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Abstract. The Arctic is a critical region in terms of global warming. Environmental changes are already pro-
gressing steadily in high northern latitudes, whereby, among other effects, a high potential for enhanced methane
(CH4) emissions is induced. With CH4 being a potent greenhouse gas, additional emissions from Arctic regions
may intensify global warming in the future through positive feedback. Various natural and anthropogenic sources
are currently contributing to the Arctic’s CH4 budget; however, the quantification of those emissions remains
challenging. Assessing the amount of CH4 emissions in the Arctic and their contribution to the global budget
still remains challenging. On the one hand, this is due to the difficulties in carrying out accurate measurements
in such remote areas. Besides, large variations in the spatial distribution of methane sources and a poor under-
standing of the effects of ongoing changes in carbon decomposition, vegetation and hydrology also complicate
the assessment. Therefore, the aim of this work is to reduce uncertainties in current bottom-up estimates of CH4
emissions as well as soil oxidation by implementing an inverse modelling approach in order to better quantify
CH4 sources and sinks for the most recent years (2008 to 2019). More precisely, the objective is to detect oc-
curring trends in the CH4 emissions and potential changes in seasonal emission patterns. The implementation of
the inversion included footprint simulations obtained with the atmospheric transport model FLEXPART (FLEX-
ible PARTicle dispersion model), various emission estimates from inventories and land surface models, and data
on atmospheric CH4 concentrations from 41 surface observation sites in the Arctic nations. The results of the
inversion showed that the majority of the CH4 sources currently present in high northern latitudes are poorly
constrained by the existing observation network. Therefore, conclusions on trends and changes in the seasonal
cycle could not be obtained for the corresponding CH4 sectors. Only CH4 fluxes from wetlands are adequately
constrained, predominantly in North America. Within the period under study, wetland emissions show a slight
negative trend in North America and a slight positive trend in East Eurasia. Overall, the estimated CH4 emissions
are lower compared to the bottom-up estimates but higher than similar results from global inversions.
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1 Introduction

The Arctic is an especially critical area in terms of global
warming. As the near-surface air temperature has increased
by approximately 3.1 ◦C since the 1970s, 3 to 4 times as
much as the global average (AMAP, 2021; Rantanen et al.,
2022), environmental changes in that region are rapidly pro-
gressing (Serreze et al., 2009; Cohen et al., 2014; Jansen
et al., 2020). Exceptional events like melting glaciers, a re-
duction in sea ice, thawing permafrost, an increasing occur-
rence of wildfires during summer and a shortening of the
snow season have already been observed increasingly fre-
quently during the most recent years (Hassol, 2004; Stroeve
et al., 2007; Walker et al., 2019). Predictions assume that if
the Arctic warming continues rising at this rate, by 2100 the
temperature will have increased by 3.3 to 10.0 ◦C (AMAP,
2021).

Short-lived climate forcers such as methane (CH4) play a
significant role in this framework (AMAP, 2015). Methane
is globally the second most abundant anthropogenic green-
house trace gas with a radiative forcing of about 0.56 W m−2

(IPCC, 2022). The rising temperatures, at the global scale
and particularly in the Arctic, influence the natural CH4
sources in the Arctic, which may possibly intensify local
emissions in the near future (IPCC, 2022). A positive feed-
back of the global – and regional – warming may therefore
ensue.

Various CH4 sources, both natural and anthropogenic,
contribute to the Arctic methane budget. Today, the natu-
ral Arctic methane emissions are dominated by high-latitude
wetlands, the extent of which is still highly uncertain how-
ever. Estimations on high-latitude wetland emissions show
large discrepancies. Ito (2019) concluded from a process-
based modelling study that the pan-Arctic (above 60◦ N)
wetland emissions in the 2000s were between 10.9 and
11.4 Tg CH4 yr−1. Estimates by Petrescu et al. (2010) of
northern wetland emissions (defined as wetlands in regions
with a yearly average temperature lower than 5 ◦C) varied
by a factor of 4 (between 38 and 157 Tg yr−1), with the
corresponding regions varying by a factor of 2 (2.2× 106–
4.4× 106 km2). Uncertainties in the extent of high-latitude
wetland areas are, among other factors, a reason for the large
variations. Other natural CH4 sources occurring in this area
are freshwater emissions, e.g. from thermokarst lakes, as
well as emissions from the Arctic Ocean and biomass burn-
ing due to wildfire events in the summer months (AMAP,
2015). As mentioned before, natural methane emissions are
anticipated to increase with rising temperatures and overall
changing conditions: in the Arctic, methane net emissions
could possibly be twice as high by the end of this century
(Schuur et al., 2015), in part related to the high sensitivity
of CH4 emissions to the state of the permafrost (Masyag-
ina and Menyailo, 2020) and general atmospheric conditions
(Chen et al., 2015). Indeed, the thawing and destabilization
of permafrost lead to the exposure of large carbon pools

that have so far been shielded by ice and frozen soil. Per-
mafrost thaw is expected to influence at least four ways of
carbon mobilization: (i) the deliberation of CH4 reservoirs
in the upper permafrost layers, (ii) retained activity from
viable methanogens as well as (iii) the consumption of la-
bile organic matter by these micro-organisms, and finally
(iv) an increased production of CH4 in the active zone (Rivk-
ina and Kraev, 2008). Additionally, anthropogenic activities
in high northern latitudes contribute to the global methane
budget, with an estimated amount ranging between 2 and
18 Tg CH4 yr−1 (Saunois et al., 2020a). These emissions are
mainly caused by the exploitation and distribution of fos-
sil fuels and are especially predominant during the winter
months (Thonat et al., 2017). Currently, five Arctic nations,
Russia, Canada, Norway, Greenland and the United States of
America, perform drilling activities in their territories and ex-
clusive economic zones in neighbouring oceans. Decreasing
the emissions from anthropogenic sources is an effective way
to limit the overall methane emissions in the Arctic region.
However, with an estimated 13 % of undiscovered mineral
oil and 30 % of undiscovered gas resources north of the Arc-
tic Circle (Gautier et al., 2009), the Arctic is of significant
interest for the petroleum industry regarding future drilling
campaigns.

Even though the CH4 observation networks in northern
high latitudes have been expanded since the early 2000s, the
current stationary networks remain restricted, leaving vast ar-
eas uncovered due to the difficulties in carrying out measure-
ments in such remote areas (Pallandt et al., 2022). Thus, ob-
taining accurate assessments of methane emissions in north-
ern high latitudes remains challenging since their spatial dis-
tribution at the local scale is highly variable. Current esti-
mations are primarily based on bottom-up studies which rely
on upscaling local flux measurements or on process-based
surface models and on emission inventories which combine
emission factors with socio-economic activity data. These
approaches are however subject to high uncertainties at the
regional scale since they imply statistical approximations as
well as simplifications of chemical, biological and physical
processes (e.g. Saunois et al., 2020a).

Another approach is provided by top-down studies, in
support of bottom-up products. Top-down studies optimally
combine observations, provided by either ground-based or
satellite measurements of atmospheric CH4 mixing ratios;
numerical transport modelling; and bottom-up emission data
sets as prior emission estimates into the mathematical frame-
work of data assimilation to retrieve emission fluxes and their
uncertainties. The so-called atmospheric inversion method is
therefore useful to reduce uncertainties in bottom-up esti-
mates (used as priors) and thus gain a better understanding
of the region’s methane budget. Such studies have already
been implemented for high-latitude regions at various scales
and with regard to different sources. Inverse modelling ap-
proaches for methane emissions have for instance been car-
ried out for the Canadian Arctic by Miller et al. (2016) (for
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the years 2005–2006), Ishizawa et al. (2019) (for the years
2012 to 2015), Chan et al. (2020) (for the years 2010 to 2017)
and Baray et al. (2021) (for the years 2010 to 2015); for Scan-
dinavia (Tsuruta et al., 2019, for the years 2004 to 2014); for
high-latitude Eurasian regions (Berchet et al., 2015b, for the
year 2010); for the Siberian Lowlands (Winderlich, 2012);
and also for the whole region above 45◦ N (Tsuruta et al.,
2023, for the year 2018), above 50◦ N (Thompson et al.,
2017, for the years 2005 to 2013) and above 60◦ N (Tan et al.,
2016, for the year 2005).

In this study, we estimate methane emissions during the
most recent years (2008 to 2019) through atmospheric inver-
sion based on available in situ measurement data from ob-
servation sites located in the Arctic and sub-Arctic. In order
to obtain a reliable assessment, we compute a large ensem-
ble of possible posterior emission scenarios using different
error estimations that are evaluated concerning their plau-
sibility. The CH4 emissions are subsequently analysed with
particular regards to three different questions: (i) Is the avail-
able observation network sufficient to constrain all occurring
CH4 sources and sinks adequately? (ii) Do the different CH4
sources and sinks show any significant trends between the
years 2008 and 2019? (iii) Do the different CH4 sources and
sinks in the posterior state show any shifts in the seasonal
cycle in comparison to the prior bottom-up estimates?

2 Methodology

To estimate the CH4 fluxes in the Arctic region, a Bayesian
inversion framework (Sect. 2.1) based on backward simula-
tions of the Lagrangian particle dispersion model (LPDM)
FLEXPART (FLEXible PARTicle dispersion model) is used
(see details in Sect. 3.3). The inversion is based on all avail-
able observation sites in the Arctic and sub-Arctic region (see
details in Sect. 2.3). Extensive sensitivity tests are carried
out to evaluate the reliability of CH4 estimates (see details
in Sect. 2.2)

2.1 Inversion framework

We apply an analytical inversion which aims at explicitly and
algebraically finding the optimal posterior state of a system
xa and the corresponding uncertainties Pa, which are given
by{

xa
= xb

+K(yo
−Hxb)

Pa
= B−KHB , (1)

with K the Kalman gain matrix given by

K= BHT (R+HBHT )−1. (2)

In the present work, we apply the formula on a year-by-
year basis. The control vector xb refers to the prior knowl-
edge on the system, in our case CH4 surface fluxes from
different sources (Sect. 3.2) and background mixing ratios

(Sect. 3.3.3). The observation vector y0 contains the avail-
able observations of atmospheric CH4 mixing ratios (detailed
in Sect. 3.1.2). The observation operator includes not only the
transport of the emitted methane (Sect. 3.3.2) in the domain
and the import from outside the domain (Sect. 3.3.3) but also
the filtering and other operations required to extract the simu-
lated equivalents of the measurements (Sect. 3.3). We neglect
chemical oxidation of CH4 emitted in our regional domain by
OH as further explained in Sect. 3.3, although oxidation by
OH is still accounted for in the global model used for the
background (Sect. 3.3.3).

Thus, all operations in the observation operator are linear,
and we represent it by its Jacobian matrix H. The linear as-
sumption is required to write Eq. (1) and solve the Bayesian
system analytically.

The error covariance matrices in the observation and con-
trol spaces, R and B, define the weight of the mismatch be-
tween the modelled and the measured concentrations. R con-
tains various types of errors: the error estimates of the differ-
ences between the observations and their simulated equiva-
lents include uncertainties not only in the measurements but
also in the transport in the model and in the discrete rep-
resentation of the continuous world by a numerical model.
The dimensions of R are equivalent to the number of ele-
ments in the observation vector per year; it varies between
217 and 384 as observations are aggregated by station and
month (see Sect. 3.1.2). The covariance matrix B is com-
posed of two parts: BS which accounts for the uncertain-
ties in the prior methane fluxes and BB for the uncertainties
in the background mixing ratios. BS has a constant size of
10164 × 10164, following the number of emission regions,
emission sectors and emission periods optimized in our sys-
tem (see Sect. 3.2); the dimensions of BB are, again, equiva-
lent to the number of observations per year.

Defining the error covariance matrices can be challeng-
ing since only the measurement uncertainties can be deter-
mined with certainty, using rigorous calibration procedures
(e.g Sasakawa et al., 2010). On the other hand, unrealistic er-
ror estimations can drastically distort the results of the poste-
rior state (Berchet et al., 2013). Therefore, in this study an en-
semble of (xa

i )i=1,500 and (Pa
i )i=1,500 using 500 realistic set-

ups of the error matrices (R,B) is computed. The ensemble
of (R,B)i=1,500 pairs of matrices is described in Sect. 3.1.2
and in Sect. 3.2.2, respectively. To account for the uncertain-
ties in the posterior state, from each vector xa

i , 10 random
variations are generated with the corresponding covariance
matrix Pa

i following a multivariate normal distribution. Thus,
we obtain a total of 5000 posterior states to assess the poste-
rior uncertainties in the inversion.

For computational reasons, the 12-year period has been
split into 12 independent 1-year inversion windows com-
puted separately. The ensemble of 500 pairs of matrices
(R,B)i=1,500 is generated based on a limited number of
parameters independent from the year j (see Sect. 3.1.2
and 3.2.2). Therefore, for a given member i of the ensem-
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ble, the yearly matrices {(Rj ,Bj )i} are built on the same set
of underlying parameters. We then compute, for each year
j ∈ [2008,2019], 500 independent inversions.

2.2 Framework evaluation

2.2.1 Log likelihood of samples

Though realistically chosen (see Sect. 3.2.2 and 3.1.2), the
members of the Monte Carlo ensemble of (R,B) pairs are not
equally plausible. To further compare and aggregate statistics
on the ensemble, we weight each member i ∈ [1,500] for
each year j ∈ [2008,2019] by its likelihood (see e.g. Micha-
lak et al., 2005). It is defined by

lnpji
(

Rji ,B
j
i |y

o
j ,x

b
j ,Hj

)
=−

1
2

tr
(

Sj
Rji ,B

j
i

−1
Sj
)

−
1
2

ln |Sj
Rji ,B

j
i

|, (3)

with Sj = yo
j−Hjx

b
j and Sj

Rji ,B
j
i

= Rji +HjBji HT
j , where |·|

is the determinant operator and tr(·) is the trace function.
The estimation of the log likelihood provides a robust

method to select the most reliable set-ups, with regards to the
information provided by the observations and ideal statistics
(e.g. Winiarek et al., 2011; Berchet et al., 2013, 2015a). For a
given set-up, the higher the log likelihood, the more plausible
the pair of covariance matrices. The log-likelihood estimator
in a high-dimension problem like ours is extremely sensitive
to any change in configuration.

The range of the log likelihood varies between the differ-
ent years, due to variations in the number of available sites
and measurements, as well as atmospheric conditions. Then,
for each member of the Monte Carlo ensemble, we define the
cumulative log likelihood as

lnpi =
2019∑
j=2008

lnpji . (4)

We use the cumulative log likelihood to define the most plau-
sible posterior vector over the full period of interest from
2008 to 2019 as xa

max corresponding to the member imax
maximizing the cumulative log likelihood.

We also use the log likelihood to discard the less real-
istic members of the Monte Carlo ensemble. To do so, the
most reliable pair ijmax of error matrices (Rjmax,B

j
max) is de-

termined for each year j separately. Then, each optimal
member ijmax for year j is used on all the years of interest
j ′ ∈ [2008,2019], so as to obtain the corresponding cumula-
tive log likelihood lnp

i
j
max

.
Since each cumulative log likelihood lnp

i
j
max

includes the
most reliable configuration for year j , the lower threshold
for the log likelihood lnpmin is defined as the minimum of
the 12 thus computed cumulative log-likelihood values as

min
j∈[2008,2019]

lnp
i
j
max

. We define a sub-ensemble {xa
max} whose

elements have a cumulative log likelihood greater or equal
to this threshold: {xa

i |
∑2019
j=2008 lnpji > lnpmin}. This sub-

ensemble contains 274 configurations, which correspond to
2740 posterior states, and is used in the following for a rep-
resentative analysis of the posterior state.

2.2.2 Sensitivity and influence matrices

We use two other metrics to evaluate our system and the
different set-ups: the influence and the sensitivity matrices.
Both are calculated using the corresponding Kalman gain
matrix Kmax of the previously determined xa

max. The influ-
ence matrix KmaxH (defined by Cardinali et al., 2006), also
called the averaging kernel (Rodgers, 2000), contains diago-
nal terms between 0 and 1, which represent the sensitivity of
each component of x to the inversion. The smaller the term
KmaxHr,r for emissions in region r is, the less constrained
region r is by the inversion. The sensitivity matrix HKmax
(Cardinali et al., 2006) gives the sensitivity of the inversion to
a change in one component of the observation vector. An ob-
servation with a high sensitivity brings strong constraints on
the inversion. The weight of each station in the inversion can
be computed by summing up the corresponding diagonal el-
ements of HKmax. The trace of these two matrices also gives
the “degrees of freedom for signal” (Wahba et al., 1994; Car-
dinali et al., 2006), while the number of observations minus
this number gives the “degree of freedom for noise”. This
extra criterion informs how many observations are used to
constrain fluxes (and background mixing ratios).

2.3 Area and period of interest

The area of interest, shown in Fig. 1a, for this study regarding
the quantification of the methane fluxes includes the Arctic
and sub-Arctic, with the southern boundary being roughly
the southernmost border of the taiga. For the implementa-
tion of the inversion, only observation sites within the area of
interest have been included in this study. To represent con-
centrations at these sites as properly as possible, we simu-
late the influence of fluxes from the area of interest and also
from a buffer region from above 30◦ N (see Sect. 3.3.1). Even
though Arctic fluxes may influence observation sites in the
buffer region, we do not include them in this study due to
the increased computational costs this would induce; future
work may inquire into the impact of using as many stations
as possible.

The region above 30◦ N is subsequently divided into sub-
regions in order to better detect local differences. However,
the sub-regions should not be too small and numerous, due
to the limitation of available observations for constraining
those areas. A more detailed description of the selected ob-
servation sites (indicated with white stars in Fig. 1b) can be
found in Sect. 3.1.1. The sub-regions of this study are there-
fore selected following the proposition of the Regional Car-
bon Cycle Assessment and Processes (RECCAP; Ciais et al.,
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Figure 1. Area of interest (a) and RECCAP regions above 30◦ N (b). Measurement sites, listed in Table S1 (Supplement), are indicated with
white stars.

2022), which results in 121 regions within the area of interest
(Fig. 1b).

The time period of interest is from 2008 to 2019. For the
following years, no measurements were available for the ma-
jority of the measurement sites by the time this study was
implemented.

The atmospheric sites in the area and time period of inter-
est and the available observations are described in Sect. 3.1.
CH4 emissions in this area are described in Sect. 3.2.

3 Material

3.1 Atmospheric observations

3.1.1 Site description

For this study, both quasi-continuous measurements (35 ob-
servation sites providing hourly measurements) and discrete
measurements (6 observation sites providing task samples
two to four times per month) are used. The stations are ex-
clusively located in seven Arctic nations (Canada, Russia,
Finland, Norway, Iceland, Greenland and the USA), except
for one site in Ireland that is used to constrain air masses
from the Atlantic Ocean. The operators of these stations
are Environment and Climate Change Canada, the Japan–
Russia Siberian Tall Tower Inland Observation Network (JR-
STATION) of the National Institute for Environmental Stud-
ies (NIES) (Sasakawa et al., 2010), the US National Oceanic
and Atmospheric Administration Global Monitoring Labo-
ratory (NOAA GML; Dlugokencky et al., 2020), and the
Finnish Meteorological Institute (FMI; Hatakka et al., 2003;
Aalto et al., 2007). The stations with their trigram identifica-
tions are shown in Fig. 2.

All the measurement sites are subsequently described
briefly, sorted by their network operators. A summary of each
station’s characteristics is furthermore provided in the Sup-
plement (Table S1).

ECCC

Environment and Climate Change Canada (ECCC) estab-
lished its first 2 CH4 measurement stations (ALT and FRD)
at the end of the 1980s and has expanded its network to
22 sites to this date, with 12 of them being located in the
Arctic or sub-Arctic. Alert (ALT) is often referred to as an
Arctic background site since it is located remotely from any
major methane emission sources on the northeastern tip of
Ellesmere Island in Nunavut, where the land is covered with
snow for approximately 10 months a year. Two additional
sites are installed in Nunavut at slightly more southern lati-
tudes: Cambridge Bay (CBY) and Baker Lake (BLK). The
latter is located in the Arctic tundra around 320 km from
Hudson Bay, surrounded by small lakes, whereas CBY lies
on the southeastern coast of Victoria Island close to the
largest port of the Northwest Passage of the Arctic Ocean.

The measurement site Inuvik (INK) was established in the
Arctic tundra of the Northwest Territories in the east channel
of the Mackenzie delta. Further inland in the same Canadian
province lies the station BCK, 10 km from the town of Be-
hchoko and surrounded by mixed forests, lakes and ponds.

Three of the ECCC sites are located in British Columbia.
FNE, which is located near the small town of Ford Nelson
in the taiga, lies at the southern fringe of the Canadian per-
mafrost region. Estevan Point (ESP) is located on the coast
of the Pacific Ocean and surrounded by woodlands. The mea-
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Figure 2. Map of available observation sites in the area of interest.
Crosses indicate quasi-continuous measurements; diamonds indi-
cate discrete measurements. All sites were used for the study except
CDL, where no measurements were available during the study pe-
riod. Different network operators are marked with different colours.
NOAA ESRL: NOAA Earth System Research Laboratories.

surement station Abbotsford (ABT) lies close to the US bor-
der, 80 km from Vancouver, the largest city and main eco-
nomic area in British Columbia.

The two sites in the province of Alberta are LLB at Lac La
Biche, in a region of peatlands and forests, and Esther (EST),
which lies in the open prairie with plenty of cattle ranches
close by.

Two measurement stations have been established in
Saskatchewan. East Trout Lake (ETL) in the centre of the
province lies at the southern edge of a boreal forest region,
and Bratt’s Lake (BRA) is in the Canadian prairie.

Churchill (CHU) is located in Manitoba, north of the
largest continuous boreal wetland region in North America
on the western coast of Hudson Bay.

Four of the sites in the province of Ontario (EGB, DWN,
HNP, TKP) are located relatively close to each other in the
Mixedwood Plains Ecozone. Downsview (DWN) and Han-
lan’s Point (HNP) are urban stations in the north of Toronto
and on the Toronto Islands in Lake Ontario, respectively. Eg-
bert (EGB) lies around 80 km from Toronto, close to a rural
village. The southernmost site, Turkey Point (TKP), is lo-
cated on Lake Erie in a woodland area. Further north in On-
tario lies the station Fraserdale (FRD) in the boreal forest,
with extensive wetland coverage in the surrounding area.

The two sites located in Quebec, Chapais (CPS) and Chi-
bougamau (CHB), are likewise established close to each
other in an area dominated by boreal forest with many lakes.

Finally, the observation site Sable Island (WSA) is on a
remote island in the North Atlantic Ocean, 175 km from the
mainland. The island is uninhabited by people and covered
with grass and low-growing vegetation.

NOAA GML

The two continuous measurement stations operated by
NOAA GML are Barrow (BRW) and CARVE (Carbon in
Arctic Reservoirs Vulnerability Experiment, CRV) in the
USA (Dlugokencky et al., 2020). Methane measurements in
BRW started in the late 1980s. The site is located in north-
ern Alaska on the junction of the Chukchi Sea and Beau-
fort Sea, and the surrounding landscape is characterized by
thermokarst lakes. The CRV tower is located in boreal Alaska
with a surrounding landscape defined by evergreen forest,
shrubland and some areas of woody wetlands (Karion et al.,
2016).

The six discrete measurement sites operated by NOAA
GML are ZEP, SUM, ICE, MHD, CBA and SHM. The Zep-
pelin Observatory (ZEP) is located near the village of Ny-
Ålesund, which is surrounded by mountains and glaciers, on
the island of Spitsbergen. From 2017, ZEP observations are
available as continuous data via the Integrated Carbon Ob-
servation System (ICOS) Carbon Portal (Lund Myhre et al.,
2022), but we did not include them as such to avoid per-
turbing the interpretation of the results for the last years.
The sampling site Summit (SUM) was established on the
Greenland ice sheet and is the highest measurement site in
the Arctic Circle. Stórhöfði (ICE) lies in the south of Ice-
land at the top of a small cape with grassy slopes and cliffs
to the sea close by. The sample site Mace Head (MHD) is
located on the western coast of Ireland in a wet and boggy
area. The surrounding landscape is characterized by small
hills covered with grasses and sedges, with many exposed
rocks. At the southern tip of the Alaska Peninsula, near the
coast, lies the measurement site Cold Bay (CBA) within a
wet tundra ecosystem consisting of a variety of sedges and
grasses. Finally, the station SHM is located on the island of
Shemya, which belongs to a cluster of small islands south-
west of Alaska.

JR-STATION

The four JR-STATION locations were installed by NIES
in 2004. Three are located in the Russian taiga forest
surrounded by wetlands: Demyanskoe (DEM), Karasevoe
(KRS) and Noyabrsk (NOY). Additionally, one station
(Igrim, IGR) was installed in a small town close to the Ob
River with around 10 000 inhabitants, likewise surrounded
by wetlands.

Atmos. Chem. Phys., 23, 6457–6485, 2023 https://doi.org/10.5194/acp-23-6457-2023
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The network has been extended by five stations in the
upcoming years, incorporating different biomes. Three tow-
ers have been placed in steppe regions. Azovo (AZV) and
Vaganovo (VGN) are located in the immediate vicinity of
highly populated cities, whereas the SVV tower (Savvushka)
is installed near a small village. Additionally, one tower is
located in the middle of the taiga surrounded by boreal for-
est (Berezorechka, BRZ), and lastly, the YAK tower was
placed close to Yakutsk in the East Siberian taiga (Sasakawa
et al., 2010; Belikov et al., 2019). However, not all of the JR-
STATION locations are currently still in operation: the dates
of the beginning and end of operation are indicated in Ta-
ble S1. Since the towers are provided with two to four differ-
ent sampling heights up to 85 m a.g.l. (above ground level),
only the measurements from the highest inlet are used in this
study. The CH4 measurements are reported on the NIES 94
scale and have been converted to the NOAA 2004 scale fol-
lowing Zhou et al. (2009).

FMI–NOAA

The Finnish station Pallas (PAL) is located close to the north-
ern edge of the Scandinavian boreal zone, with a surround-
ing terrain of wetlands, lakes and patches of forest (Hatakka
et al., 2003; Aalto et al., 2007). PAL data are available as
FMI Global Atmosphere Watch (GAW) CH4 data from 2004
onwards at the World Data Centre for Greenhouse Gases
(WDCGG). PAL data from 2017 are also available from the
ICOS Carbon Portal (Hatakka and Ri, 2022). Like PAL, the
site Tiksi (TIK) is operated by the FMI in cooperation with
NOAA GML and is installed on the shore of the Laptev Sea
on the Lena River delta (Uttal et al., 2013, 2016).

3.1.2 Data selection and observation uncertainties

In regional inversions, concentration peaks carry a large part
of the information content on local to regional fluxes. How-
ever, transport can be erroneous, and simulated peaks can be
shifted in time compared to observed ones, although the mag-
nitude can be well represented. Such errors heavily penalize
Bayesian inversions (e.g. Vanderbecken et al., 2023), so we
decided to aggregate observations at the monthly scale al-
though it can have an impact on the number of usable pieces
of information in the system. This focuses the inversion on
emission trends and seasonal cycles.

In the observation vector y0 (Sect. 2.1), we use the
monthly averages of the available CH4 atmospheric measure-
ments at each site. When hourly quasi-continuous data were
available, only measurements between 12:00 and 16:00 local
time were selected, assuming a well-mixed boundary layer,
which is better simulated by the model (Sect. 3.3). The dis-
crete observations are not filtered by the time of day the mea-
surement was taken. However, the data sets contain several
measurement outliers, mostly strong concentration peaks re-
lated to local emissions, which are difficult to simulate with

our transport model. We excluded such peaks from the obser-
vations used for the inversion if they differed by more than
5 % (or 100 ppb) from the monthly average. Depending on
the measurement site, between 8 % and 20 % of the observa-
tions are discarded this way.

Due to the discontinuity of measurement availability, the
size of y0 for 1 year varies between 217 (2008) and 384
(2018). The number of observations per year used for the in-
version (and thus the size of y0) can be found in Table S2. All
the selected observations with the corresponding daily CH4
concentrations are shown in Fig. 3.

The corresponding uncertainties in the observations are
specified in the diagonal error covariance matrix R, of which
an ensemble of 500 set-ups is generated (Sect. 2.1).

To generate a large number of different error set-ups, the
first step consists in obtaining an estimate of the uncertainty
for each station s ∈ [1,41] and each year j ∈ [2008,2019]
which serves as a reference point. This is done by computing
the differences between the monthly mean of the measured
and corresponding modelled mixing ratios (see Sect. 3.3) in
absolute values:

1s
m,j = |y

model
m,j − yobs

m,j |, (5)

with {m|0≤m≤ 12}] as 1 month of a given year j . Then, the
standard deviation of the ensemble of 12 monthly differences
is computed for each year:

σRs,j =

√√√√ 1
12

12∑
m=1

(
1sm,j −1

s
m,j

)2
, (6)

with 1sm,j =
1

12
∑12
m=11

s
m,j . In the few cases when only one

observation is available for a given station and a given year,
no standard deviation can be computed so that the single dif-
ference between the modelled mixing ratio and measurement
is used directly.

The obtained errors per station and year are subsequently
varied following a log-normal distribution with σRs,j as its
mode. This error distribution is chosen to include only a
few very high outliers in the ensemble. To implement a log-
normal distribution, a standard deviation σRi,random must be
provided, which is constant for each element i of the ensem-
ble i ∈ [1,500]. Thus, the random observation error for each
station s is equal for all months within 1 year; however it
varies between the different years of one element i of the en-
semble. To ensure that the values of the observation errors do
not vary to an unrealistic extent, a minimum of 0.5 ppb and a
maximum of 150 ppb are set.

Finally, the elements of the diagonal of one error covari-
ance matrix Rji (k,k) for k ∈ {s ∈ [1,41]}× {m|0≤m≤ 12}

and i ∈ [1,500] are defined as the variances
(
σ
R,i
s,j

)2
, and the

non-diagonal elements are zero.
Figure 4 shows an example of the frequency distribution of

the observation errors at one of the selected sites (s = INK)
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Figure 3. Average daily methane concentration at each station. The observation sites are sorted by latitude.

for the year j = 2012. The mode, and therefore the refer-
ence point, of the observation error for this year and station
is around 8 ppb. To give an idea about the general magnitude
of the computed uncertainties, the average of σRs,j over all
the stations s including all years j in the period of interest is
around 18 ppb.

3.2 Prior emissions

3.2.1 Emission scenarios

The emissions used as prior information are based on a set
of various inventories and models. The different methane
sources and sinks are described in Table 1 with their re-
spective temporal resolution in the prior information. The
natural CH4 sources include emissions from wetlands, the
Arctic Ocean and geological sources. Terrestrial freshwater
systems other than wetlands are hereby not taken into ac-
count as a separate source since ponds in permafrost peat-
lands and thermokarst lakes are usually shallow (less than
1 m depth), which falls under the usual definition for wet-
lands with standing water up to a depth of 2 to 2.5 m (e.g.
Tiner et al., 2015).

Natural methane emissions caused by biomass burning
due to wildfire events are combined with anthropogenic bio-
fuel activities for simplification. Since emissions caused by
termites are negligible in the Arctic, they are not taken into
account in this study. For the CH4 sink, soil oxidation is in-
cluded as negative emissions. To reduce the number of sec-
tors to optimize, emissions related to the exploitation and dis-
tribution of mineral oil and gas have been combined into a
single data set. The same applies to the emissions from agri-
cultural activities and waste management.

For the natural sources as well as the soil sink, monthly
climatological data sets are used for the whole period so
that their total fluxes do not differ between the years 2008
and 2019. The emissions from anthropogenic sources vary
between the different years covered in this study, follow-
ing the EDGARv6 emission trends (Crippa et al., 2021).
Emissions caused by fossil fuel activities generally increase
between 2008 (15.96 Tg yr−1) and 2019 (17.31 Tg yr−1),
though the highest annual emissions occur in the years 2014
and 2015. Methane emissions from agricultural activities and
waste management also increase slightly throughout the pe-
riod of interest, however just by less than 0.18 Tg yr−1. The
combined biomass burning scenario also shows some inter-
annual variability, though without any apparent tendencies.
The lowest annual emissions occur in 2009 (1.87 Tg CH4),
and the highest are in 2012 (3.99 Tg CH4).

At the intra-annual scale, in contrast to the other natural
CH4 sources, the wetland scenario has a clear seasonality in
the Arctic, with higher emissions during the summer months.
According to the data set used for this study, the highest wet-
land emissions occur in August (10.72 Tg CH4 per month),
and the lowest are in January (0.04 Tg CH4 per month). The
soil methane oxidation has a seasonal pattern symmetric
to the wetland emissions, with the maximum uptake tak-
ing place in August (−1.02 Tg CH4 per month) and a min-
imum in January (−0.01 Tg CH4 per month). The combined
biomass burning scenario shows a small seasonal variabil-
ity with predominantly higher emissions during the summer.
Between 2010 and 2016, the highest monthly CH4 emis-
sions occur in July and from 2017 to 2019 the peak emis-
sions take place in August. Hereby, the maximum of the
methane emissions ranges between 0.49 Tg CH4 per month
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Figure 4. Frequency distribution of the 500 random observation errors
{
σ
R,i
s,j

}
for i ∈ [1,500] at s = INK for the year j = 2012. The blue

line marks the mode σRINK,2012.

Table 1. Methane sources and sink taken into account in the prior emissions. The share of the global emissions of each source is based on
the average fluxes between 2008 and 2019. For data sets with inter-annual differences, the range between the lowest and highest emissions is
given. EDGARv6 is described in Crippa et al. (2021), and GFED4.1 is described in Randerson et al. (2017).

Type Source Reference Emissions globally
(Tg CH4 yr−1)

Emissions in
area of interest
(Tg CH4 yr−1,
percentage
of global
emissions)

Temporal resolution

Natural Wetlands Poulter et al.
(2017)

179.95 44.80, 24.9 Monthly climatology

Ocean Weber et al.
(2019)

11.48 3.02, 26.3 Constant

Geological Etiope et al.
(2019)

36.67 7.66, 20.9 Constant

Soil oxida-
tion

Ridgewell et al.
(1999)

−37.88 −4.74, 12.5 Monthly climatology

Combined Biomass and
biofuel burn-
ing

GFED4.1 24.28–34.69 1.87–4.00, 10.1 Monthly with inter-
annual variability

EDGARv6

Anthropogenic Mineral oil
and gas

EDGARv6 102.26–126.90 14.70–17.83,
14.6

Inter-annual variability

Waste and
agriculture

EDGARv6 216.38–236.49 8.58–8.77, 3.8 Inter-annual variability

Total 542.80–587.74 75.89–81.28,
17.3
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(2009) and 1.91 Tg CH4 per month (2017). The first 2 years
within the period of interest do not fall into this seasonal pat-
tern with increased CH4 fluxes during the summer months.
Regarding the anthropogenic methane emissions, the agricul-
tural and waste management fluxes also show a seasonal pat-
tern with increased emissions during the summer. According
to the inventory, the emissions are highest in June (around
0.80 Tg CH4 per month) and lowest in January and Decem-
ber (around 0.67 Tg CH4 per month). The methane emissions
from oil and gas exploitation and distribution are nearly con-
stant over the course of each year, with a maximum variation
of 0.1 Tg CH4 per month.

3.2.2 Prior uncertainties

As for the observation error, the elements of the prior error
matrix B are obtained from a random sampling. The covari-
ance matrix thereby contains both the uncertainties in the
prior fluxes BS and the uncertainties in the background mix-
ing ratios BB. In the following, only the methodology of the
random sampling of the prior errors is explained; the details
on BB are described in Sect. 3.3.3.

For each CH4 source or sink S, the mode σ S is set follow-
ing Baray et al. (2021):

– 50 % for S of anthropogenic emissions

– 60 % for S of wetland emissions

– 100% for S of other natural sources and soil oxidation.

A random sampling following a log-normal distribution
with σ S as its mode results in an ensemble of 500 prior er-
rors per source or sink

{
σ
B,S
i

}
i∈[1,500]

. We expect little sen-

sitivity of our results to these prescribed reference values as
we weight every sample according to its log likelihood (see
Sect. 2.2.1).

These random errors remain identical for each region r and
month of yearm per element i of the ensemble. Exemplarily,
Fig. 5 shows the frequency distribution of the random prior
errors for S of wetlands emissions of all the set-ups.

Finally, the elements of the diagonal of one error covari-
ance matrix BS

i (k,k) for k ∈ {S ∈ [1,7]}× {r ∈ [1,121]}×

{m ∈ [1,12]} are defined as the variances
(
σ
B,S
i

)2
. Hereby,

BS
i is identical for each year.

The off-diagonal elements
(
σm,n

)2 with m the row and n
the column of the corresponding matrix BS

i are determined
by applying spatial and temporal correlations. BS

i is hereby a

symmetrical matrix so that
(
σm,n

)2 is identical to
(
σn,m

)2.
The off-diagonal errors are computed as follows:(
σm,n

)2
=
(
σn,m

)2
=
(
σm,m× σn,n

)
× exp

(
−
1t

tcorr

)
× exp

(
−
1d

dcorr

)
, (7)

with 1t as the temporal difference between the rows/-
columnsm and n and1d as the spatial difference referring to
the centres of the corresponding regions. For the spatial cor-
relation dcorr a distance of 500 km is used, and the temporal
correlation tcorr has a fixed value of 1 week.

3.3 Modelled CH4 mixing ratios

As mentioned in Sect. 2.1, the simulated equivalents to the
observations are included in the observation operator H. In
this case, the elements of H consist of the monthly CH4 mix-
ing ratios sectioned into sub-regions and sectors as well as
the monthly averages of the background mixing ratios by sta-
tion. H is hereby linear since only emissions and transport of
CH4 are taken into account. The oxidation of methane by hy-
droxyl radicals (OH) is neglected inside the domain of sim-
ulation since the lifetime of CH4 is ≈ 9 years (Prather et al.,
2012) and the air masses remain in the domain up to 2 months
(Berchet et al., 2020). The methane sink from the hydroxyl
radical is however accounted for in the global simulations
used to compute the background mixing ratios (Sect. 3.3.3).

3.3.1 Transport model set-up

The modelled CH4 mixing ratios were obtained by using
the Lagrangian atmospheric transport model FLEXPART
(FLEXible PARTicle) version 10.3 (Stohl et al., 2005; Pisso
et al., 2019). This model simulates numerous trajectories
of infinitesimally small air parcels, called particles, and can
be used either forward or backward in time. FLEXPART is
an offline model that is driven by meteorological data from
the European Centre for Medium-range Weather Forecast
(ECMWF) ERA5 (Hersbach et al., 2020) with 3-hourly in-
tervals and 60 vertical layers. ECMWF data are retrieved
and formatted using the flex_extract toolbox (Hittmeir et al.,
2018; Tipka et al., 2020). In this study, 2000 particles are re-
leased at each observation site and timestamp (receptor) and
followed 10 d backwards in time. The horizontal resolution
is 1◦× 1◦, which is quite commonly used for inverse mod-
elling set-ups using Lagrangian particle dispersion models in
high northern latitudes (e.g. Thompson et al., 2017; Ishizawa
et al., 2019).

3.3.2 Source contribution

By sampling the near-surface residence time of the various
backward trajectories of the particles, the source-receptor
sensitivity matrices, also called footprints, of each observa-
tion site can subsequently be determined. The near-surface
residence time hereby corresponds to particles below 500 m
instead of, for instance, the planetary boundary height (PBL)
since simulated PBL in the Arctic can be unrealistically
small, especially during the winter months. The thus ob-
tained footprints define the connection between the fluxes
discretized in space and time and the change in concentra-
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Figure 5. Frequency distribution of the 500 random prior errors
{
σ
B,S
i

}
i∈[1,500]

for S wetland emissions. The blue line marks the mode

σwetlands.

tions at the receptor (Seibert and Frank, 2004). To finally
obtain a time series of modelled CH4 mixing ratios, a time
series of footprints is integrated with discretized methane
emission estimates. Here, monthly averages of the footprints
of each receptor are used to determine the mixing ratios for
each sector (see Table 1 in Sect. 3.2.1) and sub-region (see
Fig. 1b in Sect. 2.3).

The magnitude of the thus obtained total CH4 mixing ra-
tios, including all methane sources and the soil sink, ranges
roughly between 3 and 90 ppb depending on the month of
the year and location of the observation site, and the average
standard deviation is around 14 ppb.

3.3.3 Background mixing ratios and uncertainties

Since CH4 has a much longer lifetime than the released vir-
tual particles, the previously obtained concentrations only
display short-term fluctuations at the receptors. Therefore, in
order to obtain a direct comparison to the measurements, the
background mixing ratio needs to be taken into account.

The background mixing ratios are calculated by combin-
ing a CH4 concentration field as the initial condition with
the FLEXPART backward simulations nudged to the obser-
vations of the corresponding site (e.g. Thompson and Stohl,
2014; Pisso et al., 2019). The background thus obtained rep-
resents the average of the mixing ratios in the grid cells
where each particle trajectory terminated 10 d before the
observation. The initial concentration field is provided by
the Copernicus Atmospheric Monitoring Service (CAMS): a
CH4 mixing-ratio field from CAMS global reanalysis EAC4
(ECMWF Atmospheric Composition Reanalysis 4) with 60
vertical layers and a 3 h temporal and a 0.75◦× 0.75◦ spatial

resolution has been used (Inness et al., 2019). The practi-
cal computation of background time series from background
fields and backward trajectories is carried out using the Com-
munity Inversion Framework (CIF; Berchet et al., 2021b).

The thus computed background mixing ratios show a
gradual increase over the period of interest, with mean an-
nual concentrations over all sites ranging between 1842 ppb
(2008) and 1974 ppb (2019). At the intra-annual scale, the
monthly background mixing ratios vary from the correspond-
ing annual average by around 8 %. Figure S5 shows the aver-
age background mixing ratios at each station as well as their
average standard deviation.

As stated previously, the background is the major share
of the total modelled mixing ratios and, in this study, makes
up approximately 97.6 % at continental observation sites and
99.5 % at stations located remotely. A summary of the pro-
portion of source contribution and background mixing ratios
for each station can be found in Table S4.

As mentioned before (e.g. Sect. 2.1), the uncertainties in
the background mixing ratios BB are included in the error
covariance matrix B. In contrast to the uncertainties in the
prior emissions BS, which are given by region, month and
CH4 source/sink, the uncertainties in the background mixing
ratios are given by observation site and month. Therefore, the
size of BB is equivalent to the number of available observa-
tions per year.

The elements of BB are composed in a manner similar to
the elements of R (Sect. 3.1.2), by first computing a refer-
ence error for each station and year and varying these values
randomly to obtain and ensemble of 500 set-ups.

In this case, the standard deviations of the monthly back-
ground mixing ratios yback

s,m,j per station s ∈ [1,41] and year
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j ∈ [2008,2019] serve as reference errors:

σBs,j =

√√√√ 1
12

12∑
m=1

(
yback
s,m,j − y

back
s,m,j

)2
, (8)

with yback
s,m,j =

1
12
∑12
m=1y

back
s,m,j and m ∈ [1,12].

Subsequently, the computed errors per station are varied
following a log-normal distribution with a mode of σBs,j .
Again, in order to achieve a log-normal distribution, a ran-
dom standard deviation σBi,random must be set which is con-
sistent per element i ∈ [1,500] of the ensemble. Similar to
the observation errors, this means that each observation site
s has identical values of background errors for every month
m within 1 year, but each station may have unequal errors
for the different years j of one element i of the ensemble.
The lower and upper limits of the background mixing-ratio
uncertainties are, hereby, 0.5 and 150 ppb.

The diagonal elements of one error covariance matrix
BB,ji (k,k) for k ∈ {s ∈ [1,41]}× {m|0≤m≤ 12} and i ∈

[1,500] are finally defined as the variances
(
σ
B,i
s,j

)2
.

Other than the observation error covariance matrix R, BB

is not a diagonal matrix, and the non-diagonal elements are
defined by applying correlations in space and time. The com-
putation of the non-diagonal errors

(
σm,n

)2 with m as the
corresponding row and n as the corresponding column of
the symmetrical matrix BB

i is similar to the implementation
of correlations for the prior error covariance matrices BS

i

(Sect. 3.2.2):

(
σm,n

)2
=
(
σn,m

)2
=
(
σm,m× σn,n

)
× exp

(
−
1t

tcorr

)
× exp

(
−
1d

dcorr

)
, (9)

with 1t as the temporal difference between the rows/-
columns m and n and 1d as the spatial difference referring
distance between the two corresponding measurement sites.
The correlation lengths are dcorr = 500 km for spatial corre-
lations and tcorr = 1 week for temporal correlations.

Drawing Monte Carlo members by varying dcorr and tcorr is
perfectly possible and would impact the number of degrees
of freedom relative to the background (the higher dcorr and
tcorr, the lower the number of degrees of freedom). In the
present work, we limit our analysis to a single set of dcorr
and tcorr. The chosen configuration is a compromise to ac-
count for the consistent influence of the background between
neighbouring stations and successive time steps while avoid-
ing forcing unrealistic isotropic correlations when close sites
are influenced by different background air masses. A future
work will include the four-dimensional background fields in
the control vector as the background.

4 Results

4.1 Performance of the inversions in the observation
space

To evaluate the performance of the inversion, the prior and
posterior CH4 mixing ratios are compared to the observa-
tions. Figure 6 shows the Taylor diagrams indicating the
Pearson correlation coefficient to determine similarities be-
tween the observations and simulations as well as the nor-
malized standard deviation (SD) displaying how well the
variability in the modelled mixing ratios is captured. Thus,
a shorter distance to the reference point indicates a closer fit
to the measured mixing ratios. In Fig. 6, we split the results
for the full data set and de-trended data. The performance
of the simulations for the full data set is mostly driven by the
long-term trend. The de-trended data exhibit the performance
in terms of seasonal cycle.

In general, and as expected, the posterior results show bet-
ter agreement with the observations compared to the prior
mixing ratios of the corresponding observation site. This is
more distinctive for the trended (Fig. 6a–c) than for the de-
trended time series (Fig. 6d–f), although in both cases the
majority of the posterior mixing ratios are closer to the mea-
surements than the prior ones. This confirms that the clima-
tological priors are not good enough as year-to-year changes
were present and the inversion can realistically improve the
flux trends. Both the normalized standard deviation and the
correlation coefficient should ideally be close to 1. The prior
trended SD range between 0.19 and 1.62, and the correla-
tion coefficients are between 0.20 and 1.0. For the posterior
results the values lie between 0.19 and 1.00 (standard devi-
ation) and 0.29 and 1.0 (correlation coefficient). Regarding
the de-trended time series, the normalized SD lies between
0.19 and 2.61 (prior) and 0.02 and 0.99 (posterior), and the
correlation coefficient ranges between 0.20 and 1.41 (prior)
and 0.10 and 1.00 (posterior).

The improvement in the posterior results is quite evident
for observation sites which are remote from methane emis-
sion sources, such as ALT or ZEP (Fig. 6a), where the pos-
terior results are nearly equal to the observations. Here, the
standard deviations have a maximum deviation of 0.10 from
the observation point, whereas the difference between the
correlations is≤ 0.02. It is however noteworthy that the prior
CH4 concentrations show already a good agreement with the
observations at those remote stations, which are often re-
ferred to as background observation sites. This good fit can
be explained by the fact that background mixing ratios are
computed using global mixing-ratio fields generated by sys-
tems optimized using these same remote sites.

A much larger improvement can be observed at sites close
to the North American coast, such as INK, BLK and CHU
(Fig. 6b). In general, the majority (8 out of 11) of the mea-
surements from the coastal stations have a lower standard
deviation than their modelled equivalents, which implies that
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Figure 6. Examples of Taylor diagrams for various site categories. Raw (a, b, c) and de-trended (d, e, f) mixing ratios over the whole period
of interest. Prior simulated mixing ratios are indicated with circles; posterior ones are indicated with diamonds.

the variability in the modelled mixing ratios is overestimated.
The magnitude of the prior modelled CH4 mixing ratios is
overall higher than the measurements at North American ob-
servation sites in high northern latitudes (up to approximately
80 ppb and on average 50 ppb).

The simulations of continental observation sites further
south in North America (e.g. BRA) as well as continental
sites in Russia such as NOY and IGR (Fig. 6c) show, in gen-
eral (8 out of 12 sites), a normalized standard deviation which
is lower than the observations. This indicates an underesti-
mation of the variability in the simulated CH4 mixing ratios,
both in the prior as well as in the posterior results. However,
the correlation with the observations could still be improved
by the inversion.

The only observation site where the posterior results
show less agreement with the corresponding measurements
is ABT (Fig. 6b), where, in contrast to most other sites in
North America, the observations are significantly higher than
the simulated CH4 mixing ratios by up to approximately
100 ppb. Local fluxes (mostly from urban environments) and
complex topography (mountain range surrounding the flat
area around Vancouver, Canada) are likely to influence the

observations at this site and are poorly represented by the
model at a coarser resolution. A higher transport resolution
and finer-scale inversion regions could solve this issue in
a future study; stations too close to urban centres and in
too complex topographical configurations could also be dis-
carded altogether to pan-Arctic studies focusing on large-
scale patterns.

4.2 Distribution of information in the inversion system

4.2.1 Impact of observations on the inversion system

To further analyse the network efficiency, the sensitivity ma-
trices HK (see Sect. 2.2.2) are calculated for each year and
averaged over the whole period of interest (Fig. 7). The per-
centages indicate how much of the theoretically available ob-
servations at each site are actually used by the inversion. The
observation sites, which are located remotely from any other
station, mostly along the Arctic, Atlantic and Pacific shores,
show values of almost 100 %, which means that the informa-
tion provided by the measurements is almost entirely used,
mostly to constrain background concentrations. This is con-
firmed by the amplitude of the background at these sites, as
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Figure 7. Sensitivity of the inversion to observation sites as derived
from by the sensitivity matrix HK. Larger and darker circles indi-
cate a higher usage of available observations [%] by the inversion.
The percentage thereby shows the share of used and theoretically
available measurement data.

shown in Fig. S5, where the ratio between the standard devi-
ation of the simulated signal from the background and from
emissions has been computed and shows similar patterns of
the sensitivity to observations. In areas where the observa-
tion network is much denser (e.g. in the southeast of Canada
and, to a lesser extent, in the Siberian lowlands), most obser-
vations contribute to less than 50 % to the inversion. Lower
constraints in dense continental areas are caused by redun-
dant constraints from neighbouring sites in the same emis-
sion areas and/or higher noise due to transport errors from
nearby emissions. The latter has the largest impact if the site
is located close to CH4 emission sources.

4.2.2 Noise and information content in the inversions

The trace of the influence matrix tr(KH) (equal to the trace
of the sensitivity matrix tr(HK)) indicates how much noise
is contained in the provided observations and how the in-
formation content is used by the inversion (Sect. 2.2.2). The
closer the value of tr(KH) is to the number of available ob-
servations, the more useful each given observation is for the
inversion. Furthermore, the ratio between the number of ob-
servations used to constrain the emissions and those used to
constrain the background mixing ratios can be determined by
separately calculating tr(KHemis) and tr(KHback), using only
the corresponding elements of KH. The obtained traces for
each year are given in Table S2, and Fig. 8 shows the ratio
between tr(KHemis) and tr(KHback).

In total, tr(KH) ranges between approximately 60 % and
75 % of the number of available observations, with the major-

ity constraining the background mixing ratios. Only around
10 % of the available observations are used for constraining
the emissions, whereby the share remains relatively constant
through the years. Moreover, it is noticeable that the trace of
KH is closer to the number of observations during the years
in which the smallest numbers of measurements are provided
(e.g. 2008 and 2019).

With this limited availability of data, a higher percentage
of the observations is used as information for the inversion.
By contrast, in years during which more observations are
available (e.g. 2015), a higher share is identified as noise and
hence redundant information, similarly to spatial redundancy
in regions where the observation network is denser.

The fraction of useful information in the available obser-
vations follows a seasonal variability as shown in Fig. 9 (see
Fig. S3 for seasonal variations in the individual years).

The constraints on the emissions during winter are rel-
atively small not only since the CH4 emissions are com-
paratively smaller than during the summer months but also
because meteorological conditions (in particular a strati-
fied cold boundary layer) make the comparison of observa-
tions with simulations more challenging. During the summer
months, a higher fraction of observations (up to 20 %) is used
to constrain emissions. In general, the total trace tr(KH) is
higher during the summer months, which means that fewer of
the observations are identified as noise. However, additional
constraints on the emissions during summer do not ensure
constant constraints on the background. Instead, a share of
the constraints on the background mixing ratio is transferred
to constrain the emissions during the summer months.

By construction tr(KHback) is proportional to Bback and
Hback. Hback cannot be reduced due to the physics of the at-
mospheric transport (see Table S4). One way to reduce the
share of the information constraining the background in the
inversion set-up would be to decrease the uncertainties in the
background mixing ratios in Bback. This relies, however, also
on the performances of simulations of global CH4 concen-
tration fields. Even though in recent years those applications
have already improved, they still do not provide a sufficient
level of precision that would allow for reducing the uncer-
tainties for the implementation of our inversion set-up (In-
ness et al., 2019).

Moreover, the limited transport backwards in time in
FLEXPART (10 d in our case) is much smaller than the aver-
age residence time of air masses in the Arctic (typically a few
weeks; see e.g. Berchet et al., 2020). Hence, part of the influ-
ence of Arctic fluxes on observations is diluted in the back-
ground in our system. One way of mitigating this issue would
be to dramatically increase the backward transport time of
virtual particles up to a few weeks; but to limit numerical
artefacts, multi-week backward simulations need a very large
number of particles to be accurate, at the expense of much
higher computational costs. Another way of solving the is-
sue would be to fully couple FLEXPART within a global cir-
culation model, thus accounting for the influence of fluxes
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Figure 8. Traces of influence matrices divided by the number of available measurements of the corresponding year. See Sect. 2.1 for details
on the computation of the influence matrix. The closer tr(KH) is to 1, the more observations are used in the inversion.

Figure 9. Seasonal variation in tr(KH) averaged over the period of interest (2008–2019). The monthly traces are divided by the number of
available observations for the corresponding month.

on observations indefinitely backwards in time; this is what
is done in e.g. Maksyutov et al. (2021) or could be done in
the Community Inversion Framework with one of the avail-
able global models (LMDZ, Laboratoire de Météorologie
Dynamique Zoom model, or TM5, Transport Model; Berchet
et al., 2021b).

Another option to increase the ratio of information used to
constrain emissions instead of the background would be to
use higher temporal resolution for the observations. A com-
promise would be to use daily afternoon averages instead of
monthly averages. However, as illustrated in Belikov et al.
(2019), Arctic observations, even at the daily scale, can see
strong daily peaks due to emissions in combination with me-
teorological conditions. Such peaks may be poorly repro-
duced by the model and could be shifted in time and mag-
nitude, posing a double-penalty effect to the inversion (Van-

derbecken et al., 2023). This can have a critical impact on
the inversion conclusion, especially with diagonal observa-
tion covariance matrices R, as done in the present work, con-
sistent with the general practice of the inversion community.

4.2.3 Spatial distribution of constraints on regions and
sources

The influence matrix KH defines how well each emission
sector is constrained by the inversion in each sub-region. The
majority of the CH4 sources are quite poorly constrained in
the sub-regions defined in Sect. 2.3, with the elements of
the influence matrix being less than 10 %. In comparison to
that, the wetland emissions are relatively well constrained,
as shown in Fig. 10. Hereby, the figure on the left shows the
average constraints over all years, while the middle and right
figures show 2 exemplary years (2011 and 2014) to highlight

https://doi.org/10.5194/acp-23-6457-2023 Atmos. Chem. Phys., 23, 6457–6485, 2023



6472 S. Wittig et al.: Arctic methane emissions

inter-annual differences. The remaining years are shown in
Fig. S1 in the Supplement.

The average values of the annual influence matrices
(Fig. 10a) indicate that the current observation network is
able to constrain wetland emissions well for most North
American sub-regions. In Eurasia, on the other hand, most
areas are unseen by the inversion and the well-constrained ar-
eas are predominantly limited to certain parts of Siberia (e.g.
the West Siberian Plain). This is partly due to the distribu-
tion of the observation network (the denser the network, the
better the constraints) and to the heterogeneity of data col-
lection within the period of interest (some years have many
more available observations than others, especially towards
the end of the period). As shown in Fig. 10b and c, the extent
of the constraints strongly varies between the different years
due to the availability of observations in Eurasia. Those vari-
ations can also be noticed in North America; however, the
well-constrained areas remain relatively identical over the
whole period.

Another cause of the limited constraints on the emissions
is that the available observations in Russia are rather used to
constrain the background mixing ratios (see Sect. 4.2.2). In
North America, where a larger number of observation sites
are established and more evenly distributed over the area, the
observations of certain stations are used to provide the infor-
mation on the background.

Installing additional observation sites in high northern lati-
tudes in Eurasia would therefore be useful to better constrain
local emissions in the future. However, measurement stations
in lower latitudes at the sub-Arctic boundary would also be
necessary to better constrain transport from CH4 hotspots
such as China, India and the Middle East.

4.3 Analysis of posterior fluxes

4.3.1 Total methane fluxes

In order to compare the prior to the posterior fluxes, the area
of interest is divided into four different supra-regions, North
America, East Eurasia, West Eurasia and the Arctic (includ-
ing the High and Low Arctic), as shown in Fig. 11.

Since most emission sources do not show large differences
between the prior and the posterior state and are also poorly
constrained by the inversion (Sect. 4.2.3), the sectors de-
scribed in Sect. 3.2.1 are combined to wetlands and other nat-
ural (including the CH4 sink from soil oxidation) and anthro-
pogenic emissions. In particular, geological fluxes from the
ocean do not deviate significantly from the prior and are not
further commented on here. Thereby, the combined natural
and anthropogenic fluxes from biomass burning are included
in the natural emission sources for simplification since the
natural emissions exceed the anthropogenic ones.

The mean annual prior and posterior CH4 emissions in
each region are shown in Fig. 12 and, in more detail, in
Table S3 for the set-up xa

max with the highest log likeli-

hood (Sect. 2.2.1) together with the corresponding uncertain-
ties obtained from the Pa matrix. As expected, the poorly
constrained anthropogenic and other natural emissions do
not show significant changes between the prior and poste-
rior fluxes for either of the regions, neither in their magni-
tude nor in their uncertainties. The wetland emissions are
decreased in the posterior state, except in West Eurasia.
The largest decrease is found in North America, which is
also the region best constrained by the inversion. Here, the
prior wetland emissions have a magnitude of around 30±
26 Tg CH4 yr−1, whereas the posterior emissions amount to
19± 13 Tg CH4 yr−1. Even though the uncertainties in the
posterior wetland fluxes are still high, at around 69 %, they
are reduced by around 17 % in comparison to the prior uncer-
tainties. In East Eurasia, the wetland emissions are decreased
from approximately 14± 12 to 12± 10 Tg CH4 yr−1 and in
the Arctic from 13±11 to 10±8 Tg CH4 yr−1 with an uncer-
tainty reduction of 8 % and 6 %, respectively.

Comparison to global inversion set-ups

In order to compare this study to other inversion set-ups,
the prior and posterior emissions are set against five differ-
ent posterior states obtained with variational inversion frame-
works used for the Global Carbon Project (GCP). The com-
parative CH4 fluxes are hereby an updated version of the re-
sults from Saunois et al. (2017, 2020a). The variational in-
versions are performed globally with two different inversion
systems, CIF–LMDZ using surface observations (Thanwer-
das et al., 2021) and PYVAR–LMDZ (PYthon VARiational)
using satellite observations from GOSAT (Greenhouse Gases
Observing Satellite) (Zheng et al., 2018). Inversion set-ups 1
and 2 use the prior fluxes distributed for the Global Methane
Budget and Atmospheric Tracer Transport Model Intercom-
parison Project (TransCom) chemical fields, with the lat-
ter including OH inter-annual variability from Patra et al.
(2021). The third set-up is a sensitivity test where freshwater
fluxes are added in the prior state. The mean annual total CH4
emissions in the different regions are shown in Fig. 13. Since
the GOSAT observations are not available for the years 2008
and 2009, the PYVAR–LMDZ posterior results are averaged
over the remaining period of interest.

In general, the total fluxes of the variational inversion set-
ups are all lower than the posterior results of this work. The
largest discrepancies are found in the Arctic, where the total
posterior fluxes are up to 59 % higher than the results from
the GCP and only inversion set-up 3 lies within the posterior
uncertainty range of our inversion set-up. The CH4 fluxes of
the variational inversion set-ups are lower by between 14 %
and 44 % in North America, 38 % and 51 % in East Eurasia,
and 18 % and 38 % in West Eurasia in comparison to our
posterior emissions. In all of the regions, the results from the
inversions using satellite data (PYVAR–LMDZ) are the least
consistent with the posterior CH4 emissions obtained in this
work. The smallest difference to our results is given by the
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Figure 10. Regional constraints on wetland emissions as derived from the influence matrix KH. Darker areas thereby indicate higher
constraints. The percentages of the areas refer to the corresponding summed elements of KH. The observation sites are marked as grey
circles.

Figure 11. Supra-regions for analysis of posterior CH4 fluxes.

inversion set-up in which the freshwater emissions are added
in the prior state (set-up 3).

As our system explicitly provides posterior uncertainties,
contrary to many other inversion systems, it is possible to as-
sess the consistency of our results with other inversions. The
discrepancies between the posterior methane emissions from
our study and the global variational inversions could be due
to the fact that global inverse systems do not perform as well
in high latitudes. This has already been identified in Saunois
et al. (2017) and can be tracked back to the following.

i. Global inversions use fewer observation sites in the Arc-
tic.

ii. Global inversions constrained by satellite measurements
(GOSAT; Infrared Atmospheric Sounding Interferome-
ter, IASI) provide fewer data points above 30◦ N com-
pared to regions in lower latitudes because of factors
such as the solar zenith angle, the surface albedo and

the limited light during the polar night. More recent in-
versions have started using TROPOspheric Monitoring
Instrument (TROPOMI) data (Tsuruta et al., 2023), with
possibly a higher density of data points at high latitudes,
but these data were not publicly available at the time of
the present work.

iii. Global models with very low resolution cannot repro-
duce the Arctic atmosphere properly.

However, the discrepancies should be further investigated.

Comparison to previous Arctic studies

In comparison to previous studies using inverse modelling
to assess methane emissions in high-northern-latitude re-
gions, our results lie roughly in the same magnitude. Thomp-
son et al. (2017) determined the total CH4 emissions be-
tween 2005 and 2013 to lie between 16.6 and 17.1 Tg yr−1
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Figure 12. Mean annual CH4 emissions by sector for xa
max with corresponding uncertainties.

in North America (above 50◦ N), and Baray et al. (2021) es-
timated the combined natural and anthropogenic emissions in
Canada at 16.6 and 18.2 Tg yr−1 (between 2010 and 2015).
Both values are within the lower limit of the uncertainty
range of our ensemble of posterior states in North Amer-
ica (31± 15 Tg yr−1). Berchet et al. (2015b) estimated the
methane fluxes in the Siberian lowlands to be between 5 and
28 Tg yr−1 in the year 2010 (comparable to region East Eura-
sia in this study at 34±18 Tg yr−1). In Eurasia, the total CH4
emissions obtained by Thompson et al. (2017) are between
55.2 and 59.5 Tg yr−1, which is at the upper limit of the un-
certainty range of the results from our study for the combined
areas of East Eurasia and West Eurasia (43± 23 Tg yr−1).

Due to the differences in the spatial extent of the regions
covered in those studies, it is, however, difficult to obtain re-
liable comparisons of the estimated methane emissions.

4.3.2 Trends of emission sources

In a changing climate, detecting changes in trends of regional
emissions in high northern latitudes is critical. Therefore, the
trends of all 5000 possible posterior fluxes from the ensemble
(see Sect. 2.1) have been calculated by sector and region. The
results for wetland emissions, which is the only source well
constrained by the inversion, are shown in Fig. 14 for North
America and East Eurasia.

– The mean annual CH4 emissions are displayed on the
horizontal axis, and the corresponding trend of the an-
nual wetland fluxes is on the vertical axis.

– The associated probability density functions (PDFs) are
shown next to the corresponding axes.

– The darker-shaded segments show the range of the en-
semble {xa

max} with the most plausible error configura-
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Figure 13. Total mean annual CH4 emissions in comparison to different inversion set-ups from the GCP.

tions (Sect. 2.2.1), which make out 55 % of the total en-
semble.

– The posterior result with the maximum log likelihood
xa

max is highlighted as well as the trend and the mean
annual emissions of the prior flux estimates.

Since the data set of wetland emissions is equal for each
year within the period of interest, there is no trend in the
prior state. The trend of the posterior wetland emissions
in North America (Fig. 14a), including all possible uncer-
tainty configurations, ranges approximately between −7.3
and 12.2 % yr−1 with corresponding mean annual emission
between around 15 and 30 Tg CH4 yr−1. The trends of the
corresponding ensemble of {xa

max} range between −1.4 and
1.2 % yr−1, with 65 % of the 2740 posterior results showing
a negative trend. The most plausible of all set-ups xmax, ac-
cording to the log likelihood, also has a decreasing trend of
−1.4 % yr−1. Thus, according to our system, although small
(less than 20 % per decade), there is a plausible negative

(although uncertain) trend on wetland emissions in North
America between the years 2008 and 2019.

The trend of the posterior results of the wetland emissions
in East Eurasia shown in Fig. 14b ranges between −7.5 and
11.7 % yr−1, and the mean annual amount of CH4 emissions
ranges between 10 and 15 Tg CH4 yr−1. Here, the elements
of {xa

max} do not include any negative trends, with values
ranging between 0 and 2.1 % yr−1, and xa

max shows increas-
ing trend of 0.8 % yr−1. The results point to a very small but
statistically significant positive trend in East Eurasia. A posi-
tive growth rate in CH4 mixing ratios between 2009 and 2019
in West Siberia was detected by Someya et al. (2020) and at-
tributed to increased wetland emissions in this area, which is
compatible with our conclusion.

To give an example of a CH4 emission source with a
trend in the prior state, Fig. 15 shows the emissions from
biomass burning of the two previously discussed regions.
Since the uncertainties in the emissions from biomass burn-
ing have been chosen to be higher in comparison to the wet-
land emissions (Sect. 3.2), the posterior results contain sev-
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Figure 14. Trend and mean annual fluxes of wetland emissions for the ensemble of posterior results with corresponding density distributions.
Brighter colours of scatters indicate a higher density.

Figure 15. Trend and mean annual fluxes of biomass burning emissions for the ensemble of posterior results with corresponding density
distributions.
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eral negative CH4 fluxes, which are not included in the fig-
ures. In both regions, the prior state shows an increasing
trend of 30 % yr−1 in North America and 9 % yr−1 in East
Eurasia, with corresponding mean annual emissions of 1.15
and 2.01 Tg CH4 yr−1.

In North America (Fig. 15a), the posterior trends show a
large variability, with values of the total ensemble lying be-
tween −11 and 92 % yr−1. The trend of the most plausible
configuration xa

max is around 21 % yr−1, which still indicates
a positive trend, though one that is lower than the prior es-
timate. The magnitude of the CH4 emission from biomass
burning in North America is predominantly decreased in the
posterior state, with xa

max being 0.7 Tg yr−1 lower than the
prior mean annual emissions. In East Eurasia (Fig. 15b), the
mean annual emissions of the total ensemble lie between
0.35 and 3.47 Tg CH4 yr−1, and the trends show, similarly
to North America, high variability in the posterior state (be-
tween −8 and 89 % yr−1). The ensemble {xa

max} on the other
hand only shows minor deviations, and both the trend and the
fluxes are close to the prior state.

It has to be mentioned that, even though the fluxes from
biomass burning are partially well constrained in some
regions and years, the emissions are poorly constrained
throughout the whole period of interest, and as described in
Sect. 4.2.3, the results are highly uncertain.

For most of the methane emission sources and sinks, the
results of the posterior ensemble do not show major devia-
tions from the prior state at all, independent of the prior and
observation error.

In addition to that, the obtained trends of the posterior
fluxes could as well be influenced by the varying data avail-
ability, and the results are therefore still highly uncertain.

4.3.3 Seasonal variability

Subsequently, the seasonal cycles of the prior and posterior
CH4 fluxes are examined. Figure 16 shows the seasonal cycle
of the prior and posterior fluxes for the total CH4 emissions
in North America. Hereby, the displayed posterior fluxes are
the median values of the ensemble {xa

max}. To achieve a bet-
ter comparison between the different years, the monthly val-
ues are divided by the maximum methane fluxes of the prior
state.

Over the course of the period of interest, the prior emis-
sions show greater consistency in the annual seasonal cy-
cles. The peak of the emissions is predominantly in Au-
gust, though sporadically already in June. The sectors that
contribute to the seasonal differences in the prior state are
emissions from wetlands and biomass burning as well as the
soil oxidation (Sect. 3.2.1). Since the data set of the wetland
emissions and the soil oxidation are consistent for each year,
the differences in the seasonality of the prior fluxes is entirely
driven by the CH4 fluxes from biomass burning. In compari-
son to that, the average of the posterior state still reaches the
maximum emissions in August; however the peak is less pro-

nounced, and the emissions decrease more gradually during
the autumn months. The annual seasonal cycles of the poste-
rior fluxes are more divergent from each other. The majority
of the years still show the highest methane emissions in Au-
gust, although some years (e.g. 2012 and 2015) have a local
minimum during that month. Unlike the prior state, the dif-
ferences in the seasonal fluxes of the different years are not
exclusively influenced by emissions from biomass burning.
As shown in Fig. 17, most of the changes in the seasonal cy-
cle of the total CH4 emissions arise from adjustments of the
monthly wetland fluxes since the local high and low points
are predominantly during the same time of the year.

The other three regions assessed in this study show similar
minor changes in the seasonal cycles, which are predomi-
nantly influenced by wetland emissions and do not show any
clear seasonal pattern between the different years.

4.3.4 Inter-annual variability

Finally, we inquire into the inter-annual differences in the
methane emissions. Figure 18 shows a time series of the to-
tal CH4 fluxes in the prior and posterior state. The posterior
emissions are again obtained by calculating the median of the
most plausible results {xa

max}, with the corresponding mini-
mum and maximum values of this ensemble marking the un-
certainty range. Therefore, in the following section, the given
quantification of the monthly CH4 emissions refers to the
median values.

In West Eurasia (Fig. 18c) there is effectively no inter-
annual variability, in neither the prior nor the posterior state,
with peak values of 1.2 Tg CH4 per month each year; a
small deviation from the prior state comes from very small
constraints on that region. Similarly, the emissions in the
Arctic (Fig. 18d) show very few deviations in the prior
state, with the maximum fluxes only deviating by 0.1 Tg.
The posterior fluxes, on the other hand, gradually decrease
from a peak value of 4.0 Tg CH4 per month in 2008 to
3.1 Tg CH4 per month in 2015, which marks the year with
the largest difference from the prior state. In the following
years, the emissions slightly increase again to a maximum
value of 3.3 Tg per month and stay constant until the end of
the period of interest. In East Eurasia, shown in Fig. 18b, the
inter-annual variations are fairly low both in the prior and
posterior state. According to the prior estimates, the high-
est methane emissions occur in 2012 with a peak value of
5.6 Tg, CH4 per month. Also, the fluxes are slightly lower at
the beginning of the period of interest (around 4.9 Tg) than
during the last 4 years (around 5.4 Tg). The posterior emis-
sions mostly follow that pattern with a maximum reduction
of 0.5 Tg in 2012. The most prominent variabilities are, un-
surprisingly, found in North America (Fig. 18a), which is
best constrained by the inversion. As mentioned before, the
inter-annual differences in the prior state are caused by vari-
ations in the emissions from biomass burning. The largest
prior total methane emissions occur in 2017 with a maxi-
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Figure 16. Normalized total CH4 fluxes of the prior (dash-dotted lines) and posterior (continuous lines) state per month in North America.
The coloured lines display the different years; the black lines show the average over all years.

Figure 17. Normalized wetland CH4 fluxes of the posterior state per month in North America. The dash-dotted black line shows the average
prior; the continuous line shows the average posterior state.
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Figure 18. Total seasonal prior (purple) and posterior (blue) CH4 emissions between 2008 and 2019.

Figure 19. Seasonal CH4 emissions from biomass burning between 2008 and 2019.

mum of 9.5 Tg CH4 per month; the year with the lowest peak
emissions (7.9 Tg CH4 per month) is 2008. Like the emis-
sions in East Eurasia, the peak values of the prior state are
generally higher during the last years of the period of inter-
est, whereas the years with the lowest CH4 emissions can be
found at the beginning. The posterior fluxes in North Amer-
ica vary between peak emissions of 5.0 Tg (2015) and 6.6 Tg
(2018) without showing a clear pattern. In fact, the year 2008,
which shows the lowest emissions in the prior state, has the
second highest methane fluxes of all years, whereas the emis-
sions in the year 2019 are almost as low as in 2015.

An explanation for the large discrepancies in the inter-
annual variabilities between the prior and the posterior state
in North America is the reduction in fluxes from biomass
burning in the posterior state which are shown in Fig. 19.
The prior estimates show a large variability with exception-
ally high emissions in the years 2013 to 2015 and, most ev-
idently, in the year 2017 with up to 1.4 Tg CH4 per month.
These increased emissions during certain years do not agree
with the observations though, which is why the peak emis-
sions in the posterior state are up to 50 % lower.
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Another factor that has to be taken into account when
analysing the posterior inter-annual variabilities is the incon-
sistent availability of observations throughout the different
years. For years during which only limited information from
the measurements is available, the posterior state is likely to
be closer to the prior.

5 Conclusions

We designed an inversion system to constrain CH4 surface
fluxes in high northern latitudes based on surface observa-
tions in Arctic regions and an atmospheric transport model.
Extensive sensitivity tests were carried out to comprehen-
sively assess the methane emissions and uptake, respec-
tively, from different CH4 sources and sinks during the years
2008 to 2019. We aimed to reduce uncertainties in current
bottom-up estimates and thereby gain a more accurate un-
derstanding of the extent, seasonality and inter-annual trends
of methane emissions in Arctic and sub-Arctic regions. In
order to achieve that, we computed a total of 5000 posterior
states of posterior methane fluxes with varying uncertainties
in the observations, background mixing ratios and prior flux
estimates and evaluated their plausibility to get a reliable as-
sessment of the methane emissions in high northern latitudes.

The atmospheric observations used for this study included
both quasi-continuous and discrete measurements from 41
observation sites in different Arctic nations. We found that
this observation network is not sufficient to satisfactorily
constrain most CH4 sources and sinks in high northern lat-
itudes over the whole period of interest. Only wetland emis-
sions are adequately constrained in North America and spo-
radically in Russia, although with inter-annual variabilities.
It is therefore not possible to reduce uncertainties in most
CH4 emission sources and sinks occurring in high-northern-
latitude regions to a substantial extent. Besides, a consider-
able share of the observations is used by the inversion to
constrain the background mixing ratios. This share could
be reduced by improved initial CH4 mixing-ratio fields,
which would allow for lower uncertainties in the background.
Moreover, additional stations at the sub-Arctic boundary
would be necessary to better constrain transport from CH4
hotspots such as China, India and the Middle East. Whether
the additional stations within the buffer zone, which in this
case included latitudes from 30◦ N, would improve the con-
straints on high-northern-latitude regions should be investi-
gated further. Increased observation resolution instead of the
monthly means used in the present work should be explored
as well to potentially improve the constraints on fluxes, al-
though at higher temporal resolution, missed emission peaks
in simulations compared to observations could lead to depre-
ciated emission estimates.

The obtained posterior CH4 fluxes were, in comparison,
predominantly lower than the prior estimates, though still
higher than comparable posterior results from variational in-

version set-ups. In North America, the average total methane
fluxes were reduced by around 11 Tg yr−1 with a correspond-
ing uncertainty reduction of 26 %. In East Eurasia and the
Arctic, fluxes were reduced by 2 and 3 Tg yr−1, respectively,
with uncertainty reductions of 13 % (East Eurasia) and 12 %
(Arctic).

Significant changes in the seasonal cycles of the methane
emissions could not be observed in either of the regions stud-
ied. Minor shifts in the seasonal cycles in certain years were
exclusively influenced by CH4 emissions from high-latitude
wetlands.

Inter-annual differences were most significant in North
America, where the largest discrepancies between the prior
and posterior state could be observed since the region is well
constrained. Whereas the highest peak emissions in the prior
state took place at the end of the period of interest, raised
methane emissions in the posterior state were predominantly
observed at the start. The CH4 peak emissions were hereby
also up to 4.3 Tg per month lower. Those differences can be
explained by a reduction in emissions from biomass burning,
which appear to have been overestimated for certain years
(e.g. 2014 and 2017) in the prior estimate.

The wetland emissions in North America showed a small
decreasing trend between 2008 and 2019, whereas the CH4
emissions from wetlands in East Eurasia were slightly in-
creasing within the period of interest. Since most regions in
the Arctic and sub-Arctic were poorly constrained by the in-
version, most methane emission sources as well as soil oxi-
dation did not show any significant trends in the period under
study.

To get a conclusive understanding about the magnitude,
long-term trend and seasonal variability in methane emis-
sions in the entire Arctic region, it would be beneficial to ex-
pand the observation network, especially in Eurasia, to bet-
ter constrain the area for future works. Complementary ap-
proaches bringing fixed and mobile platforms (ships, aircraft,
trains, etc.) together should also be explored to refine our un-
derstanding of the regional Arctic budget (e.g. Pankratova
et al., 2022; Berchet et al., 2020; Pisso et al., 2016; Thorn-
ton et al., 2020). New satellite platforms may also in the fu-
ture expand our coverage of Arctic methane emissions, even
though technical difficulties (albedo, clouds, etc.) hamper our
capability of using high-latitude satellite retrievals.

This is particularly important since ongoing environmen-
tal changes due to rising temperatures in high northern lati-
tudes are affecting natural sources and sinks of CH4, further
complicating the estimation and prediction of Arctic methane
emissions, their contribution to the global budget, and the re-
sulting potential climate feedback.

Code and data availability. The transport model FLEXPART
10.4 is open source, and the source code is freely available on
the FLEXPART website at https://www.flexpart.eu/downloads/66
(last access: 14 November 2022) (described in detail by Pisso
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et al., 2019). The meteorological forcing fields for FLEXPART
are interpolated from the open ERA5 reanalysis, extracted using
the open-source flex_extract toolbox (Tipka et al., 2020, https://
www.flexpart.eu/flex_extract; last access: 14 November 2022). Flux
data were obtained from the Global Carbon Project – Methane
(https://www.icos-cp.eu/GCP-CH4/2019, last access: 14 Novem-
ber 2022; data at https://doi.org/10.18160/gcp-ch4-2019, Saunois
et al., 2020b). The contribution of the background concentra-
tions was calculated using the Community Inversion Framework
available at https://doi.org/10.5281/zenodo.5045730 (Berchet et al.,
2021a).

Observations from the NOAA GML network can be downloaded
from the dedicated Observation Package (ObsPack) web server at
https://www.gml.noaa.gov/ccgg/obspack/ (last access: 14 Novem-
ber 2022; data at https://doi.org/10.25925/20210518, Masarie et al.,
2014).
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