Articles | Volume 23, issue 6
https://doi.org/10.5194/acp-23-3609-2023
https://doi.org/10.5194/acp-23-3609-2023
Technical note
 | 
24 Mar 2023
Technical note |  | 24 Mar 2023

Technical note: Unsupervised classification of ozone profiles in UKESM1

Fouzia Fahrin, Daniel C. Jones, Yan Wu, James Keeble, and Alexander T. Archibald

Data sets

MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP historical Y. Tang, S. Rumbold, R. Ellis, D. Kelley, J. Mulcahy, A. Sellar, J. Walton, and C. Jones https://doi.org/10.22033/ESGF/CMIP6.6113

MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP ssp126 P. Good, A. Sellar, Y. Tang, S. Rumbold, R. Ellis, D. Kelley, and T. Kuhlbrodt https://doi.org/10.22033/ESGF/CMIP6.6333

MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP ssp585 P. Good, A. Sellar, Y. Tang, S. Rumbold, R. Ellis, D. Kelley, and T. Kuhlbrodt https://doi.org/10.22033/ESGF/CMIP6.6405

jbusecke/xMIP: v0.7.1 J. Busecke, M. Ritschel, E. Maroon, T. Nicholas, and readthedocs-assistant https://doi.org/10.5281/zenodo.7519179

Model code and software

UKESM1 Seasonal Mean Ozone Profiles Clustering Fouzia Fahrin and Daniel C. Jones https://doi.org/10.5281/zenodo.7662179

Download
Short summary
We use a machine learning technique called Gaussian mixture modeling (GMM) to classify vertical ozone profiles into groups based on how the ozone concentration changes with pressure. Even though the GMM algorithm was not provided with spatial information, the classes are geographically coherent. We also detect signatures of tropical broadening in UKESM1 future climate scenarios. GMM may be useful for understanding ozone structures in modeled and observed datasets.
Altmetrics
Final-revised paper
Preprint