
Atmos. Chem. Phys., 23, 14187–14218, 2023
https://doi.org/10.5194/acp-23-14187-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Characterizing the tropospheric water vapor spatial
variation and trend using 2007–2018 COSMIC radio

occultation and ECMWF reanalysis data

Xi Shao1, Shu-Peng Ho2, Xin Jing1, Xinjia Zhou3, Yong Chen2, Tung-Chang Liu1, Bin Zhang1,3, and
Jun Dong1

1Cooperative Institute for Satellite Earth System Studies (CISESS), Earth System Science Interdisciplinary
Center, University of Maryland, College Park, MD 20740, USA

2NOAA National Environmental Satellite, Data, and Information Service, Center for Satellite Applications
and Research, College Park, MD 20740, USA

3Global Science & Technology, Inc., 7855 Walker Drive, Suite 200, Greenbelt, MD 20770, USA

Correspondence: Xi Shao (xshao@umd.edu)

Received: 17 September 2022 – Discussion started: 10 February 2023
Revised: 21 September 2023 – Accepted: 28 September 2023 – Published: 15 November 2023

Abstract. Atmospheric water vapor plays a crucial role in the global energy balance, hydrological cycle, and cli-
mate system. High-quality and consistent water vapor data from different sources are vital for weather prediction
and climate research. This study assesses the consistency between the Formosa Satellite Mission 3–Constellation
Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) radio occultation (RO)
and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis Model 5 (ERA5) water va-
por datasets. Comparisons are made across different atmospheric pressure levels (300, 500, and 850 hPa) from
2007 to 2018. Generally, the two datasets show good spatial and temporal agreement. COSMIC’s global water
vapor retrieval is slightly lower than ERA5’s at 500 and 850 hPa, with distinct latitudinal differences between
hemispheres. COSMIC exhibits global water vapor increasing trends of 3.47± 1.77 % per decade, 3.25± 1.25 %
per decade, and 2.03± 0.65 % per decade at 300, 500, and 850 hPa, respectively. Significant regional variability
in water vapor trends, encompassing notable increasing and decreasing patterns, is observable in tropical and
subtropical regions. At 500 and 850 hPa, strong water vapor increasing trends are noted in the equatorial Pa-
cific Ocean and the Laccadive Sea, while decreasing trends are evident in the Indo-Pacific Ocean region and
the Arabian Sea. Over land, substantial increasing trends at 850 hPa are observed in the southern United States,
contrasting with decreasing trends in southern Africa and Australia. The differences between the water vapor
trends of COSMIC and ERA5 are primarily negative in the tropical regions at 850 hPa. However, the water va-
por increasing trends at 850 hPa estimated from COSMIC are significantly higher than the ones derived from
ERA5 data for two low-height stratocumulus-cloud-rich ocean regions west of Africa and South America. These
regions with notable water vapor trend differences are located in the Intertropical Convergence Zone (ITCZ)
area with frequent occurrences of convection, such as deep clouds. The difference in characterizing water vapor
distribution between RO and ERA5 in deep cloud regions may cause such trend differences. The assessment
of spatiotemporal variability in RO-derived water vapor and reanalysis of atmospheric water vapor data helps
ensure the quality of these datasets for climate studies.
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1 Introduction

Water vapor is one of the most important greenhouse gases
in the atmosphere, which accounts for about 60 % of the nat-
ural greenhouse effect (Kiehl and Trenberth, 1997; Wagner
et al., 2006; Foster et al., 2007; Ahrens and Samson, 2011).
Water vapor cycles with latent heat release through conden-
sation and evaporation are closely linked to cloud formation,
which alters atmospheric energy budgets. In addition, stud-
ies showed that water vapor amplifies global warming (Smith
and Reynolds, 2005; Parker et al., 2007; Dai, 2006; Allan and
Soden, 2008; Mieruch et al., 2008; Zhang et al., 2013). As
the Earth warms, the water vapor concentration in the lower
troposphere increases with increasing temperature, increas-
ing the evaporation rate and adding more atmospheric wa-
ter vapor, which usually warms the atmosphere further. Wa-
ter vapor’s heat-trapping effect is crucial in climate change
(Forster et al., 2007). Studies (i.e., Foster et al., 2007; Al-
lan and Liepert, 2010; Trenberth, 2011; Hegerl et al., 2015)
show that water vapor has profound impacts on atmospheric
temperature structure and the hydrological cycle, which, in
turn, increases the likelihood of extreme regional precipita-
tion events, extreme weather conditions, and droughts.

Accurate atmospheric water vapor climate data records
(CDRs) are critical for detecting climate change. Various
studies have quantified the spatial and temporal variation
and trend in atmospheric water vapor using two types of
water vapor data: (i) measurements or retrievals from sen-
sor observations and (ii) reanalysis data produced by as-
similating various observations. The first data type includes
both ground-based in situ and spaceborne observations: long-
term radiosonde measurements (Zhai and Eskridge, 1997;
Ross and Elliott, 2001; Ho et al., 2010; Zhao et al., 2012;
Zhang et al., 2018), weather station data (Dai, 2006), water
vapor retrieved from ground-based Global Positioning Sys-
tem (GPS) station data (Kursinski et al., 1997; Bock et al.,
2007; Nilsson and Elgered, 2008; Vey et al., 2010; Huang
et al., 2013; Chen and Liu, 2016; Yuan et al., 2023), water
vapor retrievals from spaceborne radio occultation observa-
tions (Ho et al., 2009; Huang et al., 2013, 2018; Zhang et al.,
2018; Andrisaniand and Vespe, 2020; Gleisner et al., 2022),
visible-spectral-range sensor observations (Mieruch et al.
2008; Grossi et al., 2015; Borger et al., 2023), microwave
observations (Rosenkranz, 2001; Chen and Liu, 2016; Ho et
al., 2018; Yadav et al., 2021), and infrared sounder observa-
tions (Susskind et al., 2003).

The second type of water vapor data are from the global
atmospheric reanalysis products generated by the European
Centre for Medium-Range Weather Forecasts (ECMWF)
(Hersbach et al., 2020) and the National Centers for Envi-
ronmental Prediction (NCEP) (Whitaker et al., 2008). These
reanalysis data are constructed from assimilating in situ and
satellite observations through data assimilation (DA) systems
blended with model outputs. These atmospheric reanalysis
data have been used for investigating long-term atmospheric

water vapor variability and trends (Bengtsson, 2004; Wag-
ner et al., 2006; Adler et al., 2008; Ho et al., 2009; Huang
et al., 2013; Zhang et al., 2013; Chen and Liu, 2016; Xie et
al., 2020; He et al., 2022) as well as climate change stud-
ies (Allan, 2002; Allan et al., 2014; Lu et al., 2015). How-
ever, the quality of the reanalysis data may be affected by
(i) discontinuity or changes of in situ data and satellite data,
(ii) the inadequate spatial and temporal coverage of the ob-
servations, (iii) inadequate measurement bias corrections,
(iv) preliminary observation error estimates, (v) contamina-
tion of ground-based and spaceborne satellite observations
due to clouds, and (vi) potential and/or unknown model er-
rors (Sherwood et al., 2010; Chen and Liu, 2016). The un-
certainty of forecast and reanalysis data under cloudy condi-
tions, especially over oceans, is still very large (Lonitz and
Geer 2017).

Past climate modeling studies suggest that increasing sur-
face temperature can result in an increasing trend in global
water vapor (Held and Soden, 2000, 2006; Santer et al.,
2006). Studies based on various types of observations and
reanalysis data have shown an increasing water vapor trend
over different periods ranging from several decades to the
recent decade (Bengtsson, 2004; Wagner et al., 2006; Ho et
al., 2009; Chen and Liu, 2016; Wang et al., 2017; Ho et al.,
2018). However, these studies also showed substantial varia-
tion (with both increasing and decreasing) in regional water
vapor trends (Ross and Elliott, 2001; Dai, 2006; Mieruch et
al., 2008, 2014; Zhang et al., 2018). This is mainly because
regional water vapor concentration may change dramatically
depending on multiple non-thermodynamic factors such as
(i) surface type, (ii) long-range transport of air masses, and
(iii) water availability. As a result, the global surface tem-
perature increase does not increase water vapor everywhere
(Chou and Neelin, 2004; Wagner et al., 2006; Lu et al., 2015;
Chen and Liu, 2016).

Many studies (i.e., Ho et al., 2009; Chen and Liu, 2016;
Ho et al., 2018) have compared global reanalysis of wa-
ter vapor with those derived from in situ and satellite sen-
sors. For example, Chen and Liu (2016) evaluated the global
precipitable water vapor (PWV) variability and trend from
ECMWF and NCEP reanalysis results. They compared the
water vapor reanalysis with 36-year (1979 to 2014) wa-
ter vapor datasets collected from radiosonde, ground-based
Global Navigation Satellite System (GNSS), and microwave
satellite observations. All these datasets showed increasing
PWV trends. The ERA-Interim reanalysis agrees with mi-
crowave satellite observations better than those from the
NCEP reanalysis. ERA-Interim overestimates the PWV over
the ocean for the period before 1992 compared to microwave
satellite data. It is essential to continue comparing the dif-
ferences and consistencies of atmospheric water vapor data’s
temporal and spatial variabilities from different sources and
provide the climate community with high-quality water va-
por data.
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There is growing interest in comparing reanalysis data and
all-weather water vapor profiles retrieved from GNSS radio
occultation (RO) (Anthes et al., 2020; Kursinski and Hajj,
2021; Ho et al., 2009, 2010; Johnston et al., 2022). Com-
plementing the measurements from microwave and infrared
sounders, RO data can provide information on the tempera-
ture, water vapor, and pressure with high accuracy, precision,
and vertical resolution. Because the quality of RO data does
not change during the day or night and is not affected by
clouds (Anthes et al., 2008; Ho et al. 2020a), the RO tem-
perature and water vapor profiles collocated with reanalysis
data would help identify the variation of temperature and hu-
midity under all weather conditions over time. RO data have
been used to evaluate biases and monitor calibration changes
for microwave measurements (Iacovazzi et al., 2020; Shao
et al., 2021a) and infrared sounders (Chen et al., 2022). Fur-
ther, RO-derived water vapor profiles have been used to dis-
tinguish systematic water vapor biases in radiosondes (Ho
et al., 2010; Sun et al., 2019; Ho et al., 2020a; Shao et al.,
2021b).

In this paper, we characterize the water vapor data de-
rived from the Formosa Satellite Mission 3–Constellation
Observing System for Meteorology, Ionosphere, and Climate
(FORMOSAT-3/COSMIC) (hereafter COSMIC) and those
from ECMWF Reanalysis Model 5 (ERA5). Launched in
2006, COSMIC was the first constellation of microsatellites
carrying GPS RO receivers. COSMIC has demonstrated the
value of RO data in the ionosphere for climate and meteo-
rological research as well as operational weather forecast-
ing (Ho et al., 2020a). This paper aims to characterize and
compare the global, latitudinal, and regional variabilities of
COSMIC and ERA5 water vapor distributions, seasonality,
and long-term trends at selected pressure levels from 2007 to
2018. In addition, this paper identifies regions with notable
increasing and decreasing water vapor trends, i.e., regions
becoming moister or drier, and regions with significant water
vapor trend differences between COSMIC and ERA5. Par-
ticular emphasis is also placed on comparing the COSMIC
and ERA5 water vapor trends over stratocumulus-cloud-rich
regions to investigate the impacts of stratocumulus clouds on
near-surface water vapor data quality in ERA5.

This paper is organized as follows: Sect. 2 introduces the
water vapor data from COSMIC RO retrieval and ERA5 re-
analysis. Section 3 analyzes global and latitudinal variabil-
ities of long-term (2007–2018) COSMIC and ERA5 water
vapor data at three pressure levels, and their differences are
quantified. In Sect. 4, the global and latitudinal water va-
por trends derived from COSMIC and ERA5 are quantified
and compared at different pressure levels. Section 5 exam-
ines the overall distribution of regional water vapor trends
derived from the COSMIC and ERA5 time series and their
differences. Furthermore, a few specific sites with frequent
stratocumulus cloud coverage and large differences between
COSMIC and ERA5 are selected to quantify the water va-
por trend differences. Additionally, the seasonal variability

of latitudinal water vapor distribution is summarized in Ap-
pendix A1. Appendix A2 and A3 describe the estimation of
the water vapor trend with sampling error removal and its
associated uncertainties for a given region of interest (RoI).
Appendix A4 provides additional information on a few sites
with notable increasing and decreasing water vapor trends.
We present the conclusions and discussion in Sect. 6.

2 Datasets used for spatial and temporal water
vapor variability analysis

2.1 ECMWF reanalysis data

This study used the ERA5 global atmospheric and climate
reanalysis dataset (https://www.ecmwf.int/en/forecasts/
dataset/ecmwf-reanalysis-v5, last access: 7 Novem-
ber 2023). ERA5 is the fifth-generation ECMWF reanalysis
dataset covering the past 4 to 7 decades. The ERA5 dataset
is generated from the four-dimensional variational (4D-Var)
data assimilation system, which uses a fixed version of the
ECMWF NWP system, i.e., Integrated Forecasting System
(IFS) Cy41r2. The IFS Cy41r2 system became operational
in 2016 (Hersbach et al., 2020) and blends or assimilates
meteorological observations (e.g., surface weather stations,
ocean buoys, radiosonde stations, aircraft, and remote
sensing satellites) with a previous forecast to obtain the
best for both. These blended results serve as the initial
conditions for the next forecast period. The ERA5 water
vapor data are from the ground to ∼ 0.1 hPa at 37 mandatory
pressure levels. Our study used ERA5 global water vapor
profiles from 2007 to 2018 in 6 h increments. The ERA5
data were collected with a 0.25◦ spatially gridded resolution,
equivalent to a spatial resolution of ∼ 25 km at the Equator.
Many studies have been conducted to validate the ERA5
atmospheric products using satellite measurements (Chen
and Liu, 2016; Lei et al., 2020; Tang et al., 2021; Campos
et al., 2022). Overall, the results of these studies show that
ERA5 is in good agreement with satellite measurements (or
retrieved products). For example, Tang et al. (2021) com-
pared the atmospheric downward longwave radiation (DLR)
from Clouds and Earth’s Radiant Energy System (CERES)
satellite retrievals and ERA5 data with observations at Base-
line Surface Radiation Network (BSRN) stations over land
surfaces. The ERA5 atmospheric reanalysis performed better
than satellite retrievals in estimating DLR over the land
surface. According to Chen and Liu (2016), the global water
vapor trend over 1992–2014 from the data of the ECMWF
reanalysis model agrees well with the microwave satellite
data. These studies provide confidence in the accuracy of the
ERA5 products for comparison with COSMIC retrievals.

2.2 COSMIC WETPrf water vapor retrieval

The COSMIC RO receivers on low-Earth orbit (LEO) satel-
lites measure the phase delay of radio waves, which are emit-
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ted from GPS satellites and bent by atmospheric refraction.
Profiles of atmospheric refractivity can be derived from the
bending angles of radio wave trajectories when propagating
through the ionosphere, stratosphere, and troposphere. From
the retrievals of RO limb-sounding observations, the bending
angle and refractivity profiles from the excess phase data pro-
cessed from the Doppler-shifted raw radio signals transmit-
ted by GPS satellites are derived. Then, the one-dimensional
variational (1D-Var) retrieval algorithm is applied to solve an
under-determined problem: determine the atmospheric tem-
perature and water vapor profiles from bending angle or re-
fractivity data. The 1D-Var retrieval generally uses the a pri-
ori state of the atmosphere, i.e., vertical background temper-
ature and humidity profiles, and associated background and
observation uncertainties as well as error covariance matrices
(ECMs) to minimize a quadratic cost function.

In this paper, we analyze the 2007 to 2018 COSMIC
wet profile data produced by the University Corporation for
Atmospheric Research (UCAR) from COSMIC RO data,
namely WETPrf (https://cdaac-www.cosmic.ucar.edu/cdaac/
products.html, last access: 7 November 2023). The WET-
Prf data from the COSMIC Data Analysis and Archive Cen-
ter (CDAAC) consist of temperature, water vapor, and pres-
sure profiles with a high vertical resolution (100 m). UCAR
WETPrf profile data contain the latitude and longitude of the
RO perigee point, temperature, pressure, water vapor pro-
file, and mean sea level height. COSMIC has provided more
than 7 million RO sounding profiles over its lifetime. Many
of the six COSMIC GPS receivers continued beyond their
2-year designed life and provided more than 1000 occulta-
tion profiles per day through 2016. The COSMIC data de-
creased significantly in late 2019 and was decommissioned
in May 2020.

The UCAR COSMIC WETPrf data were generated with
the heritage 1D-Var algorithm at CDAAC to produce wet
temperature and humidity profile data. In the 1D-Var algo-
rithm for WETPrf, background profiles are taken from ERA-
Interim gridded low-resolution data and interpolated to the
time and location of RO measurements to separate the pres-
sure, temperature, and moisture contributions to the refractiv-
ity. The constraint applied to WETPrf in the 1D-Var retrieval
is very tight such that temperature and moisture profiles are
reported only when the residual refractivity (i.e., the differ-
ence between the observed refractivity and simulated refrac-
tivity computed from the retrieved temperature and moisture
profiles) is within the uncertainty of refractivity. This ensures
that the information on refractivity measurements from RO is
completely used in the 1D-Var (Ho et al., 2020a).

2.3 Method of comparing COSMIC and ERA5 water
vapor data

In our analysis, COSMIC RO profiles with the “bad” flag
have been filtered out. COSMIC RO and ERA5 water vapor
profiles were paired through collocation before the analysis

was performed. The ERA5 data have a global distribution
over 0.25◦ latitude–longitude grids, vertically over 37 pres-
sure layers, and at 6 h intervals. Therefore, the ERA5 wa-
ter vapor data at a given pressure level are interpolated at
the latitude–longitude of the perigee point of the RO profile
and at RO time to match the COSMIC RO measurement. For
the RO data, the fine-vertical-resolution COSMIC RO wa-
ter vapor profiles are interpolated onto three pressure levels,
e.g., 300, 500, and 850 hPa, selected to characterize water
vapor variations at representative altitudes around 9, 5.5, and
1.5 km, respectively.

The pressure level at 850 hPa studied in this paper is close
to the surface and within the boundary layer. Its water va-
por can vary based on factors such as humidity levels near
the surface, regional water vapor sources, and weather pat-
terns. From previous studies (Ho et al., 2009, 2020a; Shao
et al., 2021a; Johnston et al., 2021) of comparing RO wa-
ter vapor data with collocated reanalysis model data or ra-
diosonde measurements, it was found that RO water vapor
retrievals have a negative bias in the lower troposphere. The
COSMIC water vapor retrieval is strongly affected by super-
refraction at this pressure level in moisture-rich regions (Ho
et al., 2010). It is worth evaluating the relative biases and con-
sistency in the trends on various spatial scales between COS-
MIC and ERA5 water vapor datasets at this 850 hPa pressure
level.

The water vapor at 500 hPa can vary widely depending
on local weather conditions and atmospheric patterns. Wa-
ter vapor at 500 hPa is crucial for understanding the devel-
opment of weather patterns, including midlatitude cyclones,
ridges, and troughs. This pressure level also contributes to the
upper-level atmospheric circulation patterns through convec-
tion, which carries moist air upward from the lower tropo-
sphere and plays a role in redistributing heat and moisture. It
was learned from the earlier comparison of RO data with ra-
diosonde measurements that starting from the pressure level
at 500 hPa, the RO water vapor retrieval uncertainty increases
as altitude decreases. Therefore, we chose 500 hPa as the rep-
resentative middle troposphere of interest to study in this pa-
per.

The 300 hPa pressure level represents the water vapor
layer with fewer horizontal variations at higher altitudes.
Water vapor in the upper troposphere plays a critical role
in the Earth’s radiative balance and climate system. It af-
fects the absorption and emission of radiation, contributing
to warming (absorbing and trapping infrared radiation, i.e.,
the greenhouse effect) and cooling (emitting heat energy) ef-
fects. Johnston et al. (2021) showed large discrepancies in the
ERA5 and MERRA2 reanalysis model water vapor profiles
compared to COSMIC-2 in the upper troposphere. There are
large uncertainties for the reanalysis model to estimate the
upper troposphere water vapor due to the combined effects
of complex atmospheric dynamics (jet streams, convection,
and mixing) at high altitudes, sparse observations, difficul-
ties in validation, errors in extrapolating from lower-altitude
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measurements, and accurate accounting of radiative effects
at high altitudes. Therefore, we chose 300 hPa as the rep-
resentative upper troposphere level to compare spatial and
temporal variabilities of water vapor between COSMIC and
ERA5.

2.4 Impact of ERA-Interim as a priori on COSMIC water
vapor retrieval

The UCAR’s 1D-Var retrieval algorithm for COSMIC WET-
Prf (water vapor and humidity) uses ERA-Interim profiles as
the a priori input (Wee et al., 2022). In addition, the UCAR
WETPrf water vapor and temperature retrieval also enforces
a retrieval constraint to the residual refractivity. Such a con-
straint can determine the influence of ERA-Interim on the
final water vapor retrieval at different pressure levels. On
the other hand, ERA5 provides a more comprehensive and
reliable reanalysis by using improved weather forecast and
data assimilation models with various ground, in situ, and
satellite measurements compared to ERA-Interim (Fujiwara
et al., 2017; Hersbach et al., 2020). Figure 1 depicts the
monthly (using January and July of 2007 as representative
winter and summer months of the Northern Hemisphere)
scatter plots of the collocated COSMIC global water vapor
versus ERA5 and ERA-Interim water vapor data at three
pressure levels. The linear regression statistics for COSMIC
versus ERA5 and COSMIC versus ERA-Interim compar-
isons are also shown on the plots. All plots show that COS-
MIC versus ERA-Interim comparisons are more scattered
than the COSMIC versus ERA5 comparison. Quantitatively,
the correlation coefficients between COSMIC and ERA5 are
around 0.96, while the correlation coefficient between COS-
MIC and ERA-Interim varies from 0.88 to 0.93. The linear
fitting coefficients, i.e., slopes, of COSMIC versus ERA5 fit-
tings are closer to 1 than COSMIC versus ERA-Interim fit-
ting in all panels of Fig. 1. In terms of the linear fitting root
mean square error (RMSE) residuals, the RMSEs of COS-
MIC versus ERA5 fitting are lower than the COSMIC versus
ERA-Interim fitting by 24 % to 47 % over the two selected
months (January and July of 2007) and three pressure lev-
els. These analysis results indicate that the COSMIC water
vapor retrievals are more consistent with ERA5 than ERA-
Interim. It suggests that the information on COSMIC 1D-
Var retrievals is mainly from the COSMIC refractivity in-
stead of the ERA-Interim. We also inspected the comparison
of COSMIC versus ERA5 or ERA-Interim for other months
(not shown here), and the conclusion that COSMIC water va-
por data are more consistent with ERA-5 than ERA-Interim
holds for these months as well.

The comparisons between COSMIC and ERA5 water va-
por (Fig. 1) suggest overall consistencies over the two se-
lected months and at three pressure levels, which requires
further quantitative analysis of the variabilities. In the follow-
ing sections, we analyze the collocated COSMIC and ERA5
water vapor at three pressure levels to study their spatial

(Sect. 3) and trend (Sects. 4 and 5) variabilities (the seasonal
trend is provided in Appendix A1).

3 Comparison of spatial variability of water vapor
between COSMIC and ERA5

3.1 Global distribution of COSMIC and ERA5 water
vapor

To intercompare the spatial variability of the water vapor data
between COSMIC and ERA5 (interpolated onto COSMIC
locations and times), the collocated global humidity data over
12 years (2007–2018) are grouped into 10◦× 10◦ latitude–
longitude grids and spatial- and time-averaged at three se-
lected pressure levels, e.g., 300, 500, and 850 hPa.

Figure 2 compares time-averaged global water vapor dis-
tribution maps over three pressure levels between COSMIC
(left column) and ERA5 (right column). The overall global
distribution of water vapor of COSMIC and ERA5 at three
pressure levels is generally consistent. At all three pres-
sure levels, the global water vapor distribution exhibits a
high concentration in the low-latitude tropical regions, de-
creases rapidly toward the polar region, and is low in some
high-terrain regions such as the Tibetan Plateau. In the low-
latitude tropical region, i.e., latitudes between −20 and 20◦,
increased water vapor concentrations occur in the eastern In-
dian and western Pacific Ocean regions and over the Ama-
zon rainforest regions in South America at these three pres-
sure levels. It is noted that COSMIC bending angles are as-
similated into ERA5, which significantly improves the upper
troposphere and lower stratosphere temperatures (Hersbach
et al., 2020). However, the COSMIC 1D-Var retrieval has
more independence from its a priori (ERA-Interim) for wa-
ter vapor within the lower–middle troposphere. Primary wa-
ter vapor information is retrieved from the RO observations
at these altitudes, which our study is focused on. The eval-
uations of global and latitude-dependent water vapor differ-
ences between COSMIC and ERA5 in the following sections
would help understand the extent and regional dependence of
the assimilation of COSMIC RO water vapor data in ERA5.

To quantitatively evaluate the consistency between COS-
MIC and ERA5 water vapor (Q) data, the relative bi-
ases (QCOSMIC−QERA5)/QERA5 (%) between COSMIC
and ERA5 are calculated with the 12-year collocated COS-
MIC and ERA5 global water vapor data. The mean differ-
ences between COSMIC and ERA5 global water vapor are
5.67± 34.30 %, −1.86± 30.09 %, and −2.30± 21.21 % for
pressure levels at 300, 500, and 850 hPa, respectively. This
suggests that at 500 and 850 hPa, COSMIC water vapor re-
trieval is lower than ERA5 water vapor data. This is consis-
tent with the negative moisture biases below 5 km for the RO
retrievals compared to the collocated radiosonde data (Ho et
al., 2009, 2020a; Shao et al., 2021b). Such near-surface mois-
ture biases may come from the 1D-Var RO retrieval when
super-refraction with a sharp refractivity gradient occurs in
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Figure 1. Scatter plots of collocated COSMIC water vapor retrieval versus ERA5 and ERA-Interim water vapor data for 2 months (a, b, c:
January 2007; d, e, f: July 2007) at three pressure levels: (a, d) 350 hPa, (b, e) 500 hPa, and (c, f) 850 hPa. The correlation coefficient (R),
linear fitting coefficient, and RMSE of the fitting residual for COSMIC water vapor retrieval versus ERA5 and ERA-Interim comparisons
are listed in each panel.

the moisture-rich low-tropospheric RO profiles (Ho et al.,
2020b; Shao et al., 2021a, b). At 300 hPa, the COSMIC water
vapor concentration is about 5.67 % higher than ERA5. Since
the water vapor concentration at 300 hPa is very low, its con-
tribution to the total precipitable water would be minimal.
The fact that at 300 hPa water vapor from COSMIC is higher
than from ERA5 stems from the distinctive cloud penetra-
tion capability of the RO signal. In contrast, there are uncer-
tainties in the water vapor from the reanalysis data over the
cloud-free scenes since these scenes can be over thin or cir-
rus clouds due to the difficulty of data assimilation over these
types of clouds. The water vapor concentration derived from
COSMIC is expected to be higher than ERA5 at 300 hPa
when thin or cirrus clouds are present. Our evaluation of wa-
ter vapor at 300 hPa indicates that the difference between RO
and ERA5 of about 5.7 % is likely due to the uncertainty in
classifying cloud-free scenes in the data assimilation and in
the RO retrieval system. Such assessment is consistent with
the water vapor biases between COSMIC-2 and ERA5 pre-
sented in Johnston et al. (2021).

We also notice significant uncertainties in estimating up-
per troposphere water vapor in the reanalysis model. John-

ston et al. (2021) analyzed COSMIC-2 and reanalysis (ERA5
and MERRA2) water vapor differences in different latitude
zones. It was shown that the UCAR COSMIC-2 water vapor
retrieval is consistently lower than both ERA5 and MERRA2
water vapor data in the lower troposphere (below 2 km).
However, COSMIC-2 water vapor retrieval data are higher
than ERA5 data and lower than MERRA2 data at altitudes
above 5 km. The magnitude of the COSMIC-2 vs. ERA5 wa-
ter vapor difference is smaller than that of COSMIC-2 vs.
MERRA2 above 5 km. The opposite sign and large magni-
tude of the ERA5 and MERRA2 model water vapor differ-
ences relative to COSMIC-2 in the upper troposphere sug-
gest large uncertainties in calculating water vapor in the re-
analysis model over this altitude region. There are ongoing
efforts to quantify the ERA5 biases in the upper troposphere
through comparison with other measurements, such as using
multi-campaign datasets from research aircraft (Krüger et al.,
2022). However, the results are inconclusive due to the com-
parison’s limited regional, height, and temporal coverage. In
this regard, the comparisons presented in this paper help as-
sess the biases in the reanalysis model. Further comparisons
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Figure 2. Comparison of the global distribution of 10× 10◦ grid-averaged water vapor (g kg−1) data between COSMIC retrievals (a, b, c)
at 300, 500, and 850 hPa and ERA5 data (d, e, f) at 300, 500, and 850 hPa, respectively.

with collocated radiosonde measurements can also help as-
sess the biases in ERA5 in the upper troposphere.

3.2 Latitude dependence of COSMIC and ERA5 water
vapor distribution

The comparisons of the latitudinal dependence of water va-
por distribution between COSMIC and ERA5 at three pres-
sure levels are shown in Fig. 3. Eight latitudinal bins from
−80 to 80◦ with 20◦ bin width are used to group COS-
MIC and ERA5 water vapor data. The 20◦ wide latitude
bins over the Northern and Southern Hemisphere are se-
lected to characterize water vapor latitude dependence in

different reprehensive latitudinal zones such as 0–20◦ for
tropical, 20–40◦ for subtropical, 40–60◦ for midlatitude, and
60–80◦ for high-latitude regions. The regions with latitudes
above 80◦ were not selected due to much less data cover-
age from COSMIC. The collocated COSMIC and ERA5 wa-
ter vapor data over all months in 12 years (2007–2018) have
been used to calculate the mean water vapor over these lat-
itude bins, as shown in Fig. 3. Figure 3a, d, and g show
the side-by-side comparison of COSMIC and ERA5 water
vapor data averaged over 20◦ latitude bins at the three se-
lected pressure levels (300, 500, and 850 hPa), respectively.
The panels in the middle and right columns of Fig. 3 show
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the latitude dependence of the COSMIC minus ERA5 wa-
ter vapor mean difference (1QCOSMIC−ERA5 =QCOSMIC−

QERA5) and relative difference (1QCOSMIC−ERA5 (%)=
(QCOSMIC−QERA5)/QERA5× 100).

In general, COSMIC and ERA5 water vapor data (Fig. 3)
show that latitudinal water vapor distribution peaks in the
−20 to 20◦ equatorial latitude zones and rapidly decreases
toward the polar region at all three pressure levels. There is
an asymmetry in the latitude-dependent distribution of wa-
ter vapor between the Northern and Southern Hemisphere.
For example, the Northern Hemisphere’s 0 to 20◦ Equator
latitude bin has the highest water vapor compared with all
other latitude bins, including the southern −20 to 0◦ latitude
bin for all three pressure levels. The decrease in water vapor
from the low-latitude tropics to the polar region in the South-
ern Hemisphere is more rapid than in the Northern Hemi-
sphere, which results in a higher water vapor concentration
in the northern latitudinal bins than the corresponding latitu-
dinal bins in the Southern Hemisphere.

Feulner et al. (2013) showed the asymmetric distribution
of annually and zonally averaged surface air temperatures be-
tween the Northern and Southern Hemisphere, with the mean
surface air temperature in the Northern Hemisphere being 1–
2 ◦C warmer than in the Southern Hemisphere. The close re-
lationship between temperature and the capacity of the at-
mosphere to hold water vapor is governed by the Clausius–
Clapeyron equation (Held and Soden, 2006). The equation
states that for every 1 ◦C increase in temperature, the satura-
tion vapor pressure increases by about 7 %. As temperature
increases, this will lead to the potential for more water vapor
to be held in the air. In other words, warmer air has a higher
capacity to hold water vapor. This relationship is crucial for
understanding how temperature changes can impact atmo-
spheric humidity. The observed and modeled evidence pre-
sented by Wentz and Schabel (2000), Trenberth et al. (2005),
Held and Soden (2006), and Allan et al. (2014) supports the
notion that higher atmospheric water vapor contents are, in
general, associated with higher temperatures.

Since warmer temperature is closely coupled with a higher
water vapor evaporation rate, our findings of moister high-
latitude zones in the Northern Hemisphere are consistent
with the interhemispheric temperature difference observed
in Feulner et al. (2013). Furthermore, Feulner et al. (2013)
examined climatological data, Earth’s energy budget, and
model simulations for factors that could lead to interhemi-
spheric temperature differences. The study of Feulner et
al. (2013) compared various factors, including seasonal dif-
ferences in solar radiation, the tropical land area difference,
the difference in albedo and temperature between Antarc-
tic and Arctic polar regions, and cross-equatorial ocean heat
transport from the Southern Hemisphere to the Northern
Hemisphere. It was shown by Feulner et al. (2013) that
for the preindustrial climate, the northward meridional heat
transport by ocean circulation, with an additional contribu-
tion from the albedo differences between the northern and

southern polar regions, is the dominant factor for the in-
terhemispheric temperature difference. As greenhouse gas
emissions continued to rise throughout the industrial era, in-
terhemispheric temperature disparities became larger. This is
attributed to the intensified warming of land areas compared
to oceans and the significant reduction of Arctic sea ice and
snow cover in the Northern Hemisphere. These factors, in-
cluding cross-equatorial ocean heat transport, albedo differ-
ence in polar regions, intensified warming of land areas, and
reduction of Arctic ice–snow cover, which affect interhemi-
spheric temperature difference, can also be the primary driv-
ing factors of the interhemispheric water vapor difference.

The comparisons between COSMIC and ERA5 water va-
por at three pressure levels in the middle and right columns
of Fig. 3 show some latitude-dependent differences. At the
300 hPa pressure layer, the mean difference and relative dif-
ference 1QCOSMIC−ERA5 (%) are positive (Fig. 3b and c);
i.e., QCOSMIC is higher than QERA5. The peak relative differ-
ences (∼ 7 %–8 %) occur in the two equatorial latitude bins
(−20 to 0 and 0 to 20◦ bins). The percent difference values
range from 2 % to 8 % over the eight latitudinal bins. This
suggests that the 5.67 % bias in the global QCOSMIC versus
QERA5 comparison mainly comes from the water vapor dif-
ference near the Equator.

At the 500 hPa pressure level, 1QCOSMIC−ERA5 values
(Fig. 3e) are negative for all the latitude bins, with the
amplitude of the water vapor difference being low in the
equatorial latitude bins, which is different from those at
300 hPa (Fig. 3b) and 850 hPa (Fig. 3h). At this pressure
layer, the mean QCOSMIC is entirely consistent with the
mean QERA5, i.e., 1QCOSMIC−ERA5 (%) is within −0.5 %
as shown in Fig. 3f, in the −20 to 20◦ latitude bins around
the Equator. Away from the Equator, the percent difference
1QCOSMIC−ERA5 (%) increases to around −3 %.

At the 850 hPa near-surface level, a consistent latitudinal
pattern is evident (Fig. 3h and j), characterized by negative
biases in 1QCOSMIC−ERA5 across all eight latitude bins un-
der investigation. From Fig. 3h, it can be seen that the am-
plitudes of negative 1QCOSMIC−ERA5 are dominantly dis-
tributed over the −40 to 40◦ latitude zone while peaking at
the −20 to 20◦ Equator zone, which agrees with the occur-
rence of negative water vapor bias in the COSMIC 1D-Var
retrieval due to super-refraction in the near-surface moisture-
rich low-latitude regions (Ho et al., 2010). From Fig. 3i it can
be seen that 1QCOSMIC−ERA5 values (% ) of all latitude bins
have negative differences around −2 % to −3 % except for
two latitude bins (−60 to −40◦ and 60 to 80◦) which have
smaller negative 1QCOSMIC−ERA5 (%) near zero.

4 COSMIC and ERA5 water vapor time series
analysis and trend comparison

With six satellites, COSMIC occultations generally have uni-
form spatial and temporal distributions. However, because
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Figure 3. (a, d, g) Comparison of bin-mean water vapor between COSMIC-retrieved data and ERA5 data at three pressure levels. Panels (b),
(e), and (h) as well as (c), (f), and (i) show the value difference and percent difference (COSMIC minus ERA5) of latitude-bin-mean water
vapor data between COSMIC-retrieved data and ERA5 data, respectively. The top, middle, and bottom rows show the comparisons at 300,
500, and 850 hPa, respectively. In all bar chart panels, the bar centers on the x axis are placed at the centers of the 20◦ latitudinal bins. For
this figure, collocated COSMIC and ERA5 water vapor data for all months of the considered 12-year period (2007–2018) have been used to
calculate the mean water vapor in the corresponding latitude bins.

the daily sample number of COSMIC occultations decreased
dramatically after 2010 (see Fig. A4e in the Appendix), we
need to remove the COSMIC sampling uncertainty for the
trend calculation. A detailed description of the method to
remove sampling uncertainty, i.e., sampling error removal
and calculating trends from water vapor time series data,
can be found in Appendix A2 and is not further described
here. This section compares the water vapor trends derived
from the COSMIC and ERA5 time series data after remov-
ing sampling error and deseasonalization. This section calcu-
lates and compares the global and latitude-dependent water
vapor trends from the collocated COSMIC and ERA5 data
from 2007 to 2018 at three pressure levels (300, 500, and
850 hPa).

4.1 Comparison of global COSMIC and ERA5 water
vapor trends

Figure 4a shows the time series of global mean COSMIC and
ERA5 water vapor at three pressure levels. At 300 hPa, COS-
MIC water vapor data are consistently higher than ERA5
data. At 500 and 850 hPa, the COSMIC water vapor data
are slightly lower than the ERA5 data. These differences be-
tween COSMIC and ERA5 are consistent with the bias anal-
ysis in Sect. 3.1. Figure 4a shows that although the COSMIC
and EAR5 time series are different, their trends are pretty
close (Fig. 4b), which will be further quantified after the time
series data are deseasonalized.

It can be seen in Fig. 4a that there were two abnormal
water vapor increases around 2010 and 2015–2016 in both
the COSMIC and ERA5 time series at all three pressure lev-
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Figure 4. (a) Monthly mean time series of COSMIC and ERA5 global mean water vapor data at three pressure levels (solid lines) and linear
trend (dashed lines). (b) Time series of sampling-error-removed and deseasonalized monthly mean COSMIC and ERA5 global water vapor
data (solid lines) as well as the linear trend (dashed lines). In all panels, red and blue lines are time series (solid lines) and trends (dashed
lines) of ERA5 and COSMIC water vapor data, respectively.
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els. The abnormal increases in water vapor around 2010 and
2015–2016 were also observed in the long-term total precip-
itable water monitoring (Mears et al., 2022), which used mul-
tiple RO sensors and radiosonde data to construct the time
series data. These abnormal water vapor increases were at-
tributed to El Niño, i.e., the warm phase of the El Niño–
Southern Oscillation (ENSO). These warm events can en-
hance surface evaporation, increase tropospheric water va-
por, and warm the entire tropical troposphere (e.g., Zveryaev
and Allan 2005; Trenberth et al., 2005). The recent 2015–
2016 El Niño event broke warming records in the central
Pacific according to the Niño3.4 (sea surface temperature –
SST – anomalies averaged over the equatorial region at lat-
itude −5 to 5◦ and longitude −150 to 160◦ of the Pacific
Ocean) and Niño4 indices (SST anomalies over the region of
latitude −5 to 5◦ and longitude −150 to 160◦). The 2015–
2016 El Niño event was among the most significant events
recorded in this century. During the El Niño event from
April 2015 to May 2016, the equatorial Pacific Ocean waters
stayed warm for a whole year, reaching peak temperatures
in November 2015 (https://www.ecmwf.int/en/newsletter/
151/meteorology/2015-2016-el-nino-and-beyond, last ac-
cess: 7 November 2023). The long period of warm Pacific
Ocean temperature significantly impacted the global weather
patterns and diminished the seasonal cycles. This also caused
anomalies in the seasonal variation of the 2015–2016 global
atmospheric water concentration through the coupling be-
tween the ocean and atmosphere over the equatorial Pacific
Ocean and the atmospheric winds (Fig. 4a).

To quantitatively evaluate the trend of global water vapor,
Fig. 4b shows the time series of sampling-error-removed and
deseasonalized monthly mean global water vapor of COS-
MIC and ERA5 at three pressure levels. The slope values,
i.e., long-term trends, are derived with linear regression and
listed in Table 1 in units of both grams per kilogram (g kg−1)
per decade (DQ) and percent (%) per decade (NDQ). In cal-
culating the percent per decade trend, i.e., normalized trend
(NDQ), the long-term averaged global mean water vapor
(g kg−1) at a given pressure level has been used to normal-
ize the trend with the unit grams per kilogram (g kg−1) per
decade.

COSMIC and ERA5 water vapor trend data (Fig. 4) show
that the global water vapor trends at three pressure levels are
all positive, suggesting an increase in global water vapor con-
centration during the period from 2007 to 2018, i.e., becom-
ing globally moister, over time at these pressure levels. Many
earlier studies reported a rise in global atmospheric water va-
por in different periods, e.g., over the period 1979–2001 with
ERA-40 reanalysis (Bengtsson, 2004), over the period 1976–
2004 using global meteorological data measured by weather
stations and marine ships (Dai 2006), and over 1996–2002
with Global Ozone Monitoring Experiment (GOME) data
(Wagner et al., 2006). In Chen and Liu (2016), five global
PWV datasets, e.g., ECMWF and NCEP reanalysis data, ra-
diosonde, ground GPS stations, and microwave satellite mea-

surements, over the period 2000–2014 were used to derive
the trend, and all show a positive global PWV trend. Allan
et al. (2022) studied the global-scale changes in water va-
por and responses to surface temperature variability since
1979 using coupled and atmosphere-only CMIP6 climate
model simulations. In the water vapor trend estimation over
the 1988 to 2014 period, Allan et al. (2022) showed a pos-
itive increase in global water vapor at the near surface and
at 400 hPa as well as column-integrated water vapor from
an ensemble of climate model simulations with the CMIP6
historical and Atmospheric Model Intercomparison Project
(AMIP) experiments. The period of COSMIC RO data stud-
ied in this paper (2007 to 2018) partially overlaps with the
simulations of Allan et al. (2022). The increasing trend in
the global atmospheric water vapor concentration at the three
pressure levels considered in our trend analysis is generally
consistent with the results from Allan et al. (2022). It was
suggested that an increasing trend in water vapor could be a
response to the surface temperature increase (Held and So-
den, 2006; Santer et al., 2006; Zhang et al., 2013).

Table 1 shows that the increasing trends of global water
vapor vary from ∼ 2 % per decade to ∼ 4 % per decade from
the analysis of both COSMIC and ERA5 data at the three
pressure levels. It was also shown by Allan et al. (2022) that
in the ensemble historical experimental model simulations,
the water vapor increases by 1.53 % per decade and 3.52 %
per decade at the surface and at 400 hPa, respectively. Our
study shows that the increasing global water vapor trends
estimated for the COSMIC data over the period 2007–2018
are 2.03± 0.65 % per decade, 3.25± 1.25 % per decade, and
3.47± 1.47 % per decade at 850, 500, and 300 hPa, respec-
tively, which is in general agreement with the results from
in Allan et al. (2022), considering that the two works cover
two distinct periods with 8 overlapping years. In Allan et al.
(2022), there is an increase in water vapor trend from the
surface to 400 hPa by ∼ 2 % per decade. Our work shows an
increase in water vapor trend by 1.44 % per decade when the
pressure level varies from the near surface (at 850 hPa) to
300 hPa, which is generally consistent.

The increasing trend values at 300 hPa derived from COS-
MIC and ERA5 global water vapor data are consistent. At
500 and 850 hPa, the NDQ,ERA5 values are higher than COS-
MIC trends by 0.87 % per decade and 0.8 % per decade,
respectively, which suggests that ERA5 may overestimate
the increase in water vapor during 2007 to 2018. Chen and
Liu (2016) showed that the increasing PWV trend from
2000 to 2014 derived from ECMWF data is ∼ 0.37 % per
decade larger than the PWV trend derived from the ground
GPS station data. The difference between NDQ,ERA5 and
NDQ,COSMIC from our analysis at 500 and 850 hPa is about
0.5 % per decade higher than the differences between the
trends of ECMWF and ground GPS station PWV data stud-
ied by Chen and Liu (2016).

Using the trend results from COSMIC data, we can also
see that water vapor trends increase with lower pressure lev-
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Table 1. Comparison of the global water vapor trends (slope± 95 % confidence interval) derived from COSMIC and ERA5 data.

Pressure COSMIC Q trend Normalized COSMIC Q trend ERA5 Q trend Normalized ERA5 Q trend
level (DQ,COSMIC), (NDQ,COSMIC), (DQ,ERA5), (NDQ,ERA5),

(g kg−1 per decade) (% per decade) (g kg−1 per decade) (% per decade)

300 hPa 0.0047± 0.0024 3.47± 1.77 0.0046± 0.0022 3.58± 1.71
500 hPa 0.0275± 0.0106 3.25± 1.25 0.0355± 0.0107 4.12± 1.24
850 hPa 0.0912± 0.0293 2.03± 0.65 0.1302± 0.0311 2.83± 0.68

els. Table 1 shows that the increasing trend at 850 hPa from
COSMIC data (NDQ,COSMIC) is lower by 1.44 % per decade
and 1.22 % per decade than at 300 and 500 hPa, respectively.

4.2 Comparison of COSMIC and ERA5 latitudinal water
vapor trends

To further understand the latitudinal distribution of the wa-
ter vapor trends, we calculate the slopes of the linear fit for
COSMIC (DQ,COSMIC) and ERA5 (DQ,ERA5) at eight 20◦

latitudinal bins distributed from −80 to 80◦. The latitudinal
bins above 80◦ in the northern and southern polar regions are
excluded from this analysis due to too few COSMIC RO ob-
servations. Figure 5 compares slope values of the linear fit of
water vapor between COSMIC and ERA5 over eight latitude
bins at three pressure levels. The first column of Fig. 5 shows
the water vapor trends (DQ) in units of grams per kilogram
(g kg−1) per decade. To account for the latitudinal variation
of water vapor, the middle column of Fig. 5 shows the water
vapor trends (NDQ) normalized by the corresponding long-
term latitude-bin-averaged water vapor mean and expressed
with the unit of percent per decade. The third column of
Fig. 5 shows the latitude-dependent water vapor trend differ-
ence (NDQ,COSMIC−NDQ,ERA5 , % per decade) between COS-
MIC and ERA5. Table 2 lists the water vapor trend values
of COSMIC and ERA5 for eight latitude bins and at three
pressure levels.

From Fig. 5, the latitude-mean water vapor trends are
mostly positive (increasing), and their magnitudes vary sub-
stantially with latitude bins at three pressure levels. The only
latitude bin with a small negative water vapor trend with large
uncertainty is in the −80 to −60◦ southern high-latitude bin
at 500 hPa. From the global surface temperature trend anal-
ysis by Gu and Adler (2022), there is a mixture of a weak
decreasing trend in the surface temperature in the Southern
Ocean around the Antarctic and an increasing trend over the
Antarctic in the−80 to−60◦ southern latitude bin. However,
the uncertainties of estimating the temperature and water va-
por trends in this latitude zone are large.

At 300 hPa, the differences in water vapor trends (Fig. 5c)
between COSMIC (NDQ,COSMIC) and ERA5 (NDQ,ERA5)
consist of positive and negative values with magnitudes less
than 0.8 % per decade over the eight latitude bins. In other
words, the COSMIC and ERA5 water vapor trends are con-

sistent within 0.8 % per decade over all eight latitude bins.
In Fig. 5b, the trends of water vapor change in the four lat-
itude bins over the −60 to −20 and 20 to 60◦ zones are in
the range of 4 % per decade to ∼ 6 % per decade, which is
higher than the water vapor trends (1.79 % per decade to
2.58 % per decade) of the two equatorial latitude bins (0
to 20 and −20 to 0◦). The southern −80 to −60◦ latitude
bin has the lowest water vapor trends (both

∣∣NDQ,ERA5
∣∣ and∣∣NDQ,COSMIC

∣∣ < 0.6 % per decade) at 300 hPa among the
eight latitude bins studied in this paper.

At 500 hPa, both DQ,COSMIC and DQ,ERA5 are the high-
est (∼ 0.13 g kg−1 per decade) in the 0 to 20◦ latitude bin
(Fig. 5d). Regarding the normalized trends of the unit per-
cent per decade, the NDQ,COSMIC and NDQ,ERA5 (% per
decade) are all positive except in the −80 to −60◦ latitude
bin. Over the latitude bins in the −60 to 80◦ latitude zone,
the values of NDQ,ERA5 vary between 2.35 % per decade and
5.93 % per decade, while values of NDQ,COSMIC vary be-
tween 0.4 % per decade and 6.17 % per decade. The water
vapor trends of NDQ,COSMIC and NDQ,ERA5 in the −80 to
−60◦ latitude bin are both quite stable with a weak negative
trend of −0.72 % per decade. Figure 5f shows that the dif-
ferences between NDQ,COSMIC and NDQ,ERA5 are all nega-
tive (−2 % per decade to −0.3 % per decade) except for one
small positive difference (0.24 % per decade) at the 0 to 20◦

latitude bin. The smaller global water vapor trend from COS-
MIC at 500 hPa compared to the trend from ERA5, as shown
in Table 1, mainly comes from the latitude bins with negative
NDQ,COSMIC−NDQ,ERA5 (Fig. 5f). This analysis indicates
that at 500 hPa, both ERA5 and COSMIC water vapor data
confirm the increasing trends in all the latitude zones from
−60 to 80◦, and the trends estimated from COSMIC water
vapor data are lower than those from ERA5 in most latitude
bins except the 0 to 20◦ equatorial bin.

At 850 hPa, the water vapor trends are all positive from the
COSMIC and ERA5 data analysis over eight latitude bins at
three pressure levels (Fig. 5g and Table 2). Regarding the ab-
solute water vapor trend, i.e., in units of grams per kilogram
(g kg−1) per decade, the water vapor growth peaks in the 0 to
20◦ bin and decreases as the latitude increases toward higher
latitudes. The overall magnitudes of water vapor trends are
larger than 0.1 g kg−1 per decade from ERA5 and COSMIC
data estimated for all latitude bins in the −40 to 40◦ lati-
tude zone. The DQ,ERA5 is larger by 0.1 to 0.13 g kg−1 per
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Figure 5. (a, d, g) Comparison of the latitude-bin-mean water vapor trends (g kg−1 per decade) between COSMIC and ERA5 data at 300,
500, and 850 hPa, respectively. (b, e, h) Comparison of normalized latitude-bin-mean water vapor trends (% per decade) between COSMIC
and ERA5 data at 300, 500, and 850 hPa, respectively. (c, f, i) The difference (COSMIC minus ERA5) of normalized latitude-bin-mean
water vapor trend (% per decade) between COSMIC and ERA5 data at 300, 500, and 850 hPa, respectively. The x values on the horizontal
axis represent the centers of the 20◦ latitude bins. The green line in each panel separates the Southern (to its left) and Northern (to its right)
Hemisphere.

decade than DQ,COSMIC in all of the latitude bins from −20
to 40◦. The normalized water vapor trends in Fig. 5h and Ta-
ble 2 show that both NDQ,COSMIC and NDQ,ERA5 have sub-
stantial variabilities (between 0.69 % per decade and 4.61 %
per decade) among all of the latitude bins. Figure 5i shows
that NDQ,COSMIC is lower than NDQ,ERA5 over all the lati-
tude bins from −40 to 80◦ and NDQ,COSMIC is larger than
NDQ,ERA5 over all the latitude bins from −80 to −40◦. The
magnitudes of the difference (NDQ,COSMIC−NDQ,ERA5) in
all the latitude bins from −60 to 80◦ are less than 2 % per
decade. This indicates that the relatively lower global wa-
ter vapor trends estimated from COSMIC data compared to
ERA5 data at the 850 hPa level (as presented in Table 1) are
mainly due to the lower values of COSMIC trends within the
middle- and low-latitude bins.

5 Regional comparisons of COSMIC and ERA5
water vapor trends

5.1 Global map of the 10◦×10◦ COSMIC and ERA5
water vapor trends

To quantify and compare the global distribution of the re-
gional water vapor trends derived from COSMIC and ERA5
data, we grouped the collocated global water vapor data
over 12 years (2007–2018) into 10◦× 10◦ latitude–longitude
grids. We followed the procedure of estimating the water va-
por trend outlined in Appendix A2 to calculate the trends
(DQ,COSMIC, NDQ,COSMIC, DQ,ERA5, NDQ,ERA5) for the
globally distributed 10◦× 10◦ RoIs. When the grid size is
limited to 10◦× 10◦, there are missing monthly data for spe-
cific RoIs due to the limited orbital coverage of COSMIC.
Figure 6 shows the percentage of missing monthly data dis-
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Table 2. Latitude-bin-mean water vapor trends (g kg−1 per decade and % per decade) and 95 % confidence interval estimated from COSMIC
and ERA5 data at 300, 500, and 850 hPa.

At 300 hPa At 500 hPa At 850 hPa

Latitude bin (DQ,COSMIC, (NDQ,COSMIC, (DQ,COSMIC, (NDQ,COSMIC, (DQ,COSMIC, (NDQ,COSMIC,
DQ,ERA5) NDQ,ERA5) DQ,ERA5) NDQ,ERA5) DQ,ERA5) NDQ,ERA5)

(g kg−1 per decade) (% per decade) (g kg−1 per decade) (% per decade) (g kg−1 per decade) (% per decade)

−80 to −60◦ 0.0001± 0.0016, 0.52± 5.96, −0.00± 0.01, −0.72± 6.48, 0.03± 0.04, 3.14± 3.87,
−0.00005± 0.0016 −0.19± 6.13 −0.00± 0.01 −0.41± 6.14 0.01± 0.04 0.88± 3.61

−60 to −40◦ 0.0031± 0.0039, 4.34± 5.58, 0.01± 0.02, 1.80± 3.74, 0.13± 0.06, 4.61± 2.00,
0.0031± 0.004 4.43± 5.72 0.02± 0.02 3.25± 3.66 0.10± 0.06 3.34± 1.94

−40 to −20◦ 0.008± 0.0065, 4.98± 4.16, 0.03± 0.03, 3.67± 3.85, 0.11± 0.08, 2.09± 1.50,
0.0085± 0.0064 5.74± 4.30 0.05± 0.03 5.55± 3.74 0.13± 0.08 2.27± 1.41

−20 to −0◦ 0.0051± 0.0098, 1.79± 3.42, 0.02± 0.06, 1.17± 3.52, 0.12± 0.12, 1.33± 1.31,
0.0068± 0.0091 2.58± 3.44 0.04± 0.06 2.35± 3.50 0.22± 0.13 2.29± 1.32

0 to 20◦ 0.0079± 0.01, 2.36± 3.04, 0.13± 0.05, 6.17± 2.71, 0.21± 0.10, 2.14± 1.06,
0.0063± 0.0094 2.00± 2.98 0.12± 0.06 5.93± 2.71 0.34± 0.10 3.34± 1.02

20 to 40◦ 0.012± 0.007, 6.29± 3.56, 0.04± 0.03, 3.88± 2.95, 0.14± 0.09, 2.41± 1.61,
0.01± 0.007 5.59± 3.61 0.05± 0.03 4.41± 2.80 0.25± 0.09 4.27± 1.56

40 to 60◦ 0.0047± 0.0044, 4.72± 4.40, 0.00± 0.02, 0.40± 3.14, 0.02± 0.08, 0.69± 2.23,
0.0048± 0.0044 5.01± 4.48 0.02± 0.02 2.35± 3.17 0.05± 0.08 1.46± 2.27

60 to 80◦ 0.001± 0.0031, 1.94± 5.99, 0.01± 0.02, 2.37± 5.38, 0.02± 0.07, 0.94± 3.49,
0.001± 0.003 1.98± 6.32 0.02± 0.02 3.95± 5.25 0.05± 0.07 2.48± 3.44

tribution over the 2007 to 2018 period in the global 10◦× 10◦

grids. The grids with no missing monthly data during this
period are shown as white blanks. The grids with substan-
tial missing monthly data are mostly found over northern and
southern polar regions with latitudes greater than 70◦. Miss-
ing COSMIC RO data are prominent over the regions cover-
ing the Tibetan Plateau, specifically at pressure levels of 500
and 850 hPa. The absence of RO data in these regions can be
attributed to the lower atmospheric pressure prevailing over
areas at an average altitude of around 4 km. Our 10◦× 10◦

RoI-based trend analysis excludes the grids with more than
1.5 % missing monthly data at 850 hPa. In other words, grids
with > 2 months of missing monthly data are excluded from
the trend calculation. The effects of sampling error removal
on regional water vapor trend analysis uncertainty are dis-
cussed in Appendix A3.

Figure 7 shows the global distribution of COSMIC and
ERA5 water vapor trends (DQ,COSMIC and DQ,ERA5) and
their difference (DQ,COSMIC−DQ,ERA5) at 500 and 850 hPa.
The distributions of COSMIC and ERA5 water vapor trends
at 300 hPa have smaller regional variations. They are not
shown in Fig. 7. In Sect. 4, Figs. 4 and 5 suggest that the
global water vapor trends are increasing. The latitude-bin-
based water vapor trends are increasing in low and middle
latitudes at all three pressure levels we studied. Figure 7a–d
shows that both COSMIC and ERA5 data indicate substan-
tial regional variabilities in the global distribution of the wa-

Figure 6. The percentage of missing monthly data over the 2007
to 2018 interval on the global 10◦× 10◦ grids. The percentage of
missing data is shown as color-coded. Grids with complete monthly
data and without gaps, i.e., covering all months, are represented as
white blank spaces.

ter vapor trends. The magnitude of water vapor trends peaks
near the Equator and decreases as it approaches the polar re-
gions, where the atmosphere is drier.

Near the Equator, at 500 and 850 hPa, both DQ,COSMIC
and DQ,ERA5 are strongly positive, i.e., becoming moister
over time, around 180 to 240◦ longitude and 10 to 20◦ lat-
itude in the equatorial Pacific Ocean. This region in the Pa-

Atmos. Chem. Phys., 23, 14187–14218, 2023 https://doi.org/10.5194/acp-23-14187-2023



X. Shao et al.: Spatiotemporal characterization of tropospheric water vapor 14201

Figure 7. (a, b, c, d) The global distribution of water vapor trends (g kg−1 per decade) in 10◦× 10◦ grids derived from long-term COS-
MIC (a, b) and ERA5 (c, d) data. (e, f) The global distribution of the water vapor trend difference (g kg−1 per decade) between COSMIC
and ERA5 (COSMIC minus ERA5). The left and right columns are derived with water vapor data at 500 and 850 hPa, respectively.

cific Ocean with a strong positive water vapor trend is en-
cased at the west side by two regions with negative water
vapor trends located around latitude 20◦ and longitude 130◦

as well as latitude −10◦ and longitude 130◦, which are on
the northern and southern side, respectively. These two re-
gions are located between the western Pacific and the east-
ern Indian Ocean, where sizable regional moisture flux con-
vergence occurs (Fig. 2). A strongly increasing water vapor
trend in the equatorial Pacific Ocean and decreasing water
vapor trend near the region between the western Pacific and

the eastern Indian Ocean are more prominent at 500 hPa than
at 850 hPa. At 500 hPa, the negative water vapor trends are
extended to northern Australia and southern Asia, covering
the Indo-Pacific warm pool region (De Deckker, 2016).

Sea surface temperature has been increasing in the west-
ern Pacific during recent decades (e.g., Gu and Adler, 2022).
There is a high correspondence with regard to the trends in
sea surface temperature and tropospheric water vapor in the
western Pacific during recent decades (e.g., Gu and Adler,
2013). It was shown by Chen and Liu (2016) that the moder-
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Figure 8. Center locations of selected sites for regional analysis of
water vapor trends.

ate increase in surface temperature over the Pacific Ocean
could cause the PWV to increase in the equatorial region
of the Pacific Ocean and decrease in this Indo-Pacific warm
pool region, which is what we observe here. Further quan-
titative analysis of trends at selected locations in the Pacific
Ocean (site no. 6 in Fig. 8) and the Indo-Pacific warm pool
region (site no.4 in Fig. 8) will be performed in the following
sections.

In the Indian Ocean, the region in the Laccadive Sea near
the northern edge of the Indian Ocean (latitude: 0 to 10◦; lon-
gitude: 70 to 90◦) has strong increasing water vapor trends at
850 hPa. At 500 hPa, the region with strong positive water
vapor trends expands to a larger region (latitude:−20 to 10◦;
longitude: 80 to 90◦). This region is affected by the monsoon
climate over the south of the Himalayas. The monsoon cli-
mate influences water vapor variability and trends through
moisture transport (An et al., 2015; Turner and Annamalai,
2012). The variability in water vapor trends in a region expe-
riencing a monsoon climate is closely tied to the alternating
wet and dry phases. Factors such as the strength and duration
of the monsoon, the temperature of the ocean waters, and at-
mospheric circulation patterns all play a role in determining
the extent of moisture transport and its impact on water va-
por levels. Changes in sea surface temperatures due to global
warming can affect the intensity and timing of monsoon pat-
terns, leading to shifts in moisture transport and potentially
altering the variability of water vapor content in the affected
regions. The Indian Ocean is an essential part of the coupled
Indian monsoon system because it feeds the moist convec-
tion over both land and ocean. It is shown that the Indian
Ocean has been warming up in recent decades (Gu and Adler,
2022). The warming of the Indian Ocean can be the main
driver for this region’s positive water vapor trend (latitude:
0 to 10◦; longitude: 70 to 90◦). The region near the Gulf of
Oman in the Arabian Sea (latitude: 10 to 30◦; longitude: 60
to 70◦) has strong decreasing water vapor trends at 850 hPa.
At 500 hPa, this region with negative water vapor trends ex-
pands to the area with latitude 10 to 30◦ and longitude 50
to 80◦ and covers the northern coast. The variability of the

water vapor trends in this region may arise from the moisture
transport influenced by the monsoon climate.

Over land, a significantly increasing water vapor trend at
850 hPa can be observed around the region in the eastern
United States (latitude: 30 to 40◦; longitude: 270 to 280◦)
and over the region near southeastern China (latitude: 20 to
40◦; longitude: 110 to 130◦).

Figure 7e and f show the spatial distribution of the
DQ,COSMIC−DQ,ERA5, i.e., the water vapor trend dif-
ferences between COSMIC and ERA5, at 500 and
850 hPa, respectively. At 500 hPa, the negative differences
(DQ,COSMIC <DQ,ERA5) are primarily distributed in the re-
gional box (latitude: −10 to 10◦; longitude: 120 to 170◦)
where the Indo-Pacific Ocean region is located, and the
decreasing water vapor trends are observed by both COS-
MIC and ERA5. The difference is positive at 500 hPa, i.e.,
DQ,COSMIC >DQ,ERA5, in the northern Indian Ocean and
near its north coast. At 850 hPa, the difference is primarily
negative, with the COSMIC trend being lower than ERA5
in tropical areas. Such dominantly negative differences be-
tween DQ,COSMIC and DQ,ERA5 in tropical regions (30◦ S
to 30◦ N) at 850 hPa determine the lower global and low-
latitude DQ,COSMIC in comparison with DQ,ERA5 as shown
in Tables 1–2 and Fig. 5.

In the following sections, we selected a few represen-
tative 10◦× 10◦ grids (sites) to quantitatively characterize
the spatial variability of COSMIC and ERA5 water va-
por trends. The center locations of these selected 10◦× 10◦

grids are shown in Fig. 8. These sites include stratocumulus-
cloud-rich sites (site nos. 1–3 discussed in Sect. 5.2) and
sites with a notable difference between ERA5 and COS-
MIC trends (site nos. 4–7 discussed in Sect. 5.3), which can
help quantitatively understand the regional difference of wa-
ter vapor trends between COSMIC and ERA5. To quantita-
tively characterize the large regional variabilities, i.e., mixed
with strong increasing and decreasing, of water vapor trends
shown in Fig. 7a–d, we also identified and analyzed several
sites with notable increasing (moister, site nos. 8–12) and de-
creasing (drier, site nos. 13–17) water vapor trends. The anal-
ysis results for these sites are presented in Appendix A4.

5.2 Water vapor trends over stratocumulus-cloud-rich
regions

The first set of sites (site nos. 1–3 in Fig. 8) we selected is
over stratocumulus-cloud-rich regions. These three sites are
selected according to the stratocumulus-cloud-rich regions
identified by Wood et al. (2011), Wood (2012), and Ho et
al. (2015). Stratocumulus clouds are typically shallow and
occur at low altitudes (below 2 km) due to weak convective
currents with drier and stable air above, preventing contin-
ued vertical development. Stratocumulus clouds usually oc-
cur over subtropical and polar oceans. Over regions with fre-
quent stratocumulus clouds, it is challenging to accurately
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estimate water vapor at low altitudes in the ECMWF assimi-
lation (Lonitz and Geer, 2017).

On the other hand, the RO signal can penetrate the cloud
layer because the wavelengths for L1 and L2 frequency of
RO signals are around 19 and 24.2 cm, respectively, which
are much larger than the size of cloud water droplets and ice
crystals (Kursinski et al., 1997). The water vapor retrieval
from RO data is not affected by the cloud. This study helps
to determine whether there are differences between COS-
MIC and ERA5 water vapor trends over these stratocumulus-
cloud-rich regions and quantify the difference. Therefore, we
compare the near-surface water vapor trend of ERA5 and
COSMIC at 850 hPa over three stratocumulus-cloud-rich re-
gions. Table 3 lists the water vapor trends at 500 and 850 hPa
over three sites in the ocean: west of the Baja coast (no. 1),
west of Africa (no. 2), and west of South America (no. 3),
derived from COSMIC and ERA5 data.

At 850 hPa, COSMIC and ERA5 data show that these
three sites have comparable mean water vapor (around
4 g kg−1). At 500 hPa, site no. 3 has a lower mean water
vapor than the other two sites. These three sites have pos-
itive water vapor slopes at 500 and 850 hPa. At 850 hPa,
site no. 1 has the strongest increasing trend of water va-
por and NDQ,COSMIC (14.76 % per decade) is comparable to
NDQ,ERA5 (13.92 % per decade). For site no. 2 and no. 3,
there are significant differences between the trends estimated
with COSMIC and ERA5 data at 850 hPa. For example, the
increasing trend estimated from COSMIC (NDQ,COSMIC) is
about 6.62 % per decade higher than NDQ,ERA5 for site no. 2
(Table 3). For site no. 3, the NDQ,COSMIC is higher than
NDQ,ERA5 by 2.46 % per decade. This analysis indicates that
for two of the three selected sites around the stratocumulus-
cloud-rich regions, the estimated water vapor trends from
COSMIC at 850 hPa can be significantly higher than those
estimated from ERA5 data. The possible cause of smaller
trends from ERA5 water vapor data over stratocumulus-
cloud-rich regions could be the difficulty in accurately es-
timating water vapor at low altitudes from ERA5 reanalysis
data compared with COSMIC RO measurements that are un-
affected by stratocumulus clouds (Lonitz and Geer, 2017).

5.3 Sites with a notable water vapor trend difference
between ERA5 and COSMIC

Comparing regional water vapor trends between COSMIC
and ERA5 data and quantifying their differences contribute
to validating both datasets. In particular, it can identify re-
gions where the reanalysis model could exhibit constraints.
In this section, we select a few sites with a notable trend dif-
ference between COSMIC and ERA5 to quantitatively un-
derstand the magnitude of the differences and the distribu-
tion of these sites. To identify these sites, we first searched
the 10◦× 10◦ global map of the water vapor trend differ-
ence between COSMIC and ERA5 (Fig. 7e and f shown in
Sect. 5.1). We identified the regions with the largest posi-

tive or negative water vapor trend difference between COS-
MIC and ERA5. Within these regions, we selected one rep-
resentative 10◦× 10◦ grid in each region as the site of in-
terest. The estimated water vapor trends for COSMIC and
ERA5 over these sites with notable trend differences are
listed and compared in Table 4. Sites no. 4 and no. 6 are
over the ocean, and sites no. 5 and no. 7 are over land. Sites
no. 4, no. 5, and no. 6 are moisture-rich. Site no. 4 is located
in the Indo-Pacific Ocean region, which suggests large un-
certainty in the characterization of DQ,ERA5 in this region.
Site no. 5 is among the few sites (see Fig. 7f in Sect. 5.1)
with DQ,COSMIC larger than DQ,ERA5 (by 0.29 g kg−1 per
decade) at 850 hPa. Site no. 6 is a typical low-latitude site
with DQ,COSMIC less than DQ,ERA5. For site no. 7 in Peru,
COSMIC shows a much steeper decreasing trend, lower by
−8.34 % per decade, than ERA5 at 850 hPa. This 10◦× 10◦

grid of site no. 7 is mixed with the Andes Mountains on
the eastern portion of the grid and the Pacific Ocean on the
west. There are no 850 hPa RO data over the Andes Moun-
tains (over 6 km in altitude). The RO water vapor trend data
mainly come from the Pacific Ocean in the 10◦× 10◦ grid
of site no. 7. The COSMIC water vapor trend indicates that
site no. 7 has decreased near-surface water vapor from the
period 2007 to 2018, while ERA5 data suggest no signifi-
cant long-term change in the amount of water vapor. From
the linear trend study of global surface temperature during
1998–2020 by Gu and Adler (2022), there is a trend of de-
creasing ocean surface temperature (∼−0.1 K per decade)
near site no. 7, which matches the decrease in water vapor
observed by COSMIC. Site no. 7 is situated in close proxim-
ity to site no. 3 and falls within an area where there is a fre-
quent presence of low-height stratocumulus clouds (Wood,
2012), which makes it more challenging to accurately esti-
mate water trends from ERA5 data than from COSMIC data.

The dominantly negative trend differences between
DQ,COSMIC and DQ,ERA5 for low-latitude regions at 850 hPa
(see Fig. 7f in Sect. 5.1) and the notable large trend differ-
ence between COSMIC and ERA5 over site nos. 4–7 are
concentrated within the northern and southern boundaries of
the Intertropical Convergence Zone (ITCZ). The ITCZ encir-
cles Earth near the thermal Equator, where trade winds con-
verge between the northeast (in the Northern Hemisphere)
and the southeast (in the Southern Hemisphere). The specific
position of ITCZ varies seasonally. The ITCZ has concen-
trated deep clouds spanning nearly the entire circumference
of the equatorial regions, one of the most prominent atmo-
spheric circulation features. Johnston et al. (2021) investi-
gated the distribution and variability of COSMIC-2 water
vapor by comparing it to collocated ERA5 and MERRA-2
reanalysis profiles in the tropical and subtropical regions. It
was found by Johnston et al. (2021) that the largest moisture
differences and weakest correlations were typically observed
in regions that experience frequent convection, such as along
the ITCZ, over the Indo-Pacific warm pool, and in central
Africa. These locations match what we found in our study.
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Table 3. Water vapor trends over three selected stratocumulus-cloud-rich sites.

Center (lat., long.) At 500 hPa At 850 hPa

Region (QCOSMIC, (DQ,COSMIC, (NDQ,COSMIC, (QCOSMIC, (DQ,COSMIC, (NDQ,COSMIC,
QERA5) DQ,ERA5) NDQ,ERA5) QERA5) DQ,ERA5) NDQ,ERA5)
(g kg−1) (g kg−1 per decade) (% per decade) (g kg−1) (g kg−1 per decade) (% per decade)

Site no. 1 (25◦, 235◦) 0.77± 0.28, 0.12± 0.24, 15.19± 30.63, 4.12± 1.42, 0.61± 0.84, 14.76± 20.34,
West of Baja coast 0.82± 0.52 0.10± 0.24 12.37± 28.79 3.83± 2.26 0.53± 0.85 13.92± 22.10

Site no. 2 (−15◦, 5◦) 0.83± 0.49, 0.09± 0.28, 10.97± 33.23, 4.38± 1.55, 0.36± 0.72, 8.13± 16.49,
West of Africa 0.84± 0.74 0.03± 0.27 3.94± 32.44 4.74± 2.13 0.07± 0.71 1.51± 14.94

Site no. 3 (−25◦, 275◦) 0.49± 0.15, 0.21± 0.15, 42.66± 29.67, 3.91± 1.10, 0.16± 0.63, 4.02± 16.06,
West of South America 0.52± 0.32 0.22± 0.15 42.64± 28.13 3.91± 1.60 0.06± 0.64 1.56± 16.24

Our explanation for such a difference is that for regions with
frequent atmospheric circulation, such as deep clouds, the
RO retrievals may characterize water vapor distribution and
occurrence better than ERA5 due to the cloud-penetrating
ability of GPS signal and higher height resolution in RO data
to resolve the sharp moisture gradient better.

6 Discussion and conclusion

This paper evaluates the spatiotemporal consistency and dif-
ference between UCAR COSMIC (WETPrf) and ECMWF’s
ERA5 global reanalysis of water vapor data from 2007 to
2018. The analysis of temporal variability focuses on the
long-term trends and seasonal variability of COSMIC and
ERA5 water vapor data. Spatial variabilities of the global,
latitudinal, and regional distribution of COSMIC and ERA5
mean water vapor and trends at three pressure levels (300,
500, and 850 hPa) are analyzed and quantitatively compared.
These two water vapor datasets generally show good agree-
ment in spatiotemporal distributions and trends.

The key comparison results of time-averaged water vapor
between COSMIC and ERA5 can be summarized as follows.

i. There have been coordinated efforts from the
Stratosphere–troposphere Processes And their Role in
Climate (SPARC) Reanalysis Intercomparison Project
(S-RIP) to compare reanalysis datasets such as ERA5
and ERA-Interim using a variety of key diagnostics.
The SPARC S-RIP confirmed the significant improve-
ments of the latest version of reanalyses in ERA5
compared to ERA-Interim (Fujiwara et al., 2017).
Our study shows that COSMIC water vapor retrievals
are more consistent with ERA5 reanalysis data than
ERA-Interim. This suggests that although the UCAR
COSMIC 1D-Var retrieval used ERA-Interim as the
background model (see Sect. 2.2), the impacts from
ERA-Interim on the UCAR 1D-Var retrieval processing
are minimal.

ii. At 300, 500, and 850 hPa, the differences between COS-
MIC water vapor retrievals and water vapor from ERA5

over the globe are 5.67± 34.30 %, −1.86± 30.09 %,
and−2.30± 21.21 %, respectively. Ho et al. (2010) and
Shao et al. (2021b) showed systematic negative water
vapor biases below 5 km for RO retrievals compared
to radiosonde data. Such negative water vapor biases
can be traced to the negative RO bending angle biases
compared to the reanalysis model (Ho et al., 2020a).
The negative water vapor biases below 5 km, e.g., at
500 and 850 hPa, as studied here, are mainly due to
the underestimation of water vapor in RO retrieval in
the presence of atmospheric super-refraction or duct-
ing in the moisture-rich low troposphere (Sokolovskiy,
2003; Ao et al., 2003; Xie et al., 2006; Ao, 2007). Super-
refraction occurs when the vertical atmospheric refrac-
tivity gradient exceeds a critical refraction threshold,
i.e., in the presence of a sharp change in refractivity.
Such a sharp change often exists around the planetary
boundary layer, where sharp vertical gradients in mois-
ture and temperature inversion are frequently observed.
To address the negative moisture biases in RO retrieval
and account for super-refraction or ducting, there are ef-
forts to improve the 1D-Var retrieval algorithm by incor-
porating the reconstruction method introduced by Xie
et al. (2010). Our study shows that the negative wa-
ter vapor biases at 850 hPa are dominantly in the −40
to 40◦ (tropical and subtropical) moisture-rich regions.
This study shows that the global (Fig. 4 and Table 1) wa-
ter vapor trends are generally consistent with ERA5 at
500 and 850 hPa, although negative water vapor biases
are present at these two pressure levels.

iii. A latitude dependence study shows the asymmetry in
the latitudinal distribution of water vapor between the
Northern and Southern Hemisphere. There was a more
rapid decrease in water vapor from the low-latitude trop-
ical to the polar region in the Southern Hemisphere
than in the Northern Hemisphere. The interhemispheric
water vapor difference can be traced to the interhemi-
spheric difference in temperature (Feulner et al., 2013).
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Table 4. Water vapor trends over selected sites with notable COSMIC and ERA5 trend differences.

Center (lat., long.) At 500 hPa At 850 hPa

Region (QCOSMIC, (DQ,COSMIC, (NDQ,COSMIC, (QCOSMIC, (DQ,COSMIC, (NDQ,COSMIC,
QERA5) DQ,ERA5) NDQ,ERA5) QERA5) DQ,ERA5) NDQ,ERA5)
(g kg−1) (g kg−1 per decade) (% per decade) (g kg−1) (g kg−1 per decade) (% per decade)

Site no. 4 (−5◦, 135◦) 3.24± 0.63, −0.42± 0.34, −13.09± 10.44, 11.44± 1.14, −0.27± 0.37, −2.40± 3.27,
Arafura Sea 3.33± 0.82 −0.25± 0.33 −7.39± 9.81 11.88± 0.99 0.03± 0.35 0.26± 2.98

Site no. 5 (5◦, 35◦) 2.41± 0.83, 0.00± 0.30, 0.13± 12.33, 10.24± 1.63, 0.32± 0.45, 3.17± 4.40,
South Sudan 2.29± 0.85 −0.01± 0.29 −0.53± 12.49 10.71± 1.72 0.03± 0.42 0.24± 3.93

Site no. 6 (−15◦, 195◦) 1.98± 0.78, −0.02± 0.39, −0.77± 19.94, 10.37± 1.19, 0.04± 0.44, 0.35± 4.21,
South Pacific Ocean 1.97± 1.08 −0.01± 0.39 −0.58± 19.96 10.96± 1.27 0.46± 0.44 4.18± 4.01

Site no. 7 (−15◦, 285◦) 1.24± 0.55, −0.01± 0.28, −1.07± 22.55, 4.05± 2.15, −0.34± 0.42, −8.51± 10.38,
Peru 1.78± 0.75 0.03± 0.27 1.42± 15.13 6.11± 1.81 −0.01± 0.34 −0.17± 5.63

The key findings from the trend estimates for the period
from 2007 to 2018 COSMIC and ERA5 water vapor data at
global, latitudinal, and regional (10 by the 10◦ grid) levels
are summarized as follows.

i. The anomalous water vapor increase around 2015–2016
is identifiable in the COSMIC and ERA5 time series
of water vapor data at all three pressure levels and
was attributed to an El Niño event from April 2015 to
May 2016.

ii. COSMIC and ERA5 global water vapor shows in-
creasing trends at three pressure levels. The positive
global water vapor trends from COSMIC data are
3.47± 1.77 % per decade, 3.25± 1.25 % per decade,
and 2.03± 0.65 % per decade at 300, 500, and 850 hPa,
respectively. The positive global water vapor trends can
be a response to the global surface temperature increase
(Held and Soden, 2006; Santer et al., 2006; Zhang et al.,
2013; Chen and Liu, 2016; Ho et al., 2018; Allan et al.,
2022).

iii. The latitude-mean water vapor trends are mostly pos-
itive (increasing) except in the southern −80 to −60◦

latitude zone and show substantial variability (between
0.4 % per decade and ∼ 6 % per decade) with latitude
bins. The trend difference between COSMIC and ERA5
is less than 2 % per decade for most latitude bins at three
pressure levels.

iv. The regional distribution of water vapor trends in the
tropical and subtropical regions has large local vari-
abilities and is mixed with substantial increasing and
decreasing trends. The regions in the equatorial Pa-
cific Ocean with strong increasing water vapor trends
are identified. Negative (decreasing) water vapor trends,
i.e., becoming drier, are observed near the Indo-Pacific
Ocean region at 500 and 850 hPa.

v. The assessment of regional water vapor trend variability
and consistency between COSMIC and ERA5 indicates
the following.

a. A significant difference in the water vapor trends
was estimated between COSMIC and ERA5 data at
850 hPa over two stratocumulus-cloud-rich ocean
sites. The possible cause of smaller trends from
ERA5 water vapor data over stratocumulus-cloud-
rich regions could be the difficulty in accurately
estimating water vapor at low altitudes in ERA5
reanalysis data (Lonitz and Geer, 2017) compared
with COSMIC RO measurements that are unaf-
fected by stratocumulus cloud.

b. Over land, significantly increasing water vapor
trends at 850 hPa can be observed around the region
in the southern United States (latitude: 35◦, longi-
tude: 275◦) and the region near southeastern China
(latitude: 25◦, longitude: 115◦). Two sites in south-
ern Africa and Australia have long-term negative
water vapor trends at 850 hPa, which can cause a
regional long-term drier atmosphere and intensified
droughts. The site in Australia has huge negative
trends (less than−10 % per decade at 850 hPa) (be-
coming drier) from both COSMIC and ERA5 water
vapor trends, which is consistent with Dai (2006)
and Zhang et al. (2018).

c. The differences between the water vapor trends of
COSMIC and ERA5 are primarily negative in the
tropical regions at 850 hPa. At 500 hPa, the nega-
tive differences are mainly distributed in the Indo-
Pacific Ocean region. In contrast, the positive dif-
ference is located near the northern coast of the In-
dian Ocean.

From our analysis, the regions with notable trend differ-
ences between COSMIC and ERA5 are mostly distributed
within the northern and southern boundary of the ITCZ area,
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over the Indo-Pacific warm pool or central Africa. These
regions experience frequent convection, such as deep con-
vective clouds. Because of the cloud penetration property of
GNSS signals and higher height resolution of RO retrievals,
the height and temporal distribution of water vapor can be
better characterized in RO retrievals than ERA5 in the pres-
ence of convection, such as deep clouds. The better represen-
tation of water vapor in RO data may cause the difference in
water vapor trend estimation between COSMIC and ERA5
over these regions, which will need further studies with other
long-term water vapor data. In particular, comparing long-
term ground-based GNSS and GPS data (Mears et al., 2017)
as well as radiosonde data (Patel and Kuttippurath, 2022) can
help address the biases and trend differences between RO and
the reanalysis model over land.

In analyzing long-term water vapor trends from RO data,
it is important to remove sampling errors to correct the bi-
ases due to RO data’s limited time and location coverage.
The sampling error removal accounts for the difference be-
tween the orbital-specific distribution of COSMIC RO mea-
surements and uniformly distributed global ERA5 data. Af-
ter applying sampling error removal, our estimations indi-
cate a reduction in uncertainty by approximately 4.8 times
at 500 hPa and 3.1 times at 850 hPa. This magnitude of un-
certainty reduction is close to that shown by Gleisner et
al. (2020). Our study also shows that the COSMIC water
vapor retrievals are more consistent with ERA5 than ERA-
Interim model data and confirms that ERA5 has significantly
more improved quality than ERA-Interim. This paper’s over-
all global water vapor trends are close to the trend results
from Allan et al. (2022). We postulate that using other global
reanalysis models, such as NCEP and MERRA-2, may have
compatible global trends but differ in regional trends from
our results, which will need further evaluation.

This paper compares 12 years of COSMIC data from
2007–2018 with ERA5 reanalysis data. As the follow-on
mission of COSMIC, the COSMIC-2 constellation with six
satellites has produced RO data since 2019 (Ho et al., 2020b;
Ho et al., 2022). In addition, commercial RO sensors such as
Spire and GeoOptics (Chen et al., 2021) as well as the up-
coming RO sensors on board MetOp Second Generation and
other RO missions continue to augment RO data’s temporal
and spatial coverage. These growing RO datasets combined
with the historical multiple RO mission data will provide
the opportunity to establish consistent long-term CDR-grade
global temperature, water vapor, and derived climatology
data products. It is important to emphasize that consistently
processed temperature and water vapor data with the same
excess phase to bending angle and 1D-Var retrieval models is
critical to establish such long-term CDR-grade datasets from
multiple RO mission data.

Appendix A

A1 Seasonal variability of COSMIC and ERA5 water
vapor distribution

To understand the seasonal variability of water vapor at dif-
ferent pressure levels, we show the annual variation of mean
water vapor over 12 months in eight latitudinal bins (20◦ bins
from−80 to 80◦ in latitude) in Fig. A1a, c, and e and A2a, c,
and e at 300, 500, and 850 hPa pressure levels for the South-
ern and Northern Hemisphere, respectively. Each month’s
12-year (2007 to 2018) water vapor data in each latitude bin
have been averaged for COSMIC and ERA5. Figures A1a,
c, and e and A2a, c, and e show that the water vapor is high
(wet) in the summer and low (dry) in the winter for the corre-
sponding hemisphere at all three pressure levels. The latitudi-
nal variability and seasonal variability of water vapor differ-
ences between COSMIC and ERA5 are further quantified as
the relative difference (1QCOSMIC−ERA5 (%)) in Figs. A1b,
d, and f and A2b, d, and f for the Southern and Northern
Hemisphere, respectively. Figures A1a, c, and e and A2a, c,
and e show the overall agreement in seasonal variability be-
tween COSMIC and ERA5 at three pressure levels over the
Northern and Southern Hemisphere. We can use COSMIC
data as a reference to evaluate the overall seasonal variability
in different latitude zones. We extracted the summer max-
imum (Qmax,COSMIC) and winter minimum (Qmin,COSMIC)
monthly mean COSMIC water vapor from Figs. A1 and A2.
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Figure A1. (a, c, e) Comparison of seasonal variability (over 12 months) between COSMIC and ERA5 water vapor data in four Southern
Hemisphere latitude bins at 300, 500, and 850 hPa, respectively. (b, d, f) Seasonal variation of the percent difference between COSMIC and
ERA5 water vapor data grouped in four Southern Hemisphere latitude bins at 300, 500, and 850 hPa, respectively.

https://doi.org/10.5194/acp-23-14187-2023 Atmos. Chem. Phys., 23, 14187–14218, 2023



14208 X. Shao et al.: Spatiotemporal characterization of tropospheric water vapor

Figure A2. Same as Fig. A1, but over the Northern Hemisphere.
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In Fig. A3, we show the summer maximum and win-
ter minimum monthly mean COSMIC water vapor and
the annual water vapor variation magnitude defined as
1Qmax−min,COSMIC =Qmax,COSMIC−Qmin,COSMIC at three
pressure levels. Over all three pressure levels, the two low-
latitude bins (−20 to 0 and 0 to 20◦) both have compa-
rable Qmax,COSMIC, Qmin,COSMIC, and 1Qmax−min,COSMIC,
which suggests that the mixture of water vapor in these
two southern and northern latitude zones is quite efficient at
all three pressure levels. As approaching higher latitudes in
bins with |latitude|> 20◦, the Southern Hemisphere atmo-
sphere is generally drier than the matching latitude zones
in the Northern Hemisphere at all three pressure levels. Fig-
ure A3 also shows that the seasonal water vapor variabilities,
i.e., 1Qmax−min,COSMIC, are more significant in the North-
ern Hemisphere than in the Southern Hemisphere for latitude
zones above 20◦ at all three pressure levels.

Next, we quantify the difference in the seasonal variability
between the COSMIC and ERA5 water vapor data. As shown
in Figs. A1b and A2b, at 300 hPa, 1QCOSMIC−ERA5 (%)
values are all positive, i.e., QCOSMIC > QERA5, with values
ranging from 1 % to 12.5 % over 12 months and in both
hemispheres. The most substantial seasonal variability in
the peak-to-valley value of annual 1QCOSMIC−ERA5 (%) oc-
curs in the northern 60 to 80◦ latitude bin with seasonal
variation around ∼ 8 % from March to August. The high-
latitude (60 to 80◦) and low-latitude (0 to 20◦) bins in
both Northern and Southern Hemisphere all have a peak-
to-valley value of annual 1QCOSMIC−ERA5 (%) higher than
4 %. For middle-latitude (20 to 60◦) bins in the Northern and
Southern Hemisphere, the magnitude of seasonal variation of
1QCOSMIC−ERA5 (%) is less than 2 %. The latitudinal vari-
ability of 1QCOSMIC−ERA5 (%) agrees with the mean latitu-
dinal values shown in Fig. 3c.

At 500 hPa, Figs. A1d and A2d show that
1QCOSMIC−ERA5 (%) values are negative over 12 months
for all latitude bins except the −20 to 0◦ latitude bin,
which has 1QCOSMIC−ERA5 (%) varying from −1 % to
1 %. The overall peak-to-valley seasonal variabilities of
1QCOSMIC−ERA5 (%) are in the range of 1 % to 3 %, with
the most significant seasonal variability (∼ 3 %) in the
60 to 80◦ high-latitude bin. Such magnitudes of seasonal
variability of 1QCOSMIC−ERA5 (%) at 500 hPa are much
smaller than those at 300 hPa, which suggests that using
1QCOSMIC−ERA5 (%) as the metrics, the water vapor
of COSMIC retrieval is more consistent with ERA5 at
500 hPa than at 300 hPa. The latitudinal variability of
1QCOSMIC−ERA5 (%) at 500 hPa is consistent with the mean
latitudinal values shown in Fig. 3f.

At 850 hPa, Figs. A1f and A2f show that
1QCOSMIC−ERA5 (%) values are dominantly negative
over 12 months for all latitude bins except one bin in
latitude 60 to 80◦, which has 1QCOSMIC−ERA5 (%) varying
from −0.7 % to 1.2 %. The seasonal variabilities (peak-to-
valley variation of annual 1QCOSMIC−ERA5;%) are weak

(< 2.5 %) for all of the latitude bins except the southern
high-latitude bin at −80 to −60◦, which has the most signif-
icant seasonal variability ∼ 6 %. The latitudinal variability
of 1QCOSMIC−ERA5 (%) at 850 hPa agrees with Fig. 3i.

A2 Method of removing the COSMIC sampling errors
for water vapor time series analysis

The steps of calculating the COSMIC sampling error and re-
constructing the water vapor time series for trend analysis are
detailed below.

1. For an RoI such as the global area, latitudinal bins, or
a 10◦× 10◦ latitude–longitude grid, the collocated wa-
ter vapor data from COSMIC and ERA5 in that region
are accumulated for each month. For COSMIC WETPrf
data, the location of the RO profile is used to determine
whether the RO data are in the RoI. For a given pressure
layer, interpolation over the RO profile pressure levels
was carried out for COSMIC water vapor data to derive
the water vapor at the specific pressure. The ERA5 data
are distributed globally on 0.2◦ latitude–longitude grids,
37 pressure layers, and 6 h intervals. Therefore, we in-
terpolate ERA5 data over latitude–longitude and time at
the given pressure level that matches the COSMIC RO
observation. With the accumulated monthly COSMIC
or ERA5 water vapor data for a given RoI, the monthly
mean values at a given pressure level are calculated to
form the long-term time series of monthly mean water
vapor (QCOSMIC_Sample) for the RoI. Figure A4a shows
an example of the long-term time series of COSMIC
(QCOSMIC_Sample) and ERA5 (QERA5_Sample) water va-
por variation at the 850 hPa pressure level for the 0–20◦

latitude bin RoI in the Northern Hemisphere.

2. Figure A4e shows the monthly sample number of COS-
MIC RO data that fall into the 0–20◦ latitude bin RoI,
with substantial variations over the lifetime of COSMIC
when the number of available RO sensors in the COS-
MIC constellation varies over time. Particularly, there
was a continuous decrease in the sample number after
the middle of 2013. There are six small satellites (C1E1
to C1E6) in the COSMIC-1 constellation. The service
interval and performance of these six satellites vary over
time. C1E3 is the first satellite that stopped producing
data in mid-2010. C1E2, C1E3, and C1E4 ended their
operations over the time interval from 2015 to 2017.
C1E1 and C1E6 continued operation until the middle
of 2019 and early 2020, respectively. Due to the vary-
ing performances and availabilities of C1E1 to C1E6,
the time series of the combined valid profile numbers
from these six satellites thus reflect the pattern shown in
Fig. A4e.

To account for the impacts of the limited and varying
sample number on the trend analysis, we need to apply
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Figure A3. Maximum, minimum, and maximum–minimum annual monthly water vapor statistics at three pressure levels of (a) 300, (b) 500,
and (c) 850 hPa from COSMIC retrievals. The vertical red line in each panel separates the latitude bins in the Southern (to its left) and
Northern (to its right) Hemisphere.

sampling error removal to COSMIC data. The sampling
errors are the difference between the sample mean and
cell mean, which can be estimated using monthly ERA5
data from 2007 to 2018. Eq. (A1) illustrates the calcu-
lation of the sampling error (QSE):

QSE =QERA5_Sample−QERA5_RoI, (A1)

where QERA5_Sample is the monthly mean of the inter-
polated water vapor profiles from ERA5 that match the
COSMIC RO observations in the RoI at a given pressure
level, and QERA5_RoI is the monthly spatial and tem-
poral mean of the ERA5 water vapor in the RoI at the
same pressure level. The sampling error removal is car-
ried out by subtracting monthly QSE from the COSMIC
monthly water vapor data using Eq. (A2):

QCOSMIC_SER =QCOSMIC_Sample−QSE, (A2)

where QCOSMIC_SER represents the COSMIC water
vapor data after sampling error removal. For ERA5
data, the application of sampling error QSE removal to
QERA5_sample essentially recovers QERA5_RoI. The time
series of QCOSMIC_SER are unaffected by the limited
and varying sample number of COSMIC RO observa-
tions. They are used to construct monthly mean clima-
tology (MMC) water vapor data records and charac-
terize the long-term trend of water vapor variation for

a given RoI. Figure A4b compares the time series of
QCOSMIC_SER and QERA5_RoI for the 0–20◦ latitude bin
RoI at 850 hPa.

Figure A4d shows the time series of COSMIC sampling
error QSE in the 0–20◦ latitude bin. Similar to the COS-
MIC sampling error data shown in Gleisner et al. (2020)
and Shen et al. (2021), there are seasonal oscillations
(around 0 g kg−1) in the time series of water vapor sam-
pling error shown in Fig. A4d, which is mainly due to
the difference between the orbital-specific distribution
of COSMIC RO observations (Ho et al., 2020a) and uni-
formly distributed global ERA5 data. The nonuniform
local time and latitude distribution of COSMIC-1 pro-
files coupled with the annual variation of the Sun’s dec-
lination contribute to the seasonal oscillation in the sam-
pling error time series. As the monthly sample number
of COSMIC RO data decreases after 2010 (Fig. A4e),
QSE appears to have increased amplitudes. Over the in-
terval after the middle of 2017, when the sample number
of COSMIC decreases more significantly, QSE appears
to have more rapid oscillations.

3. As shown in Fig. A4b, there are substantial seasonal os-
cillations in the monthly mean water vapor data time
series after the sampling error removal. To calculate the
long-term trend from the time series data, the monthly
mean water vapor data must be deseasonalized to fil-
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ter out the annual oscillation. This step is carried out
by grouping the monthly mean water vapor data of the
same month over the 2007–2018 period and calculat-
ing the mean as a climate monthly mean. In this way,
we have 12-month climate water vapor means that can
characterize the annual water vapor variation. The long-
term water vapor time series is then deseasonalized by
subtracting the corresponding climate monthly mean at
each data point. Figure A4c shows an example of the
time series of the deseasonalized water vapor for COS-
MIC and ERA5 at the 850 hPa pressure level in the 0–
20◦ latitude bin RoI.

4. Linear regression has been carried out with the desea-
sonalized time series of water vapor to calculate the
slope, i.e., the trend DQ (g kg−1 per decade), of the
water vapor variation. The example in Fig. A4c shows
the linear fitting curves as dashed red and blue lines for
ERA5 and COSMIC data, respectively. The values and
95 % confidence interval of the ERA5 and COSMIC
water vapor trends are also listed in the figure.

A3 Effects of sampling error removal on the uncertainty
of the regional water vapor trend analysis

Figure A5a and b show the global (10◦× 10◦) distribution
of trends derived from the sampling error QSE time series at
500 and 850 hPa, respectively. The grids with > 1.5 % miss-
ing monthly data over the 2007 to 2018 interval are marked
as white blanks in Fig. A5a and b. It can be seen that the
sampling error removal does introduce corrections to the re-
gional trends of COSMIC water vapor data. To further eval-
uate the impacts of the sampling error removal on the un-
certainty of the water vapor trend analysis using long-term
COSMIC water vapor data, we calculated the histogram dis-
tribution of the relative water vapor trend difference between
the COSMIC and ERA5 data, i.e., 1NDQ = NDQ,COSMIC−

NDQ,ERA5, from the global (10◦× 10◦) distribution. In par-
ticular, COSMIC water vapor data without and with sam-
pling error removal are used to calculate 1NDQ,without SER
and 1NDQ,with SER, respectively. Figure A6a and b show the
histogram distribution and Gaussian fit of 1NDQ,without SER
and 1NDQ,with SER at 500 and 850 hPa, respectively. Gleis-
ner et al. (2020) showed that removing sampling error could
help reduce the uncertainty to about 1/3 in analyzing mul-
tiple RO data products processed by the RO Meteorology
Satellite Application Facility (ROM SAF). From our anal-
ysis, the full-width half-maximum (FWHM) histogram dis-
tribution in Fig. A6a and b has been reduced from 28.1 % per
decade and 25.6 % per decade to 5.8 % per decade and 8.2 %
per decade at 500 and 850 hPa, respectively, after applying
the sampling error removal to COSMIC data. This is about a
4.8 and 3.1 time reduction in uncertainty at 500 and 850 hPa,
respectively, which is quite close to∼ 3 times the uncertainty
reduction as shown in Gleisner et al. (2020). We note that the

ERA5 trend is used as the reference in the uncertainty anal-
ysis. On the other hand, the remaining differences between
NDQ,COSMIC with sampling error removal and NDQ,ERA5
can be partly due to better cloud penetration characteris-
tics of COSMIC RO observations over regions with frequent
clouds. Therefore, our analysis of the impacts of sampling
error removal on trend uncertainty provides an upper-bound
estimation.

A4 Comparison of COSMIC and ERA5 over sites with
notable increasing and decreasing water vapor
trends

Although the global and latitudinal water vapor trends pre-
sented in Sect. 4 exhibit an overall upward trend, Fig. 7a–
d in Sect. 5.1 highlight that within tropical and subtropical
regions, the regional distribution of water vapor trends dis-
plays significant local variations with a blend of pronounced
increases and decreases in trends. Such variations in regional
water vapor trends in general agree with past studies (e.g.,
Ross and Elliott, 2001; Dai, 2006; Mieruch et al., 2008, 2014;
Zhang et al., 2018). In this section, we quantitatively evalu-
ate the regional variability of water vapor trends by selecting
a few sites with notable increasing (site nos. 8–12 in Fig. 8)
and decreasing (site nos. 13–17 in Fig. 8) water vapor trends
and compare with past studies. To identify these sites, we
first searched the 10◦× 10◦ global grids and identified the re-
gions with the largest increasing and decreasing water vapor
trends. Within these regions, we selected one representative
10◦× 10◦ grid in each region as the site of interest, and the
water vapor trends of these sites estimated from COSMIC
and ERA5 data are listed and compared in Tables A1 and
A2.

Both COSMIC and ERA5 trend data show increasing wa-
ter vapor trends at 500 and 850 hPa for the five selected sites
(Table A1). Sites no. 8, no. 9, and no. 12 are located in
the ocean, and sites no. 10 and no. 11 are located on land.
Sites no. 8, no. 9, and no. 11 have high mean water va-
por (> 7.5 g kg−1 at 850 hPa and >∼ 1.5 g kg−1 at 500 hPa).
At 850 hPa, the mean water vapor from COSMIC is lower
than ERA5 for all five sites in Table A1. The trends between
COSMIC and ERA5 are consistent with |NDQ,COSMIC−

NDQ,ERA5|< 2.7 % per decade at 850 hPa for these five sites.
Site no. 10 (latitude: 30 to 40◦; longitude: 270 to 280◦) over
land in the United States has the strongest increasing wa-
ter vapor trend: > 18 % per decade at 850 hPa and > 39 %
per decade at 500 hPa among all of the 10◦ by 10◦ grids
over land. Site no. 10 in the United States and site no. 11
in southeastern China are representative land sites becom-
ing moister. Among the sites situated over the ocean, sites
no. 8 and no. 12 stand out with substantial increasing water
vapor trends (> 17 % per decade and > 23 % per decade at
850 hPa, respectively). Many previous studies have explored
the trends in surface temperature (e.g., Gu and Adler, 2022,
and references therein). The global surface keeps warming
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Figure A4. Steps to derive the long-term water vapor trend for a given RoI at the pressure level of 850 hPa. (a) The time series of the
monthly mean of collocated COSMIC and ERA5 water vapor data in the 0–20◦ latitude bin over the Northern Hemisphere. (b) Time series
of COSMIC and ERA5 water vapor data after sampling error removal. (c) The deseasonalized monthly mean COSMIC and ERA5 water
vapor data time series over the 0–20◦ latitude bin. Dashed lines are the trends derived from linear regression. In (a)–(c), red and blue lines
are time series of ERA5 and COSMIC water vapor data or trends, respectively. (d) Time series of COSMIC water vapor sampling error QSE
calculated with Eq. (A1). (e) The sample numbers of COSMIC observations time series fall into the 0–20◦ latitude bin.

up, though with rich spatial structures of temperature change.
Higher surface temperatures are closely linked to higher lev-
els of water vapor in the atmosphere through the relationship
governed by the Clausius–Clapeyron equation. The satura-
tion vapor pressure of water vapor increases with temper-
ature. The close relations between higher temperature and
higher water vapor have been shown in observations and
models (Wentz and Schabel, 2000; Trenberth et al., 2005;
Held and Soden, 2006; Allan et al., 2014). From the study by
Gu and Adler (2022), ocean surface warming can readily be
seen in the Indian and tropical Pacific oceans, roughly corre-

sponding to the strongly increasing tropospheric water vapor
trends for sites no. 8, no. 9, and no. 12 we observed.

Table A2 lists the water vapor trends for five sites with
notable decreasing trends. Sites no. 13 and no. 14 are located
over the ocean, and sites no. 15, no. 16, and no. 17 are located
over land. For the two ocean sites, water vapor trends at 500
and 850 hPa from COSMIC and ERA5 are strongly negative
(mostly <−10 % per decade). These two ocean sites accom-
pany the regions with strong positive water vapor trends over
the equatorial Pacific Ocean and the Laccadive Sea, respec-
tively (Fig. 7). The long-term negative water vapor trend at
850 hPa for site no. 15 in southern Africa can cause a regional
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Figure A5. (a, b) The distribution of trends of sampling error QSE time series at 500 and 850 hPa, respectively. The white blanks in (a) and
(b) are grids with > 1.5 % missing monthly data over the 2007 to 2018 interval.

Figure A6. (a, b) The histogram of relative water vapor trend difference (% per decade) between COSMIC and ERA5 water vapor at 500
and 850 hPa, respectively. In both panels, blue and orange bar charts are the distribution of the COSMIC water vapor trend difference relative
to ERA5 before and after the sampling error removal was applied, respectively. The blue and red lines are the Gaussian-fitted distribution of
the relative water vapor trend difference for the FWHM calculation.

drier atmosphere. Site no. 16 in Brazil has a mild decreasing
water vapor trend at 850 hPa and a strong decreasing water
vapor trend (<−10 % per decade) at 500 hPa from COSMIC
data. Site no. 17 in Australia has the lowest mean water va-
por, i.e., driest, among the five sites and a strong decreasing
trend (<−10 % per decade at 850 hPa), which can result in
a long-term drier atmosphere in this region (Dai et al., 2006;
Zhang et al., 2018). Site no. 17 is a representative dry region
over land, which becomes drier at 850 hPa.
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Table A1. Water vapor trends over selected sites with notable increasing trends.

Center (lat., long.) At 500 hPa At 850 hPa

Region (QCOSMIC, (DQ,COSMIC, (NDQ,COSMIC, (QCOSMIC, (DQ,COSMIC, (NDQ,COSMIC,
QERA5) DQ,ERA5) NDQ,ERA5) QERA5) DQ,ERA5) NDQ,ERA5)
(g kg−1) (g kg−1 per decade) (% per decade) (g kg−1) (g kg−1 per decade) (% per decade)

Site no. 8 (15◦, 235◦) 1.48± 0.53, 0.44± 0.34, 29.56± 22.99, 7.68± 1.87, 1.36± 0.79, 17.71± 10.22,
West of Baja coast 1.53± 0.81 0.39± 0.34 25.46± 22.08 8.49± 2.47 1.51± 0.78 17.73± 9.17

Site no. 9 (5◦, 85◦) 2.86± 0.66, 0.58± 0.39, 20.28± 13.79, 10.96± 1.13, 1.08± 0.51, 9.83± 4.67,
Laccadive Sea 2.83± 1.00 0.48± 0.40 16.99± 13.97 11.11± 1.29 1.06± 0.50 9.55± 4.51

Site no. 10 (35o, 275◦) 1.04± 0.46, 0.41± 0.24, 39.48± 22.71, 5.93± 2.85, 1.18± 0.82, 19.91± 13.78,
United States 1.10± 0.61 0.47± 0.23 42.67± 21.34 6.61± 3.17 1.22± 0.81 18.40± 12.20

Site no. 11 (25◦, 115◦) 2.00± 1.13, 0.13± 0.30, 6.44± 14.80, 9.31± 3.15, 0.70± 0.85, 7.52± 9.18,
Southeastern China 1.96± 1.27 0.11± 0.29 5.65± 14.99 9.34± 3.57 0.86± 0.85 9.21± 9.08

Site no. 12 (−45◦, 165◦) 0.62± 0.20, 0.10± 0.13, 15.60± 21.43, 3.67± 0.64, 0.95± 0.54, 25.77± 14.73,
Near New Zealand 0.70± 0.33 0.10± 0.13 14.13± 18.75 3.98± 1.34 0.92± 0.54 23.10± 13.56

Table A2. Water vapor trends over selected sites with notable decreasing trends.

Center (lat., long.) At 500 hPa At 850 hPa

Region (QCOSMIC, (DQ,COSMIC, (NDQ,COSMIC, (QCOSMIC, (DQ,COSMIC, (NDQ,COSMIC,
QERA5) DQ,ERA5) NDQ,ERA5) QERA5) DQ,ERA5) NDQ,ERA5)
(g kg−1) (g kg−1 per decade) (% per decade) (g kg−1) (g kg−1 per decade) (% per decade)

Site no. 13 (25◦, 175◦) 1.13± 0.46, −0.15± 0.29, −13.36± 25.53, 7.85± 1.71, −1.09± 0.64, −13.93± 8.20,
North Pacific Ocean 1.27± 0.73 −0.10± 0.29 −7.55± 22.76 8.01± 1.97 −0.85± 0.64 −10.62± 7.98

Site no. 14 (15◦, 65◦) 1.30± 0.92, −0.16± 0.36, −12.59± 27.49, 7.23± 2.65, −0.91± 0.82, −12.55± 11.30,
Arabian Sea 1.39± 1.17 −0.26± 0.36 −18.40± 25.95 7.35± 3.15 −0.74± 0.79 −10.05± 10.78

Site no. 15 (−25◦, 25◦) 1.25± 0.86, 0.01± 0.29, 0.59± 23.40, 6.72± 2.67, −0.43± 0.70, −6.33± 10.40,
Ngwaketse, Botswana 1.11± 0.95 0.04± 0.29 3.92± 26.29 6.80± 2.95 −0.34± 0.72 −5.06± 10.62

Site no. 16 (−15◦, 315◦) 1.60± 0.94, −0.17± 0.42, −10.42± 26.10, 9.88± 1.78, −0.29± 0.47, −2.96± 4.79,
Brazil 1.59± 1.24 −0.09± 0.42 −5.66± 26.49 10.28± 1.95 −0.12± 0.47 −1.13± 4.59

Site no. 17 (−35◦, 145◦) 0.65± 0.28, 0.17± 0.20, 25.79± 30.55, 4.27± 1.05, −0.56± 0.57, −13.09± 13.41,
Australia 0.73± 0.48 0.18± 0.19 23.97± 26.53 4.58± 1.57 −0.49± 0.58 −10.74± 12.69

Data availability. The ECMWF Reanalysis Model 5 (ERA5)
data are publicly available at https://www.ecmwf.int/en/forecasts/
dataset/ecmwf-reanalysis-v5 (Copernicus Climate Change Service,
2023). The UCAR COSMIC water vapor data are available at
https://cdaac-www.cosmic.ucar.edu/cdaac/products.html (CDAAC,
2023).
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