Articles | Volume 23, issue 11
https://doi.org/10.5194/acp-23-6457-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-23-6457-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating methane emissions in the Arctic nations using surface observations from 2008 to 2019
Sophie Wittig
Laboratoire des Sciences du Climat et de l'Environnement, CEA–CNRS–UVSQ, Gif-sur-Yvette, France
Antoine Berchet
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement, CEA–CNRS–UVSQ, Gif-sur-Yvette, France
Isabelle Pison
Laboratoire des Sciences du Climat et de l'Environnement, CEA–CNRS–UVSQ, Gif-sur-Yvette, France
Marielle Saunois
Laboratoire des Sciences du Climat et de l'Environnement, CEA–CNRS–UVSQ, Gif-sur-Yvette, France
Joël Thanwerdas
Laboratoire des Sciences du Climat et de l'Environnement, CEA–CNRS–UVSQ, Gif-sur-Yvette, France
Adrien Martinez
Laboratoire des Sciences du Climat et de l'Environnement, CEA–CNRS–UVSQ, Gif-sur-Yvette, France
Jean-Daniel Paris
Laboratoire des Sciences du Climat et de l'Environnement, CEA–CNRS–UVSQ, Gif-sur-Yvette, France
Toshinobu Machida
Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
Motoki Sasakawa
Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
Douglas E. J. Worthy
Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
Cooperative Institute for Research in Environmental Sciences, University of
Colorado Boulder, Boulder, CO, USA
NOAA Global Monitoring Laboratory, Boulder, CO, USA
Rona L. Thompson
Norsk Institutt for Luftforskning (NILU), Kjeller, Norway
Espen Sollum
Norsk Institutt for Luftforskning (NILU), Kjeller, Norway
Mikhail Arshinov
independent researcher
Viewed
Total article views: 3,595 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 Jan 2023)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,896 | 629 | 70 | 3,595 | 163 | 58 | 63 |
- HTML: 2,896
- PDF: 629
- XML: 70
- Total: 3,595
- Supplement: 163
- BibTeX: 58
- EndNote: 63
Total article views: 2,927 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 13 Jun 2023)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,482 | 398 | 47 | 2,927 | 112 | 48 | 48 |
- HTML: 2,482
- PDF: 398
- XML: 47
- Total: 2,927
- Supplement: 112
- BibTeX: 48
- EndNote: 48
Total article views: 668 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 Jan 2023)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
414 | 231 | 23 | 668 | 51 | 10 | 15 |
- HTML: 414
- PDF: 231
- XML: 23
- Total: 668
- Supplement: 51
- BibTeX: 10
- EndNote: 15
Viewed (geographical distribution)
Total article views: 3,595 (including HTML, PDF, and XML)
Thereof 3,588 with geography defined
and 7 with unknown origin.
Total article views: 2,927 (including HTML, PDF, and XML)
Thereof 2,927 with geography defined
and 0 with unknown origin.
Total article views: 668 (including HTML, PDF, and XML)
Thereof 656 with geography defined
and 12 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
6 citations as recorded by crossref.
- Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01 J. Thanwerdas et al. 10.5194/gmd-18-1505-2025
- Spatial-temporal source term estimation using deep neural network prior and its application to Chernobyl wildfires A. Brožová et al. 10.1016/j.jhazmat.2025.137510
- Estimation of Canada's methane emissions: inverse modelling analysis using the Environment and Climate Change Canada (ECCC) measurement network M. Ishizawa et al. 10.5194/acp-24-10013-2024
- Advancing the Arctic Methane Permafrost Challenge (AMPAC) With Future Satellite Missions A. Bartsch et al. 10.1109/JSTARS.2025.3538897
- Surface networks in the Arctic may miss a future methane bomb S. Wittig et al. 10.5194/acp-24-6359-2024
- Regional Sources and CH4 Seasonal Cycle in Central Siberia and the Arctic: Observations and Numerical Calculations K. Moiseenko et al. 10.1134/S1024856023700100
5 citations as recorded by crossref.
- Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01 J. Thanwerdas et al. 10.5194/gmd-18-1505-2025
- Spatial-temporal source term estimation using deep neural network prior and its application to Chernobyl wildfires A. Brožová et al. 10.1016/j.jhazmat.2025.137510
- Estimation of Canada's methane emissions: inverse modelling analysis using the Environment and Climate Change Canada (ECCC) measurement network M. Ishizawa et al. 10.5194/acp-24-10013-2024
- Advancing the Arctic Methane Permafrost Challenge (AMPAC) With Future Satellite Missions A. Bartsch et al. 10.1109/JSTARS.2025.3538897
- Surface networks in the Arctic may miss a future methane bomb S. Wittig et al. 10.5194/acp-24-6359-2024
Latest update: 24 Mar 2025
Short summary
Here, an inverse modelling approach is applied to estimate CH4 sources and sinks in the Arctic from 2008 to 2019. We study the magnitude, seasonal patterns and trends from different sources during recent years. We also assess how the current observation network helps to constrain fluxes. We find that constraints are only significant for North America and, to a lesser extent, West Siberia, where the observation network is relatively dense. We find no clear trend over the period of inversion.
Here, an inverse modelling approach is applied to estimate CH4 sources and sinks in the Arctic...
Special issue
Altmetrics
Final-revised paper
Preprint