Articles | Volume 22, issue 14
https://doi.org/10.5194/acp-22-9647-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-9647-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: An exploratory study of fluorescence and cloud condensation nuclei activity of urban aerosols in San Juan, Puerto Rico
Bighnaraj Sarangi
CORRESPONDING AUTHOR
Department of Environmental Sciences, University of Puerto Rico –
Río Piedras Campus, San Juan, Puerto Rico, USA
Darrel Baumgardner
Droplet Measurement Technologies, LLC, Longmont, Colorado, USA
Benjamin Bolaños-Rosero
Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto
Rico – Medical Sciences Campus, San Juan, Puerto Rico, USA
Olga L. Mayol-Bracero
Department of Environmental Sciences, University of Puerto Rico –
Río Piedras Campus, San Juan, Puerto Rico, USA
now at: Environment and Climate Sciences Department, Brookhaven
National Laboratory, Upton, New York, USA
Related authors
Bighnaraj Sarangi, Darrel Baumgardner, Ana Isabel Calvo, Benjamin Bolaños-Rosero, Roberto Fraile, Alberto Rodríguez-Fernández, Delia Fernández-González, Carlos Blanco-Alegre, Cátia Gonçalves, Estela D. Vicente, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 25, 843–865, https://doi.org/10.5194/acp-25-843-2025, https://doi.org/10.5194/acp-25-843-2025, 2025
Short summary
Short summary
Measurements of fluorescing aerosol particle properties have been made during two major African dust events, one over the island of Puerto Rico and the other over the city of León, Spain. The measurements were made with two wideband integrated bioaerosol spectrometers. A significant change in the background aerosol properties, at both locations, is observed when the dust is in the respective regions.
Bighnaraj Sarangi, Darrel Baumgardner, Ana Isabel Calvo, Benjamin Bolaños-Rosero, Roberto Fraile, Alberto Rodríguez-Fernández, Delia Fernández-González, Carlos Blanco-Alegre, Cátia Gonçalves, Estela D. Vicente, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 25, 843–865, https://doi.org/10.5194/acp-25-843-2025, https://doi.org/10.5194/acp-25-843-2025, 2025
Short summary
Short summary
Measurements of fluorescing aerosol particle properties have been made during two major African dust events, one over the island of Puerto Rico and the other over the city of León, Spain. The measurements were made with two wideband integrated bioaerosol spectrometers. A significant change in the background aerosol properties, at both locations, is observed when the dust is in the respective regions.
Mahen Konwar, Benjamin Werden, Edward C. Fortner, Sudarsan Bera, Mercy Varghese, Subharthi Chowdhuri, Kurt Hibert, Philip Croteau, John Jayne, Manjula Canagaratna, Neelam Malap, Sandeep Jayakumar, Shivsai A. Dixit, Palani Murugavel, Duncan Axisa, Darrel Baumgardner, Peter F. DeCarlo, Doug R. Worsnop, and Thara Prabhakaran
Atmos. Meas. Tech., 17, 2387–2400, https://doi.org/10.5194/amt-17-2387-2024, https://doi.org/10.5194/amt-17-2387-2024, 2024
Short summary
Short summary
In a warm cloud seeding experiment hygroscopic particles are released to alter cloud processes to induce early raindrops. During the Cloud–Aerosol Interaction and Precipitation Enhancement Experiment, airborne mini aerosol mass spectrometers analyse the particles on which clouds form. The seeded clouds showed higher concentrations of chlorine and potassium, the oxidizing agents of flares. Small cloud droplet concentrations increased, and seeding particles were detected in deep cloud depths.
Graciela B. Raga, Darrel Baumgardner, Blanca Rios, Yanet Díaz-Esteban, Alejandro Jaramillo, Martin Gallagher, Bastien Sauvage, Pawel Wolff, and Gary Lloyd
Atmos. Chem. Phys., 22, 2269–2292, https://doi.org/10.5194/acp-22-2269-2022, https://doi.org/10.5194/acp-22-2269-2022, 2022
Short summary
Short summary
The In-Service Aircraft for a Global Observing System (IAGOS) is a small fleet of commercial aircraft that carry a suite of meteorological, gas, aerosol, and cloud sensors and have been measuring worldwide for almost 9 years, since late 2011. Extreme ice events (EIEs) have been identified from the IAGOS cloud measurements and linked to surface emissions for biomass and fossil fuel consumption. The results reported here are highly relevant for climate change and flight operations forecasting.
Elvis Torres-Delgado, Darrel Baumgardner, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 21, 18011–18027, https://doi.org/10.5194/acp-21-18011-2021, https://doi.org/10.5194/acp-21-18011-2021, 2021
Short summary
Short summary
African dust aerosols can travel thousands of kilometers and reach the Caribbean and other places, where they can serve as ice and cloud condensation nuclei and alter precipitation patterns. Cloud microphysical properties (droplet number and size) were measured in a Caribbean tropical montane cloud forest along with models and satellite products. The results of the study suggest that meteorology and air mass history are more important for cloud processes than aerosols transported from Africa.
Fernanda Córdoba, Carolina Ramírez-Romero, Diego Cabrera, Graciela B. Raga, Javier Miranda, Harry Alvarez-Ospina, Daniel Rosas, Bernardo Figueroa, Jong Sung Kim, Jacqueline Yakobi-Hancock, Talib Amador, Wilfrido Gutierrez, Manuel García, Allan K. Bertram, Darrel Baumgardner, and Luis A. Ladino
Atmos. Chem. Phys., 21, 4453–4470, https://doi.org/10.5194/acp-21-4453-2021, https://doi.org/10.5194/acp-21-4453-2021, 2021
Short summary
Short summary
Most precipitation from deep clouds over the continents and in the intertropical convergence zone is strongly influenced by the presence of ice crystals whose formation requires the presence of aerosol particles. In the present study, the ability of three different aerosol types (i.e., marine aerosol, biomass burning, and African dust) to facilitate ice particle formation was assessed in the Yucatán Peninsula, Mexico.
Carolina Ramírez-Romero, Alejandro Jaramillo, María F. Córdoba, Graciela B. Raga, Javier Miranda, Harry Alvarez-Ospina, Daniel Rosas, Talib Amador, Jong Sung Kim, Jacqueline Yakobi-Hancock, Darrel Baumgardner, and Luis A. Ladino
Atmos. Chem. Phys., 21, 239–253, https://doi.org/10.5194/acp-21-239-2021, https://doi.org/10.5194/acp-21-239-2021, 2021
Short summary
Short summary
Field measurements were conducted to confirm the arrival of African dust on the Yucatàn Peninsula. Aerosol particles were monitored at ground level by different online and off-line sensors. Several particulate matter peaks were observed with a relative increase in their levels of up to 500 % with respect to background conditions. Based on the chemical composition, back trajectories, vertical profiles, reanalysis, and satellite images, it was found that the peaks are linked to African dust.
Cited articles
Allan, J. D., Baumgardner, D., Raga, G. B., Mayol-Bracero, O. L.,
Morales-García, F., García-García, F., Montero-Martínez,
G., Borrmann, S., Schneider, J., Mertes, S., Walter, S., Gysel, M., Dusek,
U., Frank, G. P., and Krämer, M.: Clouds and aerosols in Puerto Rico – A
new evaluation, Atmos. Chem. Phys., 8, 1293–1309,
https://doi.org/10.5194/acp-8-1293-2008, 2008.
Baumgardner, D., Raga, G. B., and Muhlia, A.: Evidence for the formation of
CCN by photochemical processes in Mexico City, Atmos. Environ., 38,
357–367, https://doi.org/10.1016/j.atmosenv.2003.10.008, 2004.
Calvo, A. I., Baumgardner, D., Castro, A., Fernández-González, D.,
Vega-Maray, A. M., Valencia-Barrera, R. M., Oduber, F., Blanco-Alegre, C.,
and Fraile, R.: Daily behavior of urban Fluorescing Aerosol Particles in
northwest Spain, Atmos. Environ., 184, 267–277,
https://doi.org/10.1016/j.atmosenv.2018.04.027, 2018.
Caulton, E. and Lacey, M.: Airborne Pollens and Spores. A Guide to Trapping and
Counting, 1st Edn., Harpenden, British Aerobiology Federation, ISBN 0952561700, 1995.
Chi, M. C. and Li, C. S.: Fluorochrome in monitoring atmospheric bioaerosols
and correlations with meteorological factors and air pollutants, Aerosol
Sci. Technol., 41, 672–678, https://doi.org/10.1080/02786820701383181, 2007.
Duan, J., Chen, Y., and Guo, X.: Characteristics of aerosol activation
efficiency and aerosol and CCN vertical distributions in North China, Acta
Meteorol. Sin., 26, 579–596, https://doi.org/10.1007/s13351-012-0504-6, 2012.
Fennelly, M. J., Sewell, G., Prentice, M. B., O'Connor, D. J., and Sodeau,
J. R.: The Use of Real-Time Fluorescence Instrumentation to Monitor Ambient
Primary Biological Aerosol Particles (PBAP), Atmosphere, 9, 1–39,
https://doi.org/10.3390/atmos9010001, 2017.
Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A.,
Pöhlker, C., Andreae, M. O., Lang-Yona, N., Burrows, S. M., Gunthe, S.
S., Elbert, W., Su, H., Hoor, P., Thines, E., Hoffmann, T., Després, V.
R., and Pöschl, U.: Bioaerosols in the Earth system: Climate, health, and
ecosystem interactions, Atmos. Res., 182, 346–376,
https://doi.org/10.1016/j.atmosres.2016.07.018, 2016.
Gabey, A. M.: Laboratory and field characterization of fluorescent and
primary biological aerosol particles, Ph.D. thesis, University of
Manchester, England, 2011.
Gabey, A. M., Gallagher, M. W., Whitehead, J., Dorsey, J. R., Kaye, P. H.,
and Stanley, W. R.: Measurements and comparison of primary biological
aerosol above and below a tropical forest canopy using a dual channel
fluorescence spectrometer, Atmos. Chem. Phys., 10, 4453–4466,
https://doi.org/10.5194/acp-10-4453-2010, 2010.
Gabey, A. M., Vaitilingom, M., Freney, E., Boulon, J., Sellegri, K.,
Gallagher, M. W., Crawford, I. P., Robinson, N. H., Stanley, W. R., and
Kaye, P. H.: Observations of fluorescent and biological aerosol at a
high-altitude site in central France, Atmos. Chem. Phys., 13, 7415–7428,
https://doi.org/10.5194/acp-13-7415-2013, 2013.
Gioda, A., Mayol-Bracero, O. L., Scatena, F. N., Weathers, K. C., Mateus, V.
L., and McDowell, W. H.: Chemical constituents in clouds and rainwater in the
Puerto Rican rainforest: Potential sources and seasonal drivers, Atmos.
Environ., 68, 208–220, https://doi.org/10.1016/j.atmosenv.2012.11.017, 2013.
Gosselin, M. I., Rathnayake, C. M., Crawford, I., Pöhlker, C.,
Fröhlich-Nowoisky, J., Schmer, B., Després, V. R., Engling, G.,
Gallagher, M., Stone, E., Pöschl, U., and Huffman, J. A.: Fluorescent
bioaerosol particle, molecular tracer, and fungal spore concentrations
during dry and rainy periods in a semi-arid forest, Atmos. Chem. Phys., 16,
15165–15184, https://doi.org/10.5194/acp-16-15165-2016, 2016.
Healy, D. A., Huffman, J. A., O'Connor, D. J., Pöhlker, C., Pöschl,
U., and Sodeau, J. R.: Ambient measurements of biological aerosol particles
near Killarney, Ireland: a comparison between real-time fluorescence and
microscopy techniques, Atmos. Chem. Phys., 14, 8055–8069,
https://doi.org/10.5194/acp-14-8055-2014, 2014.
Hernandez, M., Perring, A. E., McCabe, K., Kok, G., Granger, G., and
Baumgardner, D.: Chamber catalogues of optical and fluorescent signatures
distinguish bioaerosol classes, Atmos. Meas. Tech., 9, 3283–3292,
https://doi.org/10.5194/amt-9-3283-2016, 2016.
Ho, J., Spence, M., and Hairston, P.: Measurement of Biological Aerosol with
a Fluorescent Aerodynamic Particle Sizer (FLAPS): Correlation of Optical
Data with Biological Data, Aerobiologia, 15, 281–291,
https://doi.org/10.1023/A:1007647522397, 1999.
Hoose, C., Kristjánsson, J. E., and Burrows, S. M.: How important is
biological ice nucleation in clouds on a global scale?, Environ. Res. Lett.,
5, 024009, https://doi.org/10.1088/1748-9326/5/2/024009, 2010.
Huffman, J. A. and Santarpia, J. L.: Online techniques for quantification and
characterization of biological aerosol, in: Microbiology of Aerosols, edited
by: Delort, A. M. and Amato, P., Wiley, Hoboken, NJ, chap. 1.4, John Wiley & Sons, Inc., New York, https://doi.org/10.1002/9781119132318.ch1d, 2017.
Jaenicke, R.: Abundance of cellular material and proteins in the atmosphere,
Science, 308, p. 73, https://doi.org/10.1126/science.1106335, 2005.
Kaye, P. H., Stanley, W. R., Hirst, E., Foot, E. V., Baxter, K. L., and
Barrington, S. J.: Single particle multichannel bio-aerosol fluorescence
sensor, Opt. Express, 13, 3583–3593, 2005.
Kaye, P. H., Aptowicz, K., Chang, R. K., Foot, V., and Videen, G.: Angularly
resolved elastic scattering from airborne particles – Potential for
characterizing, classifying, and identifying individual aerosol particles,
Opt. Biol. Part., 238, 31–61, 2007.
Kulkarni, P., Baron, P. A., and Willeke, K.: Aerosol Measurement: Principles,
Techniques, and Applications, 3rd Edn., Wiley, ISBN 978-0-470-38741-2, 2011.
Möhler, O., DeMott,
P. J., Vali, G., and Levin, Z.: Microbiology and atmospheric processes: the
role of biological particles in cloud physics, Biogeosciences, 4,
1059–1071, https://doi.org/10.5194/bg-4-1059-2007, 2007.
Oliveira, M., Ribeiro, H., and Abreu, I.: Annual variation of fungal spores
in atmosphere of Porto: 2003, Ann. Agric. Environ. Med., 12, 309–315,
2005.
Ortiz-Martínez, M. G., Rodríguez-Cotto, R. I., Ortiz-Rivera, M.
A., Pluguez-Turull, C. W., and Jiménez-Vélez, B. D.: Linking
Endotoxins, African Dust PM10 and Asthma in an Urban and Rural
Environment of Puerto Rico, Mediators Inflamm., 2015, 784212,
https://doi.org/10.1155/2015/784212, 2015.
Perring, A. E., Schwarz, J. P., Baumgardner, D., Hernandez, M. T.,
Spracklen, D. V., Heald, C. L., Gao, R. S., Kok, G., McMeeking, G. R.,
McQuaid, J. B., and Fahey, D. W.: Airborne observations of regional
variation in fluorescent aerosol across the United States, J. Geophys.
Res.-Atmos., 120, 1153–1170, https://doi.org/10.1002/2014JD022495, 2015.
Pope, F. D.: Pollen grains are efficient cloud condensation nuclei, Environ.
Res. Lett., 5, 044015, https://doi.org/10.1088/17489326/5/4/044015, 2010.
Quintero, E., Rivera-Mariani, F., and Bolaños-Rosero, B.: Analysis of
environmental factors and their effects on fungal spores in the atmosphere
of a tropical urban area (San Juan, Puerto Rico), Aerobiologia,
26, 113–124, https://doi.org/10.1007/s10453-009-9148-0, 2010.
Raga, G. B., Baumgardner, D., and Mayol-Bracero, O. L.: History of
aerosol-cloud interactions derived from observations in mountaintop clouds
in Puerto Rico, Aerosol Air Qual. Res., 16, 674–688,
https://doi.org/10.4209/aaqr.2015.05.0359, 2016.
Roberts, G. C. and Nenes, A.: A Continuous-Flow Streamwise Thermal-Gradient
CCN Chamber for Atmospheric Measurements, Aerosol Sci. Technol., 39,
206–221, 2005.
Rivera-Mariani, F. E., Nazario-Jiménez, S., López-Malpica, F., and
Bolaños-Rosero, B.: Sensitization to airborne ascospores, basidiospores,
and fungal fragments in allergic rhinitis and asthmatic subjects in San
Juan, Puerto Rico, Int. Arch. Allergy Immunol., 155, 322–334,
https://doi.org/10.1159/000321610, 2011.
Rivera-Mariani, F. E., Almaguer, M., Aira, M. J., and Bolaños-Rosero, B.:
Comparison of atmospheric fungal spore concentrations between two main
cities in the Caribbean basin, P. R. Health Sci. J., 39, 235–242, 2020.
Sarangi, B., Baumgardner, D., Bolaños-Rosero, B., and Mayol-Bracero, O.
L.: Dataset to: Measurement Report: An Exploratory Study of Fluorescence and
CCN Activity of Urban Aerosols in San Juan, Puerto Rico, Mendeley Data [data set],
Version 1, https://doi.org/10.17632/t26dctfk7t.1, 2021.
Savage, N. J., Krentz, C. E., Könemann, T., Han, T. T., Mainelis, G.,
Pöhlker, C., and Alex Huffman, J.: Systematic characterization and
fluorescence threshold strategies for the wideband integrated bioaerosol
sensor (WIBS) using size-resolved biological and interfering particles,
Atmos. Meas. Tech., 10, 4279–4302, https://doi.org/10.5194/amt-10-4279-2017, 2017.
Spiegel, J. K., Buchmann, N., Mayol-Bracero, O. L., Cuadra-Rodriguez, L. A.,
Valle Díaz, C. J., Prather, K. A., Mertes, S., and Eugster, W.: Do Cloud
Properties in a Puerto Rican Tropical Montane Cloud Forest Depend on
Occurrence of Long-Range Transported African Dust?, Pure Appl. Geophys.,
171, 2443–2459, https://doi.org/10.1007/s00024-014-0830-y, 2014.
Stanley, W. R., Kaye, P. H., Foot, V. E., Barrington, S. J., Gallagher, M.,
and Gabey, A.: Continuous bioaerosol monitoring in a tropical environment
using a UV fluorescence particle spectrometer, Atmos. Sci. Lett., 12,
195–199, https://doi.org/10.1002/asl.310, 2011.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate
change 2013: the physical science basis, Contribution of working group I to
the fifth assessment report of the intergovernmental panel on climate
change, IPCC, 2013, Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, p. 1535, edited by: Stommel, E. W., Fiel, ISBN 978-1-107-05799-1, 2013.
Stolzenburg, M. R. and McMurry, P. H.: An Ultrafine Aerosol Condensation
Nucleus Counter, Aerosol Sci. Tech., 14, 48–65, 1991.
Toprak, E. and Schnaiter, M.: Fluorescent biological aerosol particles
measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory
tests combined with a one year field study, Atmos. Chem. Phys., 13,
225–243, https://doi.org/10.5194/acp-13-225-2013, 2013.
Torres-Delgado, E., Baumgardner, D., and Mayol-Bracero, O. L.: Measurement report: Impact of African aerosol particles on cloud evolution in a tropical montane cloud forest in the Caribbean, Atmos. Chem. Phys., 21, 18011–18027, https://doi.org/10.5194/acp-21-18011-2021, 2021.
Toro-Heredia, J., Jirau-Colón, H., and Jiménez-Vélez, B. D.:
Linking PM2.5 organic constituents, relative toxicity and health effects in
Puerto Rico, Environ. Chall., 5, 100350, https://doi.org/10.1016/j.envc.2021.100350,
2021.
Twohy, C. H., McMeeking, G. R., DeMott, P. J., McCluskey, C. S., Hill, T. C.
J., Burrows, S. M., Kulkarni, G. R., Tanarhte, M., Kafle, D. N., and Toohey,
D. W.: Abundance of fluorescent biological aerosol particles at temperatures
conducive to the formation of mixed-phase and cirrus clouds, Atmos. Chem.
Phys., 16, 8205–8225, https://doi.org/10.5194/acp-16-8205-2016, 2016.
Valle-Díaz, C. J., Torres-Delgado, E., Colón-Santos, S. M., Lee,
T., Collett, J. L., McDowell, W. H., and Mayol-Bracero, O. L.: Impact of
long-range transported african dust on cloud water chemistry at a tropical
montane cloud forest in Northeastern Puerto Rico, Aerosol Air Qual.
Res., 16, 653–664, https://doi.org/10.4209/aaqr.2015.05.0320,
2016.
Velázquez-Lozada, A., González, J. E., and Winter, A.:
Urban heat islands effect analysis for San Juan, Puerto Rico, Atmos.
Environ., 40, 1731–1741, 2006.
Whitehead, J. D., Darbyshire, E., Brito, J., Barbosa, H. M. J., Crawford, I., Stern, R., Gallagher, M. W., Kaye, P. H., Allan, J. D.,
Coe, H., Artaxo, P., and McFiggans, G.: Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season,
Atmos. Chem. Phys., 16, 9727–9743, https://doi.org/10.5194/acp-16-9727-2016, 2016.
Uin, J.: Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) instrument
handbook, ARM Tech. Rep. DOE/SCARM-TR-163, USA, 17 pp., U.S. Department of Energy,
doi.org/10.2172/1251410, 2016.
Zhang, M., Khaled, A., Amato, P., Delort, A.-M., and Ervens, B.:
Sensitivities to biological aerosol particle properties and ageing
processes: potential implications for aerosol–cloud interactions and
optical properties, Atmos. Chem. Phys., 21, 3699–3724,
https://doi.org/10.5194/acp-21-3699-2021, 2021.
Ziemba, L. D., Beyersdorf, A. J., Chen, G., Corr, C. A., Crumeyrolle, S. N., Diskin, G., Hudgins, C., Martin, R., Mikoviny, T.,
Moore, R., Shook, M., Lee Thornhill, K., Winstead, E. L., Wisthaler, A., and Anderson, B. E.: Airborne observations of bioaerosol
over the Southeast United States using a Wideband Integrated Bioaerosol Sensor, J. Geophys. Res., 121, 8506–8524,
https://doi.org/10.1002/2015JD024669, 2016.
Short summary
Here, the fluorescent characteristics and cloud-forming efficiency of aerosols at an urban site in Puerto Rico are discussed. The results from this pilot study highlight the capabilities of ultraviolet-induced fluorescence (UV-IF) measurements for characterizing the properties of fluorescing aerosol particles, as they relate to the daily evolution of primary biological aerosol particles. This work has established a database of measurements on which future, longer-term studies will be initiated.
Here, the fluorescent characteristics and cloud-forming efficiency of aerosols at an urban site...
Altmetrics
Final-revised paper
Preprint