., Kurokawa, J.-i., Li, M., Liu, L., Lu, Z.,
Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014)
anthropogenic emissions of reactive gases and aerosols from the Community
Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408,
https://doi.org/10.5194/gmd-11-369-2018, 2018.
Hu, P., Chen, W., Chen, S., Liu, Y., and Huang, R.: Extremely early summer
monsoon onset in the South China Sea in 2019 following an El Niño event,
Mon. Weather Rev., 148, 1877–1890, https://doi.org/10.1175/MWR-D-19-0317.1, 2020.
Jacob, D. J., Logan, J. A., Gardner, G. M., Yevich, R. M., Spivakovsky, C.
M., Wofsy, S. C., Sillman, S., and Prather, M. J.: Factors regulating ozone
over the United States and its export to the global atmosphere, J. Geophys.
Res.-Atmos., 98, 14817–14826, https://doi.org/10.1029/98JD01224, 1993.
Jiang, X., Li, G., and Fu, W.: Government environmental governance, structural adjustment and air quality: A quasi-natural experiment based on
the Three-year Action Plan to Win the Blue Sky Defense War, J. Environ. Manage., 277, 111470, https://doi.org/10.1016/j.jenvman.2020.111470, 2021.
Karl, T., Lamprecht, C., Graus, M., Cede, A., Tiefengraber, M., Vila-Guerau
de Arellano, J., Gurarie, D., and Lenschow, D.: High urban NOx triggers a substantial chemical downward flux of ozone, Sci. Adv., 9, eadd2365,
https://doi.org/10.1126/sciadv.add2365, 2023.
Karplus, V. J., Zhang, S., and Almond, D.: Quantifying coal power plant
responses to tighter SO2 emissions standards in China, P. Natl. Acad. Sci. USA, 115, 7004–7009, https://doi.org/10.1073/pnas.1800605115, 2018.
Kenagy, H. S., Sparks, T. L., Ebben, C. J., Wooldrige, P. J., Lopez-Hilfiker, F. D., Lee, B. H., Thornton, J. A., McDuffie, E. E., Fibiger, D. L., Brown, S. S., Montzka, D. D., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Dibb, J. E., Campos, T., Shah, V., Jaeglé, L., and Cohen, R. C.: NOx lifetime and NOy partitioning during winter, J. Geophys. Res.-Atmos., 123, 9813–9827,
https://doi.org/10.1029/2018jd028736, 2018.
Kong, H., Lin, J., Zhang, R., Liu, M., Weng, H., Ni, R., Chen, L., Wang, J.,
Yan, Y., and Zhang, Q.: High-resolution ( ) NOx emissions in the Yangtze River Delta inferred from OMI, Atmos. Chem. Phys., 19, 12835–12856, https://doi.org/10.5194/acp-19-12835-2019, 2019.
Lange, K., Richter, A., and Burrows, J. P.: Variability of nitrogen oxide
emission fluxes and lifetimes estimated from Sentinel-5P TROPOMI observations, Atmos. Chem. Phys., 22, 2745–2767, https://doi.org/10.5194/acp-22-2745-2022, 2022.
Le Bris, T., Cadavid, F., Caillat, S., Pietrzyk, S., Blondin, J., and
Baudoin, B.: Coal combustion modelling of large power plant, for NOx
abatement, Fuel, 86, 2213–2220, https://doi.org/10.1016/j.fuel.2007.05.054, 2007.
Léon, J. F.: Aerosol direct radiative impact over the INDOEX area based
on passive and active remote sensing, J. Geophys. Res., 107,
8006, https://doi.org/10.1029/2000jd000116, 2002.
Li, C., Hammer, M. S., Zheng, B., and Cohen, R. C.: Accelerated reduction of
air pollutants in China, 2017–2020, Sci. Total Environ., 803, 150011, https://doi.org/10.1016/j.scitotenv.2021.150011, 2022.
Li, H., Zhang, J., Wen, B., Huang, S., Gao, S., Li, H., Zhao, Z., Zhang, Y.,
Fu, G., and Bai, J.: Spatial-temporal distribution and variation of NO2 and its sources and chemical sinks in Shanxi province, China, Atmosphere, 13,
1096, https://doi.org/10.3390/atmos13071096, 2022.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories
in China: a review, Natl. Sci. Rev., 4, 834–866, https://doi.org/10.1093/nsr/nwx150, 2017a.
Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., Ohara, T.,
Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H.,
Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian
anthropogenic emission inventory under the international collaboration
framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963,
https://doi.org/10.5194/acp-17-935-2017, 2017b.
Li, X., Cohen, J. B., and Qin, K.: Remotely sensed and surface measurement derived mass-conserving inversion of daily NOx emissions and inferred combustion technologies in energy rich Northern China, figshare [data set], https://doi.org/10.6084/m9.figshare.20459889 (last access: 28 June 2023), 2023.
Lin, C., Cohen, J. B., Wang, S., and Lan, R.: Application of a combined
standard deviation and mean based approach to MOPITT CO column data, and
resulting improved representation of biomass burning and urban air pollution
sources, Remote. Sens. Environ., 241, 111720, https://doi.org/10.1016/j.rse.2020.111720, 2020.
Liu, J. and Cohen, J.: Quantifying the Missing Half of Daily NOx Emissions
over South, Southeast and East Asia, nature portfolio [preprint],
https://doi.org/10.21203/rs.3.rs-1613262/v1, 11 May 2022.
Liu, M., van der A, R., van Weele, M., Eskes, H., Lu, X., Veefkind, P.,
de Laat, J., Kong, H., Wang, J., Sun, J., Ding, J., Zhao, Y., and Weng, H.:
A new divergence method to quantify methane emissions using observations of
Sentinel-5P TROPOMI, Geophys. Res. Lett., 48, e2021GL094151, https://doi.org/10.1029/2021GL094151, 2021.
Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A.,
Jickells, T. D., Kubilay, N., Prospero, J. M., and Tegen, I.: Atmospheric
global dust cycle and iron inputs to the ocean, Global Biogeochem. Cy., 19, GB4025, https://doi.org/10.1029/2004gb002402, 2005.
Martin, R. V.: Global inventory of nitrogen oxide emissions constrained by
space-based observations of NO2 columns, J. Geophys. Res., 108,
4537, https://doi.org/10.1029/2003jd003453, 2003.
McDonald, B. C., Gentner, D. R., Goldstein, A. H., and Harley, R. A.: Long-term trends in motor vehicle emissions in U.S. urban areas, Environ.
Sci. Technol., 47, 10022–10031, https://doi.org/10.1021/es401034z, 2013.
Mijling, B. and van der A, R. J.: Using daily satellite observations to
estimate emissions of short-lived air pollutants on a mesoscopic scale, J.
Geophys. Res.-Atmos., 117, D17302, https://doi.org/10.1029/2012JD017817, 2012.
Neto, G. F., Leite, M., Marcelino, T., Carneiro, L., Brito, K., and Brito,
R.: Optimizing the coke oven process by adjusting the temperature of the
combustion chambers, Energy, 217, 119419, https://doi.org/10.1016/j.energy.2020.119419, 2021.
Ohara, T., Akimoto, H., Kurokawa, J.-I., Horii, N., Yamaji, K., Yan, X., and
Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources
for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444,
https://doi.org/10.5194/acp-7-4419-2007, 2007.
Penning de Vries, M. J. M., Beirle, S., and Wagner, T.: UV Aerosol Indices
from SCIAMACHY: introducing the SCattering Index (SCI), Atmos. Chem. Phys.,
9, 9555–9567, https://doi.org/10.5194/acp-9-9555-2009, 2009.
Qin, K., Shi, J., He, Q., Deng, W., Wang, S., Liu, J., and Cohen, J. B.: New
Model-Free Daily Inversion of NOx Emissions using TROPOMI (MCMFE-NOx): Deducing a See-Saw of Halved Well Regulated Sources and Doubled New Sources, ESS Open Archive, https://doi.org/10.1002/essoar.10512010.1, 26 July 2022.
Qu, Z., Henze, D. K., Theys, N., Wang, J., and Wang, W.: Hybrid Mass
Balance/4D-Var Joint Inversion of NOx and SO2 Emissions in East Asia, J. Geophys. Res.-Atmos., 124, 8203–8224, https://doi.org/10.1029/2018JD030240,
2019.
Rigby, M., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Langenfelds, R. L.,
Huang, J., Cunnold, D. M., Steele, L. P., Krummel, P. B., Weiss, R. F.,
O'Doherty, S., Salameh, P. K., Wang, H. J., Harth, C. M., Mühle, J., and
Porter, L. W.: Renewed growth of atmospheric methane, Geophys. Res. Lett.,
35, L22805, https://doi.org/10.1029/2008gl036037, 2008.
Rollins, A. W., Browne, E. C., Min, K. E., Pusede, S. E., Wooldridge, P. J.,
Gentner, D. R., Goldstein, A. H., Liu, S., Day, D. A., Russell, L. M., and
Cohen, R. C.: Evidence for NOx Control over Nighttime SOA Formation, Science, 337, 1210–1212, https://doi.org/10.1126/science.1221520, 2012.
Romer Present, P. S., Zare, A., and Cohen, R. C.: The changing role of
organic nitrates in the removal and transport of NOx, Atmos. Chem. Phys., 20, 267–279, https://doi.org/10.5194/acp-20-267-2020, 2020.
Schreifels, J. J., Fu, Y. L., and Wilson, E. J.: Sulfur dioxide control in
China: policy evolution during the 10th and 11th Five-year Plans and lessons
for the future, Energ. Policy, 48, 779–789, https://doi.org/10.1016/j.enpol.2012.06.015, 2012.
Schwerdt, C.: Modelling NOx-formation in combustion processes, M.S. Thesis, Lund University, https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8847808&fileOId=8859383 (last access: 28 June 2023), 2006.
Seigneur, C., Hudischewskyj, A. B., Seinfeld,, J. H., Whitby, K. T.,
Whitby, E. R., Brock, J. R., and Barnes, H. M.: Simulation of aerosol dynamics: A comparative review of mathematical models, Aerosol Sci. Tech., 5, 205–222, https://doi.org/10.1080/02786828608959088, 1986.
Seinfeld, J. and Pandis, S.: Atmospheric chemistry and physics: from air pollution to climate, A Wiley-Inter Science Publication, John Wiley & Sons Inc., Hoboken, New Jersey, ISBN 9780471178163, 1997.
Singh, A. and Agrawal, M.: Acid rain and its ecological consequences, J. Environ. Biol., 29, 15–24, 2008.
Tang, L., Qu, J. B., Mi, Z. F., Bo, X., Chang, X. Y., Anadon, L. D., Wang,
S. Y., Xue, X. D., Li, S. B., Wang, X., and Zhao, X. H.: Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards, Nat. Energ., 4, 929–938, https://doi.org/10.1038/s41560-019-0468-1, 2019.
Tang, L., Xue, X., Qu, J., Mi, Z., Bo, X., Chang, X., Wang, S., Li, S., Cui,
W., and Dong, G.: Air pollution emissions from Chinese power plants based on
the continuous emission monitoring systems network, Sci. Data, 7, 325,
https://doi.org/10.1038/s41597-020-00665-1, 2020.
Tonion, F. and Pirotti, F.: Sentinel-5p NO2 data: cross-validation and
comparison with ground measurements, ISPRS Archives, XLIII-B3-2022, 749–756,
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-749-2022, 2022.
Torres, O., Jethva, H., Ahn, C., Jaross, G., and Loyola, D. G.: TROPOMI
aerosol products: evaluation and observations of synoptic-scale carbonaceous
aerosol plumes during 2018–2020, Atmos. Meas. Tech., 13, 6789–6806,
https://doi.org/10.5194/amt-13-6789-2020, 2020.
Tu, Q., Schneider, M., Hase, F., Khosrawi, F., Ertl, B., Necki, J., Dubravica, D., Diekmann, C. J., Blumenstock, T., and Fang, D.: Quantifying
CH4 emissions in hard coal mines from TROPOMI and IASI observations using the wind-assigned anomaly method, Atmos. Chem. Phys., 22, 9747–9765,
https://doi.org/10.5194/acp-22-9747-2022, 2022a.
Tu, Q., Hase, F., Schneider, M., García, O., Blumenstock, T., Borsdorff, T., Frey, M., Khosrawi, F., Lorente, A., Alberti, C., Bustos, J. J., Butz, A., Carreño, V., Cuevas, E., Curcoll, R., Diekmann, C. J., Dubravica, D., Ertl, B., Estruch, C., León-Luis, S. F., Marrero, C., Morgui, J. A., Ramos, R., Scharun, C., Schneider, C., Sepúlveda, E., Toledano, C., and Torres, C.: Quantification of CH4 emissions from waste disposal sites near the city of Madrid using ground- and space-based observations of COCCON, TROPOMI and IASI, Atmos. Chem. Phys., 22, 295–317, https://doi.org/10.5194/acp-22-295-2022, 2022b.
Turns, S. R.: Understanding NOx formation in nonpremixed flames: Experiments and modeling, Progr. Energ. Combust. Sci., 21, 361–385,
https://doi.org/10.1016/0360-1285(94)00006-9, 1995.
Valin, L. C., Russell, A. R., and Cohen, R. C.: Variations of OH radical in
an urban plume inferred from NO2 column measurements, Geophys. Res. Lett., 40, 1856–1860, https://doi.org/10.1002/grl.50267, 2013.
van Geffen, J. H. G. M., Eskes, H. J., Boersma, K. F., and Veefkind, J. P.: TROPOMI ATBD of the total and tropospheric NO2 data products, S5P-KNMI-L2-0005-RP Issue 2.4.0, Royal Netherlands Meteorological Institute (KNMI), available at: https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-NO2-data-products (last access: 28 June 2023), 2022.
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J.,
Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele,
M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann,
P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and
ozone layer applications, Remote. Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012.
Wang, H., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R., Ma, P. L., Qian, Y., Ghan, S. J., and Beagley, N.: Using an explicit emission tagging method in global modeling of source-receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways, J. Geophys. Res.-Atmos., 119, 12888–12909, https://doi.org/10.1002/2014jd022297, 2014.
Wang, S., Cohen, J. B., Lin, C. Y., and Deng, W. Z.: Constraining the
relationships between aerosol height, aerosol optical depth and total column
trace gas measurements using remote sensing and models, Atmos. Chem. Phys.,
20, 15401–15426, https://doi.org/10.5194/acp-20-15401-2020, 2020a.
Wang, S., Su, H., Chen, C., Tao, W., Streets, D. G., Lu, Z., Zheng, B.,
Carmichael, G. R., Lelieveld, J., Pöschl, U., and Cheng, Y.: Natural gas
shortages during the “coal-to-gas” transition in China have caused a large
redistribution of air pollution in winter 2017, P. Natl. Acad. Sci. USA, 117,
31018–31025, https://doi.org/10.1073/pnas.2007513117, 2020b.
Wang, S., Cohen, J. B., Deng, W., Qin, K., and Guo, J.: Using a new top-down
constrained emissions inventory to attribute the previously unknown source
of extreme aerosol loadings observed annually in the Monsoon Asia free
troposphere, Earth's Future, 9, e2021EF002167, https://doi.org/10.1029/2021ef002167, 2021.
Wei, J., Li, Z., Wang, J., Li, C., Gupta, P., and Cribb, M.: Ground-level
gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations, Atmos. Chem. Phys., 23, 1511–1532,
https://doi.org/10.5194/acp-23-1511-2023, 2023.
Wu, H., Cai, J., Ren, Q., Shi, C., Zhao, A., and Lyu, Q.: A thermal and
chemical fuel pretreatment process for NOx reduction from cement kiln, Fuel Process. Technol., 210, 106556, https://doi.org/10.1016/j.fuproc.2020.106556, 2020.
Xing, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C. M., and
Wei, C.: Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010, Atmos. Chem. Phys., 13, 7531–7549,
https://doi.org/10.5194/acp-13-7531-2013, 2013.
Zavala, M., Herndon, S. C., Slott, R. S., Dunlea, E. J., Marr, L. C., Shorter, J. H., Zahniser, M., Knighton, W. B., Rogers, T., and Kolb, C.:
Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign, Atmos. Chem. Phys., 6, 5129–5142, https://doi.org/10.5194/acp-6-5129-2006, 2006.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116, 24463–24469,
https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, X. and Schreifels, J.: Continuous emission monitoring systems at power plants in China: Improving SO2 emission measurement, Energ. Policy., 39, 7432–7438, https://doi.org/10.1016/j.enpol.2011.09.011, 2011.
Zhang, Z., Zang, Z., Cheng, X., Lu, C., Huang, S., Hu, Y., Liang, Y., Jin,
L., and Ye, L.: Development of three-dimensional variational data
assimilation method of aerosol for the CMAQ model: an application for PM2.5 and PM10 forecasts in the Sichuan Basin, Earth Space Sci., 8,
e2020EA001614, https://doi.org/10.1029/2020EA001614, 2021.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X.,
Peng, L., and Qi, J.: Trends in China's anthropogenic emissions since 2010
as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei, Y., and He,
K.: Changes in China's anthropogenic emissions and air quality during the
COVID-19 pandemic in 2020, Earth Syst. Sci. Data, 13, 2895–2907,
https://doi.org/10.5194/essd-13-2895-2021, 2021a.
Zheng, B., Zhang, Q., Geng, G., Shi, Q., Lei, Y., and He, K.: Changes in China’s anthropogenic emissions during the COVID-19 pandemic, figshare [data set], https://doi.org/10.6084/m9.figshare.c.5214920.v2, 2021b.
Zhou, H., Ma, P., Cheng, M., Zhou, M., and Li, Y.: Effects of temperature
and circulating flue gas components on combustion and NOx emissions
characteristics of four types quasi-particles in iron ore sintering process,
ISIJ Int., 58, 1650–1658, https://doi.org/10.2355/isijinternational.ISIJINT-2018-185, 2018.
Zhou, S., Davy, P. K., Wang, X., Cohen, J. B., Liang, J., Huang, M., Fan, Q., Chen, W., Chang, M., Ancelet, T., and Trompetter, W. J.: High time-resolved elemental components in fine and coarse particles in the Pearl River Delta region of Southern China: Dynamic variations and effects of meteorology, Sci. Total Environ., 572, 634–648, https://doi.org/10.1016/j.scitotenv.2016.05.194, 2016.
Short summary
Remotely sensed NO2 and surface NOx are combined with a mathematical method to estimate daily NOx emissions. The results identify new sources and improve existing estimates. The estimation is driven by three flexible factors: thermodynamics of combustion, chemical loss, and atmospheric transport. The thermodynamic term separates power, iron, and cement from coking, boilers, and aluminum. This work finds three causes for the extremes: emissions, UV radiation, and transport.
Remotely sensed NO2 and surface NOx are combined with a mathematical method to estimate daily...
Altmetrics
Final-revised paper
Preprint