Articles | Volume 23, issue 2
https://doi.org/10.5194/acp-23-1511-2023
https://doi.org/10.5194/acp-23-1511-2023
Research article
 | 
26 Jan 2023
Research article |  | 26 Jan 2023

Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations

Jing Wei, Zhanqing Li, Jun Wang, Can Li, Pawan Gupta, and Maureen Cribb

Data sets

ChinaHighNO2: Big Data Seamless 10 km Ground-level NO2 Dataset for China J. Wei and Z. Li https://doi.org/10.5281/zenodo.4641542

ChinaHighSO2: Big Data Seamless 10 km Ground-level SO2 Dataset for China J. Wei and Z. Li https://doi.org/10.5281/zenodo.4641538

ChinaHighCO: Big Data Seamless 10 km Ground-level CO dataset for China J. Wei and Z. Li https://doi.org/10.5281/zenodo.4641530

Data For "Spatially and Temporally Coherent Reconstruction of Tropospheric NO2 over China combining OMI and GOME-2B measurements" Q. He, K. Qin, J. B. Cohen, D. Loyola, D. Li, J. Shi, and Y. Xue https://doi.org/10.6084/m9.figshare.13126847.v1

EARTHDATA NASA https://search.earthdata.nasa.gov/

Jet Propulsion Laboratory NASA https://www2.jpl.nasa.gov/srtm/

NCCS NASA https://portal.nccs.nasa.gov/datashare/gmao/geos-cf/

LandScan ORNL https://landscan.ornl.gov/

ChinaHighAirPollutants (CHAP) J. Wei https://weijing-rs.github.io/product.html

Download
Short summary
This study estimated the daily seamless 10 km ambient gaseous pollutants (NO2, SO2, and CO) across China using machine learning with extensive input variables measured on monitors, satellites, and models. Our dataset yields a high data quality via cross-validation at varying spatiotemporal scales and outperforms most previous related studies, making it most helpful to future (especially short-term) air pollution and environmental health-related studies.
Altmetrics
Final-revised paper
Preprint