Articles | Volume 23, issue 22
Research article
15 Nov 2023
Research article |  | 15 Nov 2023

Characterizing the tropospheric water vapor spatial variation and trend using 2007–2018 COSMIC radio occultation and ECMWF reanalysis data

Xi Shao, Shu-Peng Ho, Xin Jing, Xinjia Zhou, Yong Chen, Tung-Chang Liu, Bin Zhang, and Jun Dong

Data sets

ECMWF ReAnalysis Model 5 (ERA5) data Copernicus Climate Change Service

UCAR COSMIC water vapor data CDAAC

Short summary
Atmospheric water vapor plays an essential role in the global energy balance, hydrological cycle, and climate system. This paper characterizes and compares the global, latitudinal, and regional variabilities of COSMIC and ERA5 water vapor distribution, as well as the seasonality and long-term trends at selected pressure levels from 2007 to 2018. Evaluation of spatiotemporal variabilities of atmospheric water vapor ensures the qualities of COSMIC and reanalysis water vapor for climate studies.
Final-revised paper