Articles | Volume 23, issue 14
https://doi.org/10.5194/acp-23-8001-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-8001-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Remotely sensed and surface measurement- derived mass-conserving inversion of daily NOx emissions and inferred combustion technologies in energy-rich northern China
Xiaolu Li
Institute of Environmental Science, Shanxi University, Taiyuan,
030006, China
School of Environment and Spatial Informatics, China University of
Mining and Technology, Xuzhou, 221116, China
School of Environment and Spatial Informatics, China University of
Mining and Technology, Xuzhou, 221116, China
School of Environment and Spatial Informatics, China University of
Mining and Technology, Xuzhou, 221116, China
Hong Geng
Institute of Environmental Science, Shanxi University, Taiyuan,
030006, China
Xiaohui Wu
Shanxi Dadi Ecology and Environment Technology Research Institute
Ltd., Taiyuan, 030000, China
Liling Wu
School of Environment, Tsinghua University, Beijing, 10084, China
Chengli Yang
Shanxi Dadi Ecology and Environment Technology Research Institute
Ltd., Taiyuan, 030000, China
Rui Zhang
Shanxi Institute of Ecology and Environment Planning and Technology, Taiyuan, 030002, China
Liqin Zhang
Shanxi Institute of Ecology and Environment Monitoring and Emergency Response Center, Taiyuan, 030027, China
Related authors
Lingxiao Lu, Jason Blake Cohen, Kai Qin, Xiaolu Li, and Qin He
Atmos. Chem. Phys., 25, 2291–2309, https://doi.org/10.5194/acp-25-2291-2025, https://doi.org/10.5194/acp-25-2291-2025, 2025
Short summary
Short summary
This study applies an approach that assimilates NO2 vertical column densities from TROPOMI in a mass-conserving manner and inverts daily NOx emissions, presented over rapidly changing regions in China. Source attribution is quantified by the local thermodynamics of the combustion temperature (NOx/NO2). Emission results identify sources which do not exist in the a priori datasets, especially medium industrial sources located next to the Yangtze River.
Fan Lu, Kai Qin, Jason Blake Cohen, Qin He, Pravash Tiwari, Wei Hu, Chang Ye, Yanan Shan, Qing Xu, Shuo Wang, and Qiansi Tu
Atmos. Chem. Phys., 25, 5837–5856, https://doi.org/10.5194/acp-25-5837-2025, https://doi.org/10.5194/acp-25-5837-2025, 2025
Short summary
Short summary
This work describes a field campaign and new fast emissions estimation approach to attribute methane from a large known and previously unknown coal mine in Shanxi, China. The emissions computed are shown to be larger than known oil and gas sources, indicating that methane from coal mines may play a larger role in the global methane budget. The results are found to be slightly larger than or similar to satellite observational campaigns over the same region.
Bo Zheng, Jason Blake Cohen, Lingxiao Lu, Wei Hu, Pravash Tiwari, Simone Lolli, Andrea Garzelli, Hui Su, and Kai Qin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1446, https://doi.org/10.5194/egusphere-2025-1446, 2025
Short summary
Short summary
This study provides TROPOMI with a new methane emission estimation method that can accurately identify emission sources. Our results generate non-negative emission datasets using objective selection and filtering methods. The results include lower minimum emission thresholds for all power grids and fewer false positives. The new method provides more robust emission quantification in the face of data uncertainty, going beyond traditional plume identification and background subtraction.
Lingxiao Lu, Jason Blake Cohen, Kai Qin, Xiaolu Li, and Qin He
Atmos. Chem. Phys., 25, 2291–2309, https://doi.org/10.5194/acp-25-2291-2025, https://doi.org/10.5194/acp-25-2291-2025, 2025
Short summary
Short summary
This study applies an approach that assimilates NO2 vertical column densities from TROPOMI in a mass-conserving manner and inverts daily NOx emissions, presented over rapidly changing regions in China. Source attribution is quantified by the local thermodynamics of the combustion temperature (NOx/NO2). Emission results identify sources which do not exist in the a priori datasets, especially medium industrial sources located next to the Yangtze River.
Kai Qin, Hongrui Gao, Xuancen Liu, Qin He, Pravash Tiwari, and Jason Blake Cohen
Earth Syst. Sci. Data, 16, 5287–5310, https://doi.org/10.5194/essd-16-5287-2024, https://doi.org/10.5194/essd-16-5287-2024, 2024
Short summary
Short summary
Satellites have brought new opportunities for monitoring atmospheric NO2, although the results are limited by clouds and other factors, resulting in missing data. This work proposes a new process to obtain reliable data products with high coverage by reconstructing the raw data from multiple satellites. The results are validated in terms of traditional methods as well as variance maximization and demonstrate a good ability to reproduce known polluted and clean areas around the world.
Qiansi Tu, Frank Hase, Kai Qin, Jason Blake Cohen, Farahnaz Khosrawi, Xinrui Zou, Matthias Schneider, and Fan Lu
Atmos. Chem. Phys., 24, 4875–4894, https://doi.org/10.5194/acp-24-4875-2024, https://doi.org/10.5194/acp-24-4875-2024, 2024
Short summary
Short summary
Four-year satellite observations of XCH4 are used to derive CH4 emissions in three regions of China’s coal-rich Shanxi province. The wind-assigned anomalies for two opposite wind directions are calculated, and the estimated emission rates are comparable to the current bottom-up inventory but lower than the CAMS and EDGAR inventories. This research enhances the understanding of emissions in Shanxi and supports climate mitigation strategies by validating emission inventories.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Hanjin Yoo, Li Wu, Hong Geng, and Chul-Un Ro
Atmos. Chem. Phys., 24, 853–867, https://doi.org/10.5194/acp-24-853-2024, https://doi.org/10.5194/acp-24-853-2024, 2024
Short summary
Short summary
We conducted an investigation of atmospheric aerosols collected in Seoul, South Korea, during the KORUS-AQ campaign on a single-particle basis. We were able to identify their sources, the atmospheric fate, and the impacts of local emissions and long-range transport on aerosol composition. Additionally, we traced potential sources of non-exhaust heavy-metal particles. This comprehensive analysis provides valuable insights into the complex dynamics of urban aerosols.
Jianping Guo, Jian Zhang, Jia Shao, Tianmeng Chen, Kaixu Bai, Yuping Sun, Ning Li, Jingyan Wu, Rui Li, Jian Li, Qiyun Guo, Jason B. Cohen, Panmao Zhai, Xiaofeng Xu, and Fei Hu
Earth Syst. Sci. Data, 16, 1–14, https://doi.org/10.5194/essd-16-1-2024, https://doi.org/10.5194/essd-16-1-2024, 2024
Short summary
Short summary
A global continental merged high-resolution (PBLH) dataset with good accuracy compared to radiosonde is generated via machine learning algorithms, covering the period from 2011 to 2021 with 3-hour and 0.25º resolution in space and time. The machine learning model takes parameters derived from the ERA5 reanalysis and GLDAS product as input, with PBLH biases between radiosonde and ERA5 as the learning targets. The merged PBLH is the sum of the predicted PBLH bias and the PBLH from ERA5.
Yuhang Zhang, Jintai Lin, Jhoon Kim, Hanlim Lee, Junsung Park, Hyunkee Hong, Michel Van Roozendael, Francois Hendrick, Ting Wang, Pucai Wang, Qin He, Kai Qin, Yongjoo Choi, Yugo Kanaya, Jin Xu, Pinhua Xie, Xin Tian, Sanbao Zhang, Shanshan Wang, Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Thomas Wagner, Robert Spurr, Lulu Chen, Hao Kong, and Mengyao Liu
Atmos. Meas. Tech., 16, 4643–4665, https://doi.org/10.5194/amt-16-4643-2023, https://doi.org/10.5194/amt-16-4643-2023, 2023
Short summary
Short summary
Our tropospheric NO2 vertical column density product with high spatiotemporal resolution is based on the Geostationary Environment Monitoring Spectrometer (GEMS) and named POMINO–GEMS. Strong hotspot signals and NO2 diurnal variations are clearly seen. Validations with multiple satellite products and ground-based, mobile car and surface measurements exhibit the overall great performance of the POMINO–GEMS product, indicating its capability for application in environmental studies.
Qiansi Tu, Frank Hase, Zihan Chen, Matthias Schneider, Omaira García, Farahnaz Khosrawi, Shuo Chen, Thomas Blumenstock, Fang Liu, Kai Qin, Jason Cohen, Qin He, Song Lin, Hongyan Jiang, and Dianjun Fang
Atmos. Meas. Tech., 16, 2237–2262, https://doi.org/10.5194/amt-16-2237-2023, https://doi.org/10.5194/amt-16-2237-2023, 2023
Short summary
Short summary
Four-year TROPOMI observations are used to derive tropospheric NO2 emissions in two mega(cities) with high anthropogenic activity. Wind-assigned anomalies are calculated, and the emission rates and spatial patterns are estimated based on a machine learning algorithm. The results are in reasonable agreement with previous studies and the inventory. Our method is quite robust and can be used as a simple method to estimate the emissions of NO2 as well as other gases in other regions.
Zexia Duan, Zhiqiu Gao, Qing Xu, Shaohui Zhou, Kai Qin, and Yuanjian Yang
Earth Syst. Sci. Data, 14, 4153–4169, https://doi.org/10.5194/essd-14-4153-2022, https://doi.org/10.5194/essd-14-4153-2022, 2022
Short summary
Short summary
Land–atmosphere interactions over the Yangtze River Delta (YRD) in China are becoming more varied and complex, as the area is experiencing rapid land use changes. In this paper, we describe a dataset of microclimate and eddy covariance variables at four sites in the YRD. This dataset has potential use cases in multiple research fields, such as boundary layer parametrization schemes, evaluation of remote sensing algorithms, and development of climate models in typical East Asian monsoon regions.
Xiaolu Ling, Ying Huang, Weidong Guo, Yixin Wang, Chaorong Chen, Bo Qiu, Jun Ge, Kai Qin, Yong Xue, and Jian Peng
Hydrol. Earth Syst. Sci., 25, 4209–4229, https://doi.org/10.5194/hess-25-4209-2021, https://doi.org/10.5194/hess-25-4209-2021, 2021
Short summary
Short summary
Soil moisture (SM) plays a critical role in the water and energy cycles of the Earth system, for which a long-term SM product with high quality is urgently needed. In situ observations are generally treated as the true value to systematically evaluate five SM products, including one remote sensing product and four reanalysis data sets during 1981–2013. This long-term intercomparison study provides clues for SM product enhancement and further hydrological applications.
Shuo Wang, Jason Blake Cohen, Chuyong Lin, and Weizhi Deng
Atmos. Chem. Phys., 20, 15401–15426, https://doi.org/10.5194/acp-20-15401-2020, https://doi.org/10.5194/acp-20-15401-2020, 2020
Short summary
Short summary
We analyze global measurements of aerosol height from fires. A plume rise model reproduces measurements with a low bias in five regions, while a statistical model based on satellite measurements of trace gasses co-emitted from the fires reproduces measurements without bias in eight regions. We propose that the magnitude of the pollutants emitted may impact their height and subsequent downwind transport. Using satellite data allows better modeling of the global aerosol distribution.
Cited articles
Abyzov, A.: Aluminum oxide and alumina ceramics (review). Part 1. Properties
of Al2O3 and commercial production of dispersed Al2O3, Refract. Ind. Ceram., 60, 24–32, https://doi.org/10.1007/s11148-019-00304-2, 2019.
Aho, M. J., Paakkinen, K. M., Pirkonen, P. M., Kilpinen, P., and Hupa, M.:
The effects of pressure, oxygen partial pressure, and temperature on the
formation of N2O, NO, and NO2 from pulverized coal, Combust. Flame., 102, 387–400, https://doi.org/10.1016/0010-2180(95)00019-3, 1995.
Akgun, F.: Investigaton of energy saving and NOx reduction possibilities in a rotary cement kiln, Int. J. Energ. Res., 27, 455–465, https://doi.org/10.1002/er.888, 2003.
Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and Wagner, T.: Megacity emissions and lifetimes of nitrogen oxides probed from space,
Science, 333, 1737–1739, https://doi.org/10.1126/science.1207824, 2011.
Beirle, S., Borger, C., Dorner, S., Li, A., Hu, Z. K., Liu, F., Wang, Y.,
and Wagner, T.: Pinpointing nitrogen oxide emissions from space, Sci. Adv.,
5, eaax9800, https://doi.org/10.1126/sciadv.aax9800, 2019.
Björnsson, H. and Venegas, S.: A manual for EOF and SVD analyses of
climatic data, Open File Rep, Department of Atmospheric and Oceanic Sciences
and Centre for Climate and Global Change Research, McGill University, http://www.geog.mcgill.ca/gec3/wp-content/uploads/2009/03/Report-no.-1997-1.pdf (last access: 24 May 2023), 1997.
Bond, T. C.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res., 109, D14203, https://doi.org/10.1029/2003jd003697, 2004.
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G., and Trautmann, N. M.: Historical emissions of black and
organic carbon aerosol from energy-related combustion, 1850–2000, Global
Biogeochem. Cy., 21, GB2018, https://doi.org/10.1029/2006GB002840, 2007.
Cai, B., Liang, S., Zhou, J., Wang, J., Cao, L., Qu, S., Xu, M., and Yang,
Z.: China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data, Resour. Conserv. Recycl., 129, 232–239, https://doi.org/10.1016/j.resconrec.2017.10.036, 2018.
Chen, X., Liu, Q., Sheng, T., Li, F., Xu, Z., Han, D., Zhang, X., Huang, X.,
Fu, Q., and Cheng, J.: A high temporal-spatial emission inventory and
updated emission factors for coal-fired power plants in Shanghai, China, Sci. Total. Environ., 688, 94–102, https://doi.org/10.1016/j.scitotenv.2019.06.201, 2019.
Chen, Y. H. and Prinn, R. G.: Estimation of atmospheric methane emissions
between 1996 and 2001 using a three-dimensional global chemical transport
model, J. Geophys. Res.-Atmos., 111, D10307, https://doi.org/10.1029/2005JD006058, 2006.
Cohen, J. B.: Quantifying the occurrence and magnitude of the Southeast Asian fire climatology, Environ. Res. Lett., 9, 114018, https://doi.org/10.1088/1748-9326/9/11/114018, 2014.
Cohen, J. B. and Prinn, R. G.: Development of a fast, urban chemistry metamodel for inclusion in global models, Atmos. Chem. Phys., 11, 7629–7656, https://doi.org/10.5194/acp-11-7629-2011, 2011.
Cohen, J. B. and Wang, C.: Estimating global black carbon emissions using a
top-down Kalman Filter approach, J. Geophys. Res.-Atmos., 119, 307–323,
https://doi.org/10.1002/2013jd019912, 2014.
Cohen, J. B., Lecoeur, E., and Hui Loong Ng, D.: Decadal-scale relationship
between measurements of aerosols, land-use change, and fire over Southeast
Asia, Atmos. Chem. Phys., 17, 721–743, https://doi.org/10.5194/acp-17-721-2017, 2017.
Cohen, J. B., Ng, D. H. L., Lim, A. W. L., and Chua, X. R.: Vertical
distribution of aerosols over the Maritime Continent during El Niño, Atmos. Chem. Phys., 18, 7095–7108, https://doi.org/10.5194/acp-18-7095-2018, 2018.
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V.,
and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013,
https://doi.org/10.5194/essd-10-1987-2018, 2018.
DEESP: Shanxi Province Ecology and Environment Status Bulletin,
https://sthjt.shanxi.gov.cn/zwgk/hjgb/hjzkgb/index.shtml (last access: 24 May 2023), 2015.
DEESP: Continuous emission monitoring system in Shanxi Province, https://sthjt.shanxi.gov.cn/wryjg/jczf (last access: 28 June 2023), 2017.
DEESP: Shanxi Province Ecology and Environment Status Bulletin,
https://sthjt.shanxi.gov.cn/zwgk/hjgb/hjzkgb/index.shtml (last access: 24 May 2023), 2020.
ECMWF: ERA5 hourly data on pressure levels from 1940 to present, https://doi.org/10.24381/cds.bd0915c6, 2022.
Eskes, H., van Geffen, J., Boersma, F., Eichmann, K.-U., Apituley, A.,
Pedergnana, M., Sneep, M., Pepijn Veefkind, J., and Loyola, D.: Sentinel-5 precursor/TROPOMI Level 2 product user manual nitrogendioxide, Open File Rep., Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management, https://sentinel.esa.int/documents/247904/4682535/Sentinel-5P-Level-2-Product-User-Manual-Nitrogen-Dioxide/ad25ea4c-3a9a-3067-0d1c-aaa56eb1746b (last access: 28 June 2023), 2021.
Geng, G., Xiao, Q., Zheng, Y., Tong, D., Zhang, Y., Zhang, X., Zhang, Q.,
He, K., and Liu, Y.: Impact of China's air pollution prevention and control
action plan on PM2.5 chemical composition over eastern China, Sci. China, 62, 1872–1884, https://doi.org/10.1007/s11430-018-9353-x, 2019.
GES DISC: Sentinel-5P TROPOMI Tropospheric NO2 1-Orbit L2 5.5 km × 3.5 km (S5P_L2_NO2_HiR), https://disc.gsfc.nasa.gov/datasets/S5P_L2__NO2____HiR_2/summary?keywords=tropomi NO2, last access: 28 June 2023.
Goldberg, D. L., Lu, Z., Streets, D. G., de Foy, B., Griffin, D., McLinden,
C. A., Lamsal, L. N., Krotkov, N. A., and Eskes, H.: Enhanced capabilities
of TROPOMI NO2: estimating NOx from North American Cities and power plants, Environ. Sci. Technol., 53, 12594–12601, https://doi.org/10.1021/acs.est.9b04488, 2019.
Green, A., Singhal, R., and Venkateswar, R.: Analytic extensions of the
Gaussian plume model, J. Air Pollut. Control Assoc., 30, 773–776,
https://doi.org/10.1080/00022470.1980.10465108, 1980.
Greene, C. A., Thirumalai, K., Kearney, K. A., Delgado, J. M., Schwanghart, W., Wolfenbarger, N. S., Thyng, K. M., Gwyther, D. E., Gardner, A. S., and Blankenship, D. D.: The climate data toolbox for MATLAB, Geochem. Geophys. Geosystems, 20, 3774–3781, https://doi.org/10.1029/2019GC008392, 2019.
Gu, X., Li, B., Sun, C., Liao, H., Zhao, Y., and Yang, Y.: An improved
hourly-resolved NOx emission inventory for power plants based on continuous
emission monitoring system (CEMS) database: A case in Jiangsu, China, J.
Clean. Product., 369, 133176, https://doi.org/10.1016/j.jclepro.2022.133176, 2022.
Hammer, M. S., Martin, R. V., van Donkelaar, A., Buchard, V., Torres, O.,
Ridley, D. A., and Spurr, R. J. D.: Interpreting the ultraviolet aerosol
index observed with the OMI satellite instrument to understand absorption by
organic aerosols: implications for atmospheric oxidation and direct
radiative effects, Atmos. Chem. Phys., 16, 2507–2523,
https://doi.org/10.5194/acp-16-2507-2016, 2016.
Harte, J.: Consider a spherical cow: A course in environmental problem solving, University Science Books, ISBN 093570258X (pbk), 1988.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G.,
Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T.
C., Dawidowski, L., Kholod, N., Kurokawa, J.-i., Li, M., Liu, L., Lu, Z.,
Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014)
anthropogenic emissions of reactive gases and aerosols from the Community
Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408,
https://doi.org/10.5194/gmd-11-369-2018, 2018.
Hu, P., Chen, W., Chen, S., Liu, Y., and Huang, R.: Extremely early summer
monsoon onset in the South China Sea in 2019 following an El Niño event,
Mon. Weather Rev., 148, 1877–1890, https://doi.org/10.1175/MWR-D-19-0317.1, 2020.
Jacob, D. J., Logan, J. A., Gardner, G. M., Yevich, R. M., Spivakovsky, C.
M., Wofsy, S. C., Sillman, S., and Prather, M. J.: Factors regulating ozone
over the United States and its export to the global atmosphere, J. Geophys.
Res.-Atmos., 98, 14817–14826, https://doi.org/10.1029/98JD01224, 1993.
Jiang, X., Li, G., and Fu, W.: Government environmental governance, structural adjustment and air quality: A quasi-natural experiment based on
the Three-year Action Plan to Win the Blue Sky Defense War, J. Environ. Manage., 277, 111470, https://doi.org/10.1016/j.jenvman.2020.111470, 2021.
Karl, T., Lamprecht, C., Graus, M., Cede, A., Tiefengraber, M., Vila-Guerau
de Arellano, J., Gurarie, D., and Lenschow, D.: High urban NOx triggers a substantial chemical downward flux of ozone, Sci. Adv., 9, eadd2365,
https://doi.org/10.1126/sciadv.add2365, 2023.
Karplus, V. J., Zhang, S., and Almond, D.: Quantifying coal power plant
responses to tighter SO2 emissions standards in China, P. Natl. Acad. Sci. USA, 115, 7004–7009, https://doi.org/10.1073/pnas.1800605115, 2018.
Kenagy, H. S., Sparks, T. L., Ebben, C. J., Wooldrige, P. J., Lopez-Hilfiker, F. D., Lee, B. H., Thornton, J. A., McDuffie, E. E., Fibiger, D. L., Brown, S. S., Montzka, D. D., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Dibb, J. E., Campos, T., Shah, V., Jaeglé, L., and Cohen, R. C.: NOx lifetime and NOy partitioning during winter, J. Geophys. Res.-Atmos., 123, 9813–9827,
https://doi.org/10.1029/2018jd028736, 2018.
Kong, H., Lin, J., Zhang, R., Liu, M., Weng, H., Ni, R., Chen, L., Wang, J.,
Yan, Y., and Zhang, Q.: High-resolution ( ) NOx emissions in the Yangtze River Delta inferred from OMI, Atmos. Chem. Phys., 19, 12835–12856, https://doi.org/10.5194/acp-19-12835-2019, 2019.
Lange, K., Richter, A., and Burrows, J. P.: Variability of nitrogen oxide
emission fluxes and lifetimes estimated from Sentinel-5P TROPOMI observations, Atmos. Chem. Phys., 22, 2745–2767, https://doi.org/10.5194/acp-22-2745-2022, 2022.
Le Bris, T., Cadavid, F., Caillat, S., Pietrzyk, S., Blondin, J., and
Baudoin, B.: Coal combustion modelling of large power plant, for NOx
abatement, Fuel, 86, 2213–2220, https://doi.org/10.1016/j.fuel.2007.05.054, 2007.
Léon, J. F.: Aerosol direct radiative impact over the INDOEX area based
on passive and active remote sensing, J. Geophys. Res., 107,
8006, https://doi.org/10.1029/2000jd000116, 2002.
Li, C., Hammer, M. S., Zheng, B., and Cohen, R. C.: Accelerated reduction of
air pollutants in China, 2017–2020, Sci. Total Environ., 803, 150011, https://doi.org/10.1016/j.scitotenv.2021.150011, 2022.
Li, H., Zhang, J., Wen, B., Huang, S., Gao, S., Li, H., Zhao, Z., Zhang, Y.,
Fu, G., and Bai, J.: Spatial-temporal distribution and variation of NO2 and its sources and chemical sinks in Shanxi province, China, Atmosphere, 13,
1096, https://doi.org/10.3390/atmos13071096, 2022.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories
in China: a review, Natl. Sci. Rev., 4, 834–866, https://doi.org/10.1093/nsr/nwx150, 2017a.
Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., Ohara, T.,
Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H.,
Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian
anthropogenic emission inventory under the international collaboration
framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963,
https://doi.org/10.5194/acp-17-935-2017, 2017b.
Li, X., Cohen, J. B., and Qin, K.: Remotely sensed and surface measurement derived mass-conserving inversion of daily NOx emissions and inferred combustion technologies in energy rich Northern China, figshare [data set], https://doi.org/10.6084/m9.figshare.20459889 (last access: 28 June 2023), 2023.
Lin, C., Cohen, J. B., Wang, S., and Lan, R.: Application of a combined
standard deviation and mean based approach to MOPITT CO column data, and
resulting improved representation of biomass burning and urban air pollution
sources, Remote. Sens. Environ., 241, 111720, https://doi.org/10.1016/j.rse.2020.111720, 2020.
Liu, J. and Cohen, J.: Quantifying the Missing Half of Daily NOx Emissions
over South, Southeast and East Asia, nature portfolio [preprint],
https://doi.org/10.21203/rs.3.rs-1613262/v1, 11 May 2022.
Liu, M., van der A, R., van Weele, M., Eskes, H., Lu, X., Veefkind, P.,
de Laat, J., Kong, H., Wang, J., Sun, J., Ding, J., Zhao, Y., and Weng, H.:
A new divergence method to quantify methane emissions using observations of
Sentinel-5P TROPOMI, Geophys. Res. Lett., 48, e2021GL094151, https://doi.org/10.1029/2021GL094151, 2021.
Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A.,
Jickells, T. D., Kubilay, N., Prospero, J. M., and Tegen, I.: Atmospheric
global dust cycle and iron inputs to the ocean, Global Biogeochem. Cy., 19, GB4025, https://doi.org/10.1029/2004gb002402, 2005.
Martin, R. V.: Global inventory of nitrogen oxide emissions constrained by
space-based observations of NO2 columns, J. Geophys. Res., 108,
4537, https://doi.org/10.1029/2003jd003453, 2003.
McDonald, B. C., Gentner, D. R., Goldstein, A. H., and Harley, R. A.: Long-term trends in motor vehicle emissions in U.S. urban areas, Environ.
Sci. Technol., 47, 10022–10031, https://doi.org/10.1021/es401034z, 2013.
Mijling, B. and van der A, R. J.: Using daily satellite observations to
estimate emissions of short-lived air pollutants on a mesoscopic scale, J.
Geophys. Res.-Atmos., 117, D17302, https://doi.org/10.1029/2012JD017817, 2012.
Neto, G. F., Leite, M., Marcelino, T., Carneiro, L., Brito, K., and Brito,
R.: Optimizing the coke oven process by adjusting the temperature of the
combustion chambers, Energy, 217, 119419, https://doi.org/10.1016/j.energy.2020.119419, 2021.
Ohara, T., Akimoto, H., Kurokawa, J.-I., Horii, N., Yamaji, K., Yan, X., and
Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources
for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444,
https://doi.org/10.5194/acp-7-4419-2007, 2007.
Penning de Vries, M. J. M., Beirle, S., and Wagner, T.: UV Aerosol Indices
from SCIAMACHY: introducing the SCattering Index (SCI), Atmos. Chem. Phys.,
9, 9555–9567, https://doi.org/10.5194/acp-9-9555-2009, 2009.
Qin, K., Shi, J., He, Q., Deng, W., Wang, S., Liu, J., and Cohen, J. B.: New
Model-Free Daily Inversion of NOx Emissions using TROPOMI (MCMFE-NOx): Deducing a See-Saw of Halved Well Regulated Sources and Doubled New Sources, ESS Open Archive, https://doi.org/10.1002/essoar.10512010.1, 26 July 2022.
Qu, Z., Henze, D. K., Theys, N., Wang, J., and Wang, W.: Hybrid Mass
Balance/4D-Var Joint Inversion of NOx and SO2 Emissions in East Asia, J. Geophys. Res.-Atmos., 124, 8203–8224, https://doi.org/10.1029/2018JD030240,
2019.
Rigby, M., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Langenfelds, R. L.,
Huang, J., Cunnold, D. M., Steele, L. P., Krummel, P. B., Weiss, R. F.,
O'Doherty, S., Salameh, P. K., Wang, H. J., Harth, C. M., Mühle, J., and
Porter, L. W.: Renewed growth of atmospheric methane, Geophys. Res. Lett.,
35, L22805, https://doi.org/10.1029/2008gl036037, 2008.
Rollins, A. W., Browne, E. C., Min, K. E., Pusede, S. E., Wooldridge, P. J.,
Gentner, D. R., Goldstein, A. H., Liu, S., Day, D. A., Russell, L. M., and
Cohen, R. C.: Evidence for NOx Control over Nighttime SOA Formation, Science, 337, 1210–1212, https://doi.org/10.1126/science.1221520, 2012.
Romer Present, P. S., Zare, A., and Cohen, R. C.: The changing role of
organic nitrates in the removal and transport of NOx, Atmos. Chem. Phys., 20, 267–279, https://doi.org/10.5194/acp-20-267-2020, 2020.
Schreifels, J. J., Fu, Y. L., and Wilson, E. J.: Sulfur dioxide control in
China: policy evolution during the 10th and 11th Five-year Plans and lessons
for the future, Energ. Policy, 48, 779–789, https://doi.org/10.1016/j.enpol.2012.06.015, 2012.
Schwerdt, C.: Modelling NOx-formation in combustion processes, M.S. Thesis, Lund University, https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8847808&fileOId=8859383 (last access: 28 June 2023), 2006.
Seigneur, C., Hudischewskyj, A. B., Seinfeld,, J. H., Whitby, K. T.,
Whitby, E. R., Brock, J. R., and Barnes, H. M.: Simulation of aerosol dynamics: A comparative review of mathematical models, Aerosol Sci. Tech., 5, 205–222, https://doi.org/10.1080/02786828608959088, 1986.
Seinfeld, J. and Pandis, S.: Atmospheric chemistry and physics: from air pollution to climate, A Wiley-Inter Science Publication, John Wiley & Sons Inc., Hoboken, New Jersey, ISBN 9780471178163, 1997.
Singh, A. and Agrawal, M.: Acid rain and its ecological consequences, J. Environ. Biol., 29, 15–24, 2008.
Tang, L., Qu, J. B., Mi, Z. F., Bo, X., Chang, X. Y., Anadon, L. D., Wang,
S. Y., Xue, X. D., Li, S. B., Wang, X., and Zhao, X. H.: Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards, Nat. Energ., 4, 929–938, https://doi.org/10.1038/s41560-019-0468-1, 2019.
Tang, L., Xue, X., Qu, J., Mi, Z., Bo, X., Chang, X., Wang, S., Li, S., Cui,
W., and Dong, G.: Air pollution emissions from Chinese power plants based on
the continuous emission monitoring systems network, Sci. Data, 7, 325,
https://doi.org/10.1038/s41597-020-00665-1, 2020.
Tonion, F. and Pirotti, F.: Sentinel-5p NO2 data: cross-validation and
comparison with ground measurements, ISPRS Archives, XLIII-B3-2022, 749–756,
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-749-2022, 2022.
Torres, O., Jethva, H., Ahn, C., Jaross, G., and Loyola, D. G.: TROPOMI
aerosol products: evaluation and observations of synoptic-scale carbonaceous
aerosol plumes during 2018–2020, Atmos. Meas. Tech., 13, 6789–6806,
https://doi.org/10.5194/amt-13-6789-2020, 2020.
Tu, Q., Schneider, M., Hase, F., Khosrawi, F., Ertl, B., Necki, J., Dubravica, D., Diekmann, C. J., Blumenstock, T., and Fang, D.: Quantifying
CH4 emissions in hard coal mines from TROPOMI and IASI observations using the wind-assigned anomaly method, Atmos. Chem. Phys., 22, 9747–9765,
https://doi.org/10.5194/acp-22-9747-2022, 2022a.
Tu, Q., Hase, F., Schneider, M., García, O., Blumenstock, T., Borsdorff, T., Frey, M., Khosrawi, F., Lorente, A., Alberti, C., Bustos, J. J., Butz, A., Carreño, V., Cuevas, E., Curcoll, R., Diekmann, C. J., Dubravica, D., Ertl, B., Estruch, C., León-Luis, S. F., Marrero, C., Morgui, J. A., Ramos, R., Scharun, C., Schneider, C., Sepúlveda, E., Toledano, C., and Torres, C.: Quantification of CH4 emissions from waste disposal sites near the city of Madrid using ground- and space-based observations of COCCON, TROPOMI and IASI, Atmos. Chem. Phys., 22, 295–317, https://doi.org/10.5194/acp-22-295-2022, 2022b.
Turns, S. R.: Understanding NOx formation in nonpremixed flames: Experiments and modeling, Progr. Energ. Combust. Sci., 21, 361–385,
https://doi.org/10.1016/0360-1285(94)00006-9, 1995.
Valin, L. C., Russell, A. R., and Cohen, R. C.: Variations of OH radical in
an urban plume inferred from NO2 column measurements, Geophys. Res. Lett., 40, 1856–1860, https://doi.org/10.1002/grl.50267, 2013.
van Geffen, J. H. G. M., Eskes, H. J., Boersma, K. F., and Veefkind, J. P.: TROPOMI ATBD of the total and tropospheric NO2 data products, S5P-KNMI-L2-0005-RP Issue 2.4.0, Royal Netherlands Meteorological Institute (KNMI), available at: https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-NO2-data-products (last access: 28 June 2023), 2022.
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J.,
Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele,
M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann,
P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and
ozone layer applications, Remote. Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012.
Wang, H., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R., Ma, P. L., Qian, Y., Ghan, S. J., and Beagley, N.: Using an explicit emission tagging method in global modeling of source-receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways, J. Geophys. Res.-Atmos., 119, 12888–12909, https://doi.org/10.1002/2014jd022297, 2014.
Wang, S., Cohen, J. B., Lin, C. Y., and Deng, W. Z.: Constraining the
relationships between aerosol height, aerosol optical depth and total column
trace gas measurements using remote sensing and models, Atmos. Chem. Phys.,
20, 15401–15426, https://doi.org/10.5194/acp-20-15401-2020, 2020a.
Wang, S., Su, H., Chen, C., Tao, W., Streets, D. G., Lu, Z., Zheng, B.,
Carmichael, G. R., Lelieveld, J., Pöschl, U., and Cheng, Y.: Natural gas
shortages during the “coal-to-gas” transition in China have caused a large
redistribution of air pollution in winter 2017, P. Natl. Acad. Sci. USA, 117,
31018–31025, https://doi.org/10.1073/pnas.2007513117, 2020b.
Wang, S., Cohen, J. B., Deng, W., Qin, K., and Guo, J.: Using a new top-down
constrained emissions inventory to attribute the previously unknown source
of extreme aerosol loadings observed annually in the Monsoon Asia free
troposphere, Earth's Future, 9, e2021EF002167, https://doi.org/10.1029/2021ef002167, 2021.
Wei, J., Li, Z., Wang, J., Li, C., Gupta, P., and Cribb, M.: Ground-level
gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations, Atmos. Chem. Phys., 23, 1511–1532,
https://doi.org/10.5194/acp-23-1511-2023, 2023.
Wu, H., Cai, J., Ren, Q., Shi, C., Zhao, A., and Lyu, Q.: A thermal and
chemical fuel pretreatment process for NOx reduction from cement kiln, Fuel Process. Technol., 210, 106556, https://doi.org/10.1016/j.fuproc.2020.106556, 2020.
Xing, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C. M., and
Wei, C.: Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010, Atmos. Chem. Phys., 13, 7531–7549,
https://doi.org/10.5194/acp-13-7531-2013, 2013.
Zavala, M., Herndon, S. C., Slott, R. S., Dunlea, E. J., Marr, L. C., Shorter, J. H., Zahniser, M., Knighton, W. B., Rogers, T., and Kolb, C.:
Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign, Atmos. Chem. Phys., 6, 5129–5142, https://doi.org/10.5194/acp-6-5129-2006, 2006.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116, 24463–24469,
https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, X. and Schreifels, J.: Continuous emission monitoring systems at power plants in China: Improving SO2 emission measurement, Energ. Policy., 39, 7432–7438, https://doi.org/10.1016/j.enpol.2011.09.011, 2011.
Zhang, Z., Zang, Z., Cheng, X., Lu, C., Huang, S., Hu, Y., Liang, Y., Jin,
L., and Ye, L.: Development of three-dimensional variational data
assimilation method of aerosol for the CMAQ model: an application for PM2.5 and PM10 forecasts in the Sichuan Basin, Earth Space Sci., 8,
e2020EA001614, https://doi.org/10.1029/2020EA001614, 2021.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X.,
Peng, L., and Qi, J.: Trends in China's anthropogenic emissions since 2010
as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei, Y., and He,
K.: Changes in China's anthropogenic emissions and air quality during the
COVID-19 pandemic in 2020, Earth Syst. Sci. Data, 13, 2895–2907,
https://doi.org/10.5194/essd-13-2895-2021, 2021a.
Zheng, B., Zhang, Q., Geng, G., Shi, Q., Lei, Y., and He, K.: Changes in China’s anthropogenic emissions during the COVID-19 pandemic, figshare [data set], https://doi.org/10.6084/m9.figshare.c.5214920.v2, 2021b.
Zhou, H., Ma, P., Cheng, M., Zhou, M., and Li, Y.: Effects of temperature
and circulating flue gas components on combustion and NOx emissions
characteristics of four types quasi-particles in iron ore sintering process,
ISIJ Int., 58, 1650–1658, https://doi.org/10.2355/isijinternational.ISIJINT-2018-185, 2018.
Zhou, S., Davy, P. K., Wang, X., Cohen, J. B., Liang, J., Huang, M., Fan, Q., Chen, W., Chang, M., Ancelet, T., and Trompetter, W. J.: High time-resolved elemental components in fine and coarse particles in the Pearl River Delta region of Southern China: Dynamic variations and effects of meteorology, Sci. Total Environ., 572, 634–648, https://doi.org/10.1016/j.scitotenv.2016.05.194, 2016.
Short summary
Remotely sensed NO2 and surface NOx are combined with a mathematical method to estimate daily NOx emissions. The results identify new sources and improve existing estimates. The estimation is driven by three flexible factors: thermodynamics of combustion, chemical loss, and atmospheric transport. The thermodynamic term separates power, iron, and cement from coking, boilers, and aluminum. This work finds three causes for the extremes: emissions, UV radiation, and transport.
Remotely sensed NO2 and surface NOx are combined with a mathematical method to estimate daily...
Altmetrics
Final-revised paper
Preprint